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We develop a simple theory of the equilibrium stability of strained epitaxial layers on a rigid sub-

strate based on a generalization of the continuum theory. Each layer is treated as a continuum elas-
tic medium while the coupling between layers is treated in a discrete manner. Using a periodic par-
abolic interaction between adjacent layers, we obtain exact numerical results for the stability bound-

ary of the epitaxial phase, 6(N), expressed as a function of the misfit 6 and the number of layers N.
In addition, we develop a variational approach which agrees very well with the exact results. Our
method interpolates between a few layers and the thick-film limit of the continuum theory, and in

this limit we recover the standard result for the relation between misfit and critical thickness. Con-
siderable deviations from continuum theory can occur in the thin-film limit. For very weak cou-

pling to the substrate, we find 5(N) ~N ' '. The present approach has the advantage of allowing
different misfits and elastic constants for each layer and arbitrary variations in the interlayer cou-

plings.

I. INTRODUCTION

There has been a great deal of work, both theoretical
and experimental, on the structure of strained epitaxial
layers, which has become particularly important in recent
years with the advent of molecular-beam-epitaxy (MBE)
technology. ' This allows the growth of artificial struc-
tures of arbitrary complexity. The main interest in these
structures is in their electronic properties for device ap-
plications, but there are still fundamental questions on
the stability of these structures. As the thickness of the
strained adsorbed layer grows, the elastic energy eventu-
ally overcomes the commensuration energy and the ad-
sorbed layer becomes incommensurate with the substrate.
There are various estimates of the stability criteria which
can be expressed as a relation between the misfit parame-
ter 5 and the number of layers, N. Conventional elastici-
ty theory yields a relation'

5(N) cc (lnN)/N,

where the stability limit is taken to be the point when the
energy of a misfit dislocation vanishes.

Experiments on semiconductor epitaxial layers ' such
as Si, „Ge„/Si seem to obey this relation when grown at
high temperatures, but at lower temperatures a relation
like 5-N ' is a better fit to the data. The epitaxial
layers in this situation correspond to a metastable
configuration. Some energy barrier has to be overcome
before a misfit dislocation can be nucleated.

This paper is concerned with the equilibrium thickness
of an overlayer at very low temperature. Existing
theoretical approaches consist of either numerical
molecular-dynamics studies or continuum elasticity

models. ' In our approach, we compute the energy of a
single misfit dislocation as a function of thickness. The
vanishing of this energy is taken to signal the critical
thickness for a given misfit. We generalize the model of
Frank and van der Merwe to N layers, but do not use the
continuum elasticity approximation in the vertical direc-
tion. The model can describe the equilibrium properties
of an arbitrarily complex overlayer consisting of several
parts of difterent elastic constants and misfits which can
be used to describe a superlattice. We solve the model in
a simple case of a rigid substrate and N adsorbed layers of
the same type and leave extensions to more complex situ-
ations such as a superlattice to a future publication.

II. MODEL

In this section, we develop a model of N layers of ad-
sorbate on a substrate as a generalization of the Frank
and van der Merwe model of a single layer in which it is
assumed, for simplicity, that the overlayer can become in-
commensurate with the substrate in one direction only.
We further assume that each layer can be'described by
continuum elasticity theory but the coupling between lay-
ers is treated in a discrete fashion. This allows for abrupt
changes in the system in the direction normal to the sub-
strate. The model is described by the Hamiltonian

N
F. = Jdx —,

' y Kq ~(V —iG„)p„( )~x

N —1

Vn n+1[P (nX) Pn +1( X) C. C. ]
n= —N,
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N —1

u„+, „cos(0„+,—0„)
n= —N

(3)

This model is still very general despite all the
simplifications, allowing for the loss of registry between
any pair of layers, arbitrary misfits between layers, an
elastic substrate, and the study of arbitrary superlattice
configurations. For the purposes of this paper which is
an initial study of this model, we assume a rigid substrate
which is modeled by

