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Brillouin-zone integration by Fourier quadrature: Special points
for superlattice and supercell calculations
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A simple extension of the Monkhorst-Pack Fourier-quadrature (or special-points) method for
Brillouin-zone integration makes it possible to determine equivalent (identical by symmetry) points
for two different unit cells simply by identifying lattice points common to both cells. This is useful
for superlattice or supercell geometries in order to minimize systematic errors.

I. INTRODUCTION

Calculations on superlattices of di8'erent orientations,
frozen phonons, impurities in supercells, and other super-
structures often involve comparisons of results from two
or more different unit cells (geometries). All require the
evaluation of Brillouin zone integrals, which are invari-
ably approximated using so-called "special points"'
methods. In order to minimize systematic numerical er-
rors, it is advantageous to use the same (equivalent) set of
"special points" in each geometry. Thus it becomes
necessary to find the corresponding "special points" for
one unit cell given a set for another and to determine if
the two sets are indeed equivalent. Presented here is an
alternate derivation and a simple extension of the method
described by Monkhorst and Pack, which simplify this
process. The method will also reproduce the Chadi and
Cohen points for appropriate choices of parameters.

II. THEORY

We want to approximate the Brillouin zone (BZ) in-
tegral of a reciprocal-space function F(k) with a discrete
sum:

0 ' f d k F(k) =gw„F(k„),
BZ

not just over the first Brillouin zone. Since F(k) is
periodic this will simply multiply the result by the num-
ber of Wigner-Seitz cells in the reciprocal lattice. Later
translational invariance is used to restrict sums to the
first Brillouin zone only.

One-dimensional Fourier quadrature is carried out us-
ing equally weighted, equidistant points. In three dimen-
sions, we will try the linear generalization

f0+ fln1+ f2n2+ f3n3 (3)

and

Wn ~WIn
I
=W,

J
(4)

0 ' d kFk = cRFR

with

where ( fj I are vectors in reciprocal space, the last three
of which must be linearly independent. Monkhorst and
Pack chose them to be fractions of (and parallel to) the
primitive translation vectors of the reciprocal lattice;
however, as will become clear, this is an unnecessary and
undesirable restriction. Combining Eqs. (1), (2), (3), and
(4) and extending integrals and sums to all space we ob-
tain

where w„are weight factors. F(k) is periodic and can be
expanded in a Fourier series

ifo R 3

cR =we
j=1 n. = —ooj

if . .Rn.
J

F(k) =QFRe'"'
R

(2)

where R is a real space lattice vector. Our goal is to
choose a small set Ik„,w„I such that as many small-R
terms as possible in the Fourier expansion of F(k) are in-

tegrated exactly. The first term in the Fourier series that
fails to integrate exactly is denoted R,„. Notice that
this is exactly analogous to, e.g., Gaussian quadrature in-
tegration, where the order of the polynomial corresponds
to R,„. The appropriate name for this process is there-
fore Fourier quadrature rather than the term "integration
by special points. "

In the following derivation it is convenient to allow in-
tegrations and sums to run unrestricted over all space,

The correct solution for the integral is obtained if the
coefficients cR are all zero with the exception of c0, which
should be one. This is satisfied provided at least one of
the inner products f -R is not an integer multiple of 2~,
causing one or more of the sums over n in Eq. (6) to be
zero. Thus, for a given set of vectors I f, I, the first term
of the sum in Eq. (2) which fails to integrate correctly is
the smallest R which satisfies

f "R=2m X (integer), j= 1,2, 3.

This defines the vector R „.
Equation (7) shows that the integral could be evaluated

exactly by making f, incommensurate with the reciprocal
lattice primitive translation vectors. However, since the
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quadrature grid would not be the same from one recipro-
cal unit cell to the next, this would necessitate summing
over all space. To avoid this and reduce the sum to the
first Brillouin zone, the grid must have the translational
period of the reciprocal lattice. That is

(8)

where [n. j and [n'j are integers for any reciprocal lat-
tice vector G. Equation (8) is satisfied provided integers
[m;J j exist such that

g;.0 fj=2n X(integer), i j =1,2, 3,

for all values of cz.
The conditions imposed by Eqs. (13) and (14) simply

mean that for an unsymmetrized grid, every vector in a
star (as generated by 0 R) must be examined using Eq.
(7). If any of the vectors fails to satisfy Eq. (7), all the
terms in the star will integrate correctly, despite the pre-
diction of Eq. (7). On the other hand, for a symmetric
grid, it is sufhcient to examine one member of each star.