K„=~, —2V, +n +0. (4)

i 0„(x)
where p„(x)=e " . In Eq. (2), 2m/(d0/dx) has the
meaning of local spacing between atoms. This can be
seen as follows. When the nth overlayer assumes its nat-
ural spacing a„, 0„(x)=G„x, 'where G„=2'/a„ is the
basic reciprocal-lattice vector for the nth overlayer. In
this case, 2m. /(d0/dx)=a„. When the spacing of the
particles in the overlayer is not uniform, then d0„/dx is
no longer constant and 2'/(d0„/dx) has the meaning of
a local spacing a„(x). The deviation from natural spac-
ing a„would cause an elastic energy proportional to
~V'0„(x)—G„~ which is the origin of the first term in (2).
The second term in Eq. (2) is the epitaxial energy. It is
finite and negative when adjacent layers are in registry
but vanishes when they are out of registry. The competi-
tion of the two terms in the energy expression (2) deter-
mines whether the lowest energy of the film corresponds
to an epitaxial configuration or not. The summations are
taken over the N, + 1 substrate layers and the N adsorbed
layers. Displacements are allowed only in the x
direction —the direction of mismatch. This is a some-
what unrealistic assumption which is equivalent to the
constraint that the spacing between layers is held fixed
which could be relaxed at the expense of introducing ex-
tra phases into p„(x) with the associated extra mathemat-
ical complexity. However, the model of Eq. (1) captures
the essence of the epitaxy as a function of misfit. and film
thickness. In this work we do not consider surface
effects. Accounting for both mismatch and surface ten-
sion can lead to an instability giving rise to droplet forma-
tion. ' Finite-temperature effects also leads to additional
mathematical problems. Even for the simplest system,
consisting only of two coupled layers in the absence of a
substrate, the resulting phase diagram as a function of
temperature and misfit differences has a rich structure. "
These effects will not be considered here. This model is
suitable if all the G„are almost equal and the ratios
6„/G &p/q. This is the situation commonly occurring
in strained epitaxial layers where the natural periodicities
typically diff'er at most 5%, and the ground state for thin
layers is the epitaxial (commensurate) configuration.
This justifies the neglect of higher harmonics in the free
energy of the form Re(p1„'p*~) which would be important
if the ground state were a higher-order commensurate
state. When written in terms of the phase variables
0„(x),the energy becomes

E = f dx —,
' g E„(V0„—G„)

n= —N

This is not a serious approximation provided the sub-
strate is much thicker than the overlayer (N, ))N).
With this approximation, the energy is minimized for the
substrate layers by the choice

0(x)=G,x, N,—&n &0

where G, is the substrate reciprocal-lattice vector.
Defining for the adsorbed layers

0„(x)=G,x —P„(x), 1&n &N

where P„ is a measure of the displacement of the nth lay-
er from perfect registry, we obtain

N
E Eo=—f dx —,

' g K„(Vp„—5„)
n=1

+ g u, +1[1 c os(f„+1 4„)]
n=0

g K„5„
n=1

where 6„=G,—G, is the usual misfit parameter measur-
ing the mismatch between the lattice spacing of the sub-
strate and the nth adsorbed layer. With this definition,
5„&0 implies that the natural spacing of the nth layer is
larger than the substrate period. Throughout the paper
we will consider the 6)0 case. The other one can be
treated in a completely equivalent manner. This form
can be used to study the stability of an arbitrary superlat-
tice on a rigid substrate by choosing the mismatches 5„
appropriately, but in this paper we make the further
simplification to a system of N identical layers so that
K„=E,5„=5,u„„+,=u (n ) 1) is the coupling between
adjacent layers of the adsorbate and UO1=h is the cou-
pling of the bottom layer to the substrate (note that
4'o=o).