III. SUMMARY
3

g m;. f =b;, i =1,2, 3,
j=1

(9) The process of selecting and generating a Fourier
quadrature grid for Brillouin-zone integration can be
summarized as follows.

where [b; j are the primitive translation vectors of the re-
ciprocal lattice. Defining a set of vectors [ g; j by the con-
ditions

f;.g, =2m.5;, i,j =1,2, 3.

Equation (9) can be written

3

g, —ga m, ,
j=1

(10)

where [a; j are the primitive translation vectors in real
space. Since Eq. (11) requires that each g; must be a real
space lattice vector, Eqs. (7) and (10) show that they coin-
cide with R,„and define the first terms in the Fourier
series, Eq. (2), which fail to integrate exactly.

Since Eq. (11) forces the quadrature grid to have the
translational symmetry of the crystal, all the sums can be
restricted to the first Brillouin zone. The weight factor,
w, determined from Eq. (6) by the requirement co= 1, is
equal to the inverse of the number of quadrature points.
So far the shift fo is arbitrary.

The point-group symmetry of the crystal is normally
used to reduce the quadrature grid to the irreducible part
of the Brillouin zone by removing points that are related
by symmetry. However, if the grid generated by Eq. (3) is
without the full point-group symmetry, the point group
may also be used to symmetrize the grid, creating addi-
tional grid points. The resulting grid is still described by
Eq. (3), but with a diFerent set of vectors [ f j. The sym-
metrization may modify the predictions of Eq. (7), chang-
ing R,„. (See below for an explanation of this apparent
contradiction. ) Since two quadrature grids (for difFerent
unit cells) are considered equivalent if they have the same
R,„, we will avoid this complication by requiring that
the grids described by Eq. (3) have the full point-group
symmetry. That is,

The last two steps are best carried out using a computer.

IV. EXAMPLES

We are now in a position to discuss equivalent quadra-
ture grids for different unit cells. The examples discussed
below are superlattice cells based on the zinc-blende
structure. The roman numerals refer to the steps out-
lined in the previous section. We first generate grids for
the simple cubic unit cell formed by the conventional
cube with edges of length a. Its real space primitive
translation vectors are

a1=ae,
Choose (i)

a2=ae~, a3=ae, .

(i) Select three linearly independent generating vectors
[g; j equal to three lattice vectors for which we tolerate
integration error. The shortest of these defines R,„."

(ii) Generate the vectors [ f; j, i =1,2, 3, from [g, j us-
ing Eq. (10).

(iii) Check that the vectors satisfy Eq. (14). If they do
not, go back to step (i) and select a new set.

(iv) Select a shift fo satisfying Eq. (13). Since the shift
has no effect on the quality of the grid, as given by Eq.
(7), it should be chosen to optimize step (vi).

(v) Using Eq. (3), generate a grid of all points falling in-
side the first Brillouin zone and assign to each point a
weight equal to the inverse of the number of points.

(vi) Reduce the grid to the irreducible part of the zone
by examining each pair of points to see if they are related
by an element in the point-group symmetry (with inver-
sion added if missing}. If they are, remove one member
of the pair from the grid, and add its weight to the weight
of the other.

0 .k =k
In,

'. I' (12)
g, =nae„, g2= nae„, g3= nae„ (16)

where [nj j and [n' j are integers for any point-group ro-
tation 0 . Equation (12) places additional constraints on

[ f; j. Consider separately [n; =Oj and [n;&Oj to obtain
the requirements

which gives (ii}

f 277~ f 2' ~ f 277~
(17)

and

g; 0 fo —g; f0=2m. X(integer), i = 1,2, 3 (13) where n is an integer. These vectors satisfy Eq. (9) for
translational symmetry, and they integrate exactly a11
terms in a Fourier series up to ~R,„~ =na. They also (iii)
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satisfy Eq. (14) for the rotational symmetry of the full cu-
bic group, m 3m. Select (iv) a shift

fo= —,'( f, + f~+ f3), (18)

satisfying Eq. (13).
Since the point group of any supercell or superlattice

based on the zinc-blende structure must be a subgroup of
m3m, we need only consider the translational require-
ment, Eq. (9) or (11), in the following.

A. Face-centered-cubic structure

First let us identify the grids for the face-centered-
cubic (fcc) cell. Since every lattice vector of the simple
cubic cell above is also a lattice vector of the fcc lattice,
all values of n in Eqs. (16) and (17) are allowed. If, for in-
stance, we want our Brillouin-zone integration to be ex-
act for all terms up to ~R,„~ =2a, choose n =2. This (v)
gives a grid of 8 points in the simple cubic Brillouin zone
and 32 points in the 4 times larger fcc zone. Reducing
(vi) the 32 points with the 48 point-group operations
gives 2 distinct points in the irreducible zone. These are
identical to the 2 "special points" found by Chadi and
Cohen. Similarly, choosing n =4 and 8 gives the 10 and
60 Chadi-Cohen points, respectively. The choice n=3
was not considered by Chadi and Cohen and leads to 6 ir-
reducible points. The only other shift allowed by Eq. (13)
is fo=O. This gives the same quality grids in terms of
R,„,but leads to more quadrature points in the irreduc-
ible zone (6, 19, and 85 for n =2, 4, and 8, respectively)
and is therefore inferior to the shift given by Eq. (18).

a, =—(e„+e~}, a&= —( —e„+e~), a3=mae„ (19)

where 2m is the superlattice repeat period [e.g. , appropri-
ate for (GaAs) (A1As) superlattices]. Equation (11)
requires that each g; be equal to a lattice vector, so the
process of finding an equivalent quadrature grid is simply
a matter of identifying common lattice vectors for the
simple cubic structure, Eq. (15), and the superlattice
structure, Eq. (19). We see that n in Eq. (16) must be a
multiple of m. [For a (GaAs)4(A1As)4 superlattice, the
allowed values are n =4, 8, 12, etc.] The number of in-
tegration points in the irreducible part of the zone de-
pends on the point-group symmetry of the superlattice.
For superlattices with point-group symmetry 4m2 and
repeat periods m = 1 —4, we find the points listed in Table
I for n =2, 3, and 4. These are equivalent to the 2, 6, and
10 fcc points, respectively. An empty weight column
means that no equivalent set exists for this combination
of m and n. Table I exhausts the possible superlattice
periods for which quadrature sets equivalent to the 2, 6,
and 10 fcc points can be found. Ren and Dow have ap-
plied the original Chadi-Cohen method to [001]and [111]
superlattices and the set of 6 points for m =4 in Table I is
identical to their 12 point set after the latter has been re-
duced using the 4 symmetry operation (present in [001]
(GaAs) (A1As) superlattices). Note that although
their quadrature sets give the same quality of sampling as

B.Superlattices in the [001)direction

Superlattices in the [001] direction have primitive
translation vectors

TABLE I. Reduced Fourier quadrature points in units of 2m /a and weights w for [001]
( A C) /(8 C) superlattices.

—1/4
—1/4

1/4
3/4

1/4
1/4

1/2
1/2

1/2
1/2

m =3 m=4

—1/2
—1/6
—1/6
—1/6
—1/2
—1/6
—1/6
—1/6

1/2
1/6
1/2
5/6
1/2
1/6
1/2
5/6

1/6
1/6
1/6
1/6
1/2
1/2
1/2
1/2

2/27
4/27
8/27
4/27
1/27
2/27
4/27
2/27

1/9
2/9
4/9
2/9

—3/8
—3/8
—1/8
—1/8
—1/8
—1/8
—3/8
—3/8
—1/8
—1/8
—1/8
—1/8

3/8
5/8
1/8
3/8
5/8
7/8
3/8
5/8
1/8
3/8
5/8
7/8

1/8
1/8
1/8
1/8
1/8
1/8
3/8
3/8
3/8
3/8
3/8
3/8

1/16
1/16
1/16
1/8
1/8

1/16
1/16
1/16
1/16
1/8
1/8
1/16

1/8
1/8
1/8
1/4
1/4
1/8

1/8
1/8
1/8
1/4
1/4
1/8
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TABLE II. Reduced Fourier quadrature points in units of 2m /a and weights w for [110]
( AC) /{BC) superlattices. The [110] m =1 superlattice is identical to the [001] m =1 superlattice
given in Table I.