III. STABILITY ANALYSIS

The criterion for loss of registry we shall use follows
the standard theory of the commensurate-incommen-
surate transition at zero temperature in which one
searches for the point at which the energy of a misfit
dislocation vanishes. ' The aim of this paper is to find
the stability boundary, 5(N), at which the overlayer loses
complete registry with the substrate and to investigate
where in the system the misfit dislocations first appear.
This type of analysis is relevant to systems in which the
energy barrier to misfit dislocation formation is very low.
However, many experimental systems such as Si-Ge al-
loys grown on a clean Si substrate at low temperatures
are metastable configurations presumably due to a large
energy barrier. This is an extremely interesting and im-
portant problem, but it is outside the scope of this paper.

The analysis follows the standard route by minimiza-
tion of the energy with respect to P„, but this leads to a
system of coupled sine-Gordon equations which are
somewhat intractable even when N =2, so we replace the
cosine interaction by a periodic parabolic interaction
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(1—cosP) —+ V(P) =
—,'P, ~(P & ~

V(/+2')= V(P) .

with g~+
& 3;, =1. The latter condition corresponds to a

boundary condition

This approximation has also been used in other prob-
lems. '

With this replacement and a rescaling of
x ~x (K/u)', we can write the energy of the system of
length L in the x direction as

and

P;(0)=P;(L)=0

sinh(k x)
P, (x)=m. g A„', 0&x &I. /2'J sinh k L/2

P;(L —x)= —P, (x), L/2(x &L

(13a)

(13b)

E E,—=(Ku)'" f dx —,
' y (Vy —g)'

0 n=1

+ & V(0. +i —4. )

+h V(P, )

P'„'=2/„—P„+&

—P„„2 n X —1

6'=(&+I )4i —6
0N 4N 4N —1

(10)

where h =h /u and 5=5(K/u)'
Again, this approximation will not have serious quali-

tative effects since the curvature of the cosine potential
and V(P) are identical. The main difference between the
two is in the maxima of the potential at P = ( 2n + 1 )m,

but this potential barrier has only a small effect on the en-

ergy since the phase difference between layers P„+,—P„
is small in most of the system and it is these regions
which give the main contribution to the elastic energy.
Also, the interaction potential is not too well known and
there are many uncertainties in the energy barrier even in
more realistic models.

Performing the minimization leads to the following set
of linear equations of motion for P„(—yr & P„&vr ):

with g~ & 3; =0. Note that an isolated soliton in the
ith layer corresponds to a pair of elementary misfit dislo-
cations of equal but opposite Burgers vectors, one just
above and one just below the ith layer. In our formalism,
it is more convenient to parametrize the configurations of
the layers in terms of solitons rather than misfit disloca-
tions.

These solutions are quite natural. Suppose we have
two layers on a substrate with the soliton in the second
layer. In an atomic picture, the expected displacements
are shown in Fig. l. In terms of the phases P& and P2,
corresponding to the displacements, $2 has a solution
$2(0)=0 and $2(L)=2', whereas P&(x) has a twist or
elastic displacement which is matching up as well as pos-
sible with the second layer and substrate so that
P&(0) =P, (L /2) =P, (L)=0 and P, (L —x) = —P, (x) cor-
responding to displacements to the right in the left-hand
part of the layer and to the left in the other part.

The general program to find the condition at which a
misfit-dislocation formation energy first vanishes is now
clear. We specify our selected misfit-dislocation
configuration, allowing, at most, one soliton in a given
layer, and compute the energy from Eq. (9) and compare
the energies for all possible configurations. This involves
calculating the N quantities 3; from the equations of
motion and the boundary conditions specifying the soli-
ton configuration. The X different k are evaluated from
the Nth-order polynomial equation for k:

which have solutions, for a system of length L, of the
form

P(x)=g (a;e ' +b;e ' ), i=1,2, . . . , X.
j=1

det

k —1 —h

0

1

k —2

0 0 0
1 0 0

k —2 1 0
0
0
1

1 k —1
There are two possibilities here: either there is a soli-

ton in P, (x) which corresponds to the removal or addi-
tion of a single atom to the ith layer or there is not. The
former case corresponds to a solution of the equations
with a boundary condition

(14)
It is easily shown that all roots of this are real and posi-

tive so that the k; are real and may be chosen positive.