—1/4
—1/4
1/4

k

1/4
3/4
1/4

k,

1/4
1/4
1/4

m =2

1/2
1/4
1/4

m=4

—1/2
—1/2
—1/6
—1/6
—1/6
—1/6
1/6
1/6

1/2
1/2
1/6
1/6
1/2
1/2
1/6
1/6

1/6
1/2
1/6
1/2
1/6
1/2
1/6
1/2

1/9
1/18
2/9
1/9
2/9
1/9
1/9
1/18

—3/8
—3/8
—3/8
—3/8
—1/8
—1/8
—1/8
—1/8
—1/8
—1/8
1/8
1/8
1/8
1/8

3/8
3/8
5/8
5/8
1/8
1/8
3/8
3/8
5/8
5/8
1/8
1/8
3/8
3/8

1/8
3/8
1/8
3/8
1/8
3/8
1/8
3/8
1/8
3/8
1/8
3/8
1/8
3/8

1/16
1/16
1/16
1/16
1/16
1/16
1/8
1/8
1/16
1/16
1/16
1/16
1/16
1/16

1/8
1/8
1/16
1/16
1/8
1/8
1/8
1/8

1/16
1/16

TABLE III. Reduced Fourier quadrature points in units of 27r!a and weights w for [ill]
( A C) /(BC) superlattices.

k

—3/4
—1/4
—1/4
1/4

ky

1/4
1/4
3/4
1/4

1/4
1/4
1/4
1/4

m =1

3/16
3/8
3/8
1/16

m =2

—5/8
—5/8
—5/8
—5/8
—3/8
—3/8
—3/8
—3/8
—3/8
—1/8
—1/8
—1/8
—1/8
1/8
1/8

1/8
1/8
1/8
3/8
1/8
1/8
1/8
3/8
3/8
1/8
1/8
1/8
3/8
1/8
3/8

1/8
3/8
5/8
3/8
1/8
3/8
5/8
3/8
5/8
1/8
3/8
5/8
3/8
1/8
1/8

3/64
3/32
3/32
3/64
3/64
3/32
3/32
3/64
3/32
3/64
3/32
3/32
3/64
1/64
3/64

3/16
3/32
3/64
3/32
3/16
3/32
3/32

3/32
3/32

1/64
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the 10 Chadi-Cohen fcc points for any superlattice where
m is even (as is stated in their paper), they are equivalent
points only for m =2 and 4. This means that if, e.g. ,
zinc-blende GaAs is calculated using this quadrature set
in a supercell geometry with m &4, the result would be
diFerent from GaAs calculated with the 10 Chadi-Cohen
points in the usual fcc cell. a3= —(e„+e +2e, ),

(21)

to the 2 and 10 fcc points can be found. No [111]super-
lattice has a quadrature set equivalent to the 6 fcc points.
For m = 1 the primitive translation vectors are

C. Superlattices in the [110]direction

Superlattices in the [110] direction can be taken to
have primitive translation vectors

and for m =2 they are

(22)

a, =m —(e +e ), a&= —(
—e„+e ), a3=ae„ (20) a3= —(3e +3e„+2e,).

where again 2m is the superlattice repeat period. Com-
paring Eqs. (16) and (20) we find that again n must be an
integer multiple of m. m =1 superlattices are identical in
the [110] and [001] directions and Table II lists all
remaining quadrature sets equivalent to the 2, 6, and 10
fcc sets for the point group mm 2.

D. Superiattices in the [111]direction

For superlattices in the [111]direction there is no sin-
gle set of primitive translation vectors that describe all
repeat periods. We treat repeat periods m =1 and 2,
which are the only ones where quadrature sets equivalent

A little algebra shows that the I g; I of Eq. (16) fall on lat-
tice points provided n =2 and 4 for m =1 or n=4 for
m =2. (In general n must be an integer multiple of
3m —m mod 3. ) Table III lists the resulting quadrature
sets for the point-group symmetry 3m. The set of 10
points for m =2 is identical to the one found by Ren and
Dow for [111]superlattices.
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