$,.(0)=0, P, (L)=2m

sinh(k x)
'1 sinh k L/2

sinh[k) (L —x) ]

(12a)

L/2&x &L

(12b)

Q Q Q Q Q Q Q Q Q Q 2nd layer

Q Q Q Q Q Q Q Q Q 1ctlayer

X X X X X X X X X X X cubctrate

L/2 L

FIG. 1. Atomistic view of one of the solutions to Eq. (10) in
which there is a soliton in the second layer and a twist in the
first one.
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Note that there are N(N —1) linearly independent equa-
tions of motion for the 3;~ and the remaining X equa-
tions are given by the boundary conditions. Note also
that there are 2 soliton configurations to be investigated.
This can be carried out analytically for small values of X,
but rapidly becomes extremely tedious.

The energy of the system relative to its registered state
is given by

cosh(k;x)cosh(k x)
I', dxV'v&, '~ o sinh(k, L /2)sinh(k. L /2)

sinh( k, x )sinh(k. x )

"Jo sinh(k, L /2)sinh(k L/2)

X

8
(&)

'0

layer l

layer 2

layer 3

cosh(kjx)—2m5 g A,,k dx
o sinh kjL/2

In the limit L ~ ~, this reduces to

2vr5—+ A„,
P. . +Q,,
k, +k,

where

(16) X

(b)

~
V'

layer l
layer 0

—~ — layer 3
~ ~ ~ ~ ~

~~P r.
~ ~&r

/g. '

/~

.v' /

N

I', =g k, k", Ai; Ai
1=1
X —1

Q, = g (Ak —Ai+, , )(Ai —Ai+, , )+hAi;Ai
1=1

(17)

The equations determining the A,~
are the N(N —1)

linearly independent members of the equations of motion

0,
I~

~ I ~ I I a ~ ~ ~ I ~ I ~ ~ I l ~ ~ ~ I ~ ~ a ~

0 2 4 6 8 10

FIG. 2. Solutions of Eq. (10) for a system consisting of four
layers with L/a =10 and h/U =1. (a) With a soliton in each
layer and (b) with no soliton in the 1st layer.

A,J(k, —1 —h )+A~) =0,
A (k —2)+ A+, , + A;, =0, 2 i~~N —1

A~ (k —1)+A~, J=O, j =1, . . . , N

together with the 2' possible boundary conditions

ted in Fig. 3. For large X, this method becomes rather
curnbersorne so we have also performed a variational cal-
culation assuming the misfit dislocation starts from the
first layer.N, o

i=i
if no soliton in layer i,
if there is a soliton in layer i . IV. VARIATIONAL CALCULATION

%'e have evaluated the energy difference of the various
configurations from the registered state analytically for
X =1,2 and numerically for X =3,4, investigating in de-
tail all 2 possibilities, and we find that the lowest-energy
configurations always fall into two classes. For h =h/U
sufficiently small ( ~ 1.2), the lowest-energy configuration
is one with a soliton in every layer corresponding to a
conventional misfit dislocation between the substrate and
first layer. For h/U ) 1.2, we find that the first layer
remains essentially commensurate with the substrate ex-
cept for elastic distortions of the twist type. The remain-
ing X —1 layers each have a soliton which corresponds to
a misfit dislocation starting from the second layer. Note
that the soliton width increases with distance from the
substrate (see Fig. 2).

Guided by these calculations we have also evaluated
the critical stability boundary, 5(N)=i/IC/v 5(N), for
large N by finding the roots of Eq. (14) numerically and
evaluating AE numerically. The results of this are plot-

k„(&—L, ZZ)
me ",0&x &L/2

4 n (x ) —k„(x L /2)—
2m —m.e ",L/2&x &L .

(20)

By symmetry, the energy of the system with x &L/2 is
the same as for x )L /2, so that, when L ~~, we get

AE = c.~ —2m X5,
Kv

where

(21)

Using the information gleaned from the calculations of
the preceding section that either N or X —1 layers have
solitons, we can perform a variational calculation to esti-
mate 5(N) for arbitrary N. We ignore the difference be-
tween the two possible situations since we are principally
interested in 5, (N) for large N, so for convenience we as-
sume a soliton in each layer centered at x =L/2 and in
the limit L ~~ the phase P„ is assumed to have the vari-
ational form



39 EQUILIBRIUM THEORY OF STRAINED EPITAXIAL LAYERS 3189
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0 variatioaal

given misfit, using Eq. (23), by direct numerical minimi-
zation of Eq. (28) with respect to a and find very good
agreement (see Fig. 3). Note that for N= 1 the agree-
ment is perfect because the number of variational param-
eters in Eq. (24) is sufficient to coinpletely determine the
solution of Eq. (10).

There are two special limits in which one can easily
find the values of o. which minimize the energy in Eq.
(28). First, when h =0, E& is clearly minimized when
a=0, so for h ~0

1/2

5(N) =- h
(29)

2

e
+

0 t I

0 0.5 | 1.5

In the other limit 1V »1, but h not too small, we can ap-
proximately replace the summations by integrals in Eqs.
(26a) and (26b), which gives

FICx. 3. Stability boundary for h/u =1, according to the ex-
act calculations of Sec. III and the variational calculations of
Sec. IV. C labels the commensurate (epitaxial phase) and I la-
bels the incornrnensurate phase.

A~ = (N' 1)+C—, ,
1 —a

2

8~ = -(N ' —1)+C~+ h,2a —1

(30a)

(30b)

where C, , C2 are constants. Now, if n&1, B~-N
and A~ —C„while if a&1, B~=C2+h and A~-X'
so that

2 W —1

k„+ +
yl =1 n n+1

+k~+4 h

n+ n+1
g [a—1f/2 (31)

(22)
Clearly, within this approximation c& is minimized by
e= 1 when both A& and B& behave like in% so that

The critical boundary is given by hE =0, or

5(N) = 1

2~+ ~

We now make the additional ansatz that, to rninirnize

and

X= ly&Z

lnN
2V'2 N

(32)

(33)

k„=A,n (24)

which is a convenient variational form for numerical cal-
culation, with the result that

where

2

(A, A~+A, 8~),
2

(25)

—an (26a)

~-' [(n+I) —n ]'
(n+1) +n

(26b)

Minimizing c~(a, A, ) with respect to A, gives

x=(a„yw„)'" (27)

eN ~ ( ~N+N)

In order to check the accuracy of the variational an-
satz against the exact solution described in the preceding
section, we have calculated the critical thickness for a

This is the same N dependence as the more conventional
theory of misfit dislocations. In the Appendix we show
how the same results can be obtained, without making
use of Eq. (24), by directly minimizing Eq. (22). The
crossover between these two regimes is roughly given by
Nh -4.

The two limiting cases have a simple physical interpre-
tation. As shown in the Appendix, when hX is small, the
soliton width in the first layer is =h ' . Although the
width increases linearly with the layer index n, the layer
is too thin for this increase in width to affect the energy.
One may then regard all solitons as having the same
width I. Minimizing c& with this ansatz yields
E~=(Nh )' . When hN is large, the energy is dominated
by the layers with index n »1/h in which the soliton
width increases linearly with n, leading to the standard
linear elasticity result.

The result for the hN —+0 limit fits some of the experi-
mental data quite well, but this is probably fortuitous
since the treatment in this paper assumes thermal equilib-
riurn, whereas it is believed that many of the systems
studied experimentally are in metastable states. Howev-
er, we note that in some molecular-dynamics studies, the
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critical thickness N has been found to fall more rapidly
with misfit than 1/6 for large 6, in agreement with our
weak-coupling or thin-film limit.

2
X

dn l '+ —,
' l

2 1 dn

2

+ hl, . (A 1)

V. CONCLUSIONS

In this paper we have developed a simple theory of the
equilibrium stability of strained epitaxial layers on a rigid
substrate assuming that loss of registry occurs only in one
direction. We have used a generalization of the
Frank —van der Merwe model to N layers with a periodic
potential between adjacent layers. Each layer is treated
as a continuum elastic medium, while the coupling be-
tween layers is treated in a discrete manner. Using a
periodic parabolic interaction between layers, we ob-
tained exact numerical results for the stability boundary
5(X). In addition, we developed a variational approach
which agrees well with the exact results. Our method in-
terpolates between a few layers and the thick-film limit of
standard dislocation theory and in this limit the standard
results are obtained. Considerable deviations from con-
tinuum elasticity theory occur in the thin-film limit. For
very weak coupling to the substrate, or sufficiently thin
films, we found that 5(X)—X '~ . The advantage of our
method over previous ones is that we can allow for arbi-
trary variations in the misfits with the substrate 6„, the
coupling constants v, , + „and elastic constants E„. This
wiH allow us to perform stability analyses of arbitrary su-
perlattice configurations containing, for example, thick
layers of one material and thin layers of another. Also, it
should be possible to investigate the stability of a film
separated from the substrate by an incommensurate
buAer layer, and the eAects of an elastic substrate. Such
situations will be considered in a future publication.

To derive Eq. (Al), we have assumed that
d I/dn «dh/dn « I and kept only the leading terms.
As can be checked, this is valid for N ))1, so is a reason-
able approximation. For n ) 1, the extremum condition
is

d2l 1 dl
2 dn

2

+1=0.

The most general solution of Eq. (A2) is

l(n)=ao+a&n +a2n (A3)

v 2X+ao
s~(&o) = — ln — +h(v'2+ao)

2 2+Go
(A4)

where we have matched l, =V2+a~. The constant ao
has the interpretation of the width of the soliton in the
first layer. Minimizing E&(ao) with respect to ao yields a
quadratic equation for ao with the solution

where az=(a, —2)/4ao. When a2=0, the integral in
Eq. (Al) is proportional to In&, whereas for a&+0 it in-
creases as X. So when the second term in Eq. (Al), hl „is
finite, the latter solution has higher energy. We then take
a~=0 and so ai =v'2. The lower-energy solution has a
soliton width which increases linearly with distance from
the substrate, exactly like a standard misfit dislocation.
Substituting thi. s form into the energy, we find
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li =ao+v'2= (X —1) 1+ 4
2 h(X —1)

1/2

2
—j 1n[h (% —1)+ I ]+ 1 I,v'2 (A6)

For a stronger coupling to the substrate h =O(1), or
very thick films such that hX»4, Eq. (A5) gives
l

&

—1/ h and so we obtain the conventional result of
linear elasticity theory,

APPENDIX and

Except in the special limits discussed in Sec. IV,
analytical results for diA'erent h and N are dificult to ob-
tain using the variational assumption of Eq. (24). Howev-
er, within the basic variational ansatz of Eq. (20), one can
obtained analytic results for N =1,2 by direct minimiza-
tion. It is also possible to obtain results for N))1 and
arbitrary h by assuming that k„varies smoothly with n.
By defining I, =1/k, , which is the width of the soliton in
the nth layer, and replacing the summations by integrals,
we have

7r ln(h&+ I)+1
2v'2 X (A7)

However, for very weak coupling to the substrate,
h(N —1)((4, we find, from Eq. (A5), li ~(N/h )' . In
this case the second term in Eq. (Al) is proportional to
(hX)'~ and the energy is now minimized when az&0.
After minimizing with respect to a

&
and ao, to leading or-

der I& —(N / h ) results, and we recover the result
5(X)

ccrc

'~ as given in Eq. (29).
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