
PHYSICAL REVIEW B VOLUME 39, NUMBER 5 15 FEBRUARY 1989-I

Resonant tunneling in zero-dimensional nanostruetures

Garnett W. Bryant
McDonnell Douglas Research Laboratories, P.O. Box 516, Saint Louis, Missouri 63166-0516

(Received 22 August 1988)

Resonant tunneling through a semiconductor quantum nanostructure, consisting of laterally
confined contact regions, barriers, and a laterally confined quantum well (quantum box), has been
observed recently. Fine structure in the resonant tunneling has been attributed to the discrete den-
sity of states in the quantum box. We investigate two mechanisms to explain the fine structure in
the quantum-box resonant tunneling (QBRT). In QBRT the carrier can tunnel through the struc-
ture without changing its lateral subband, just as the electron in normal resonant-tunneling tunnels
without changing its lateral wave vector. However, the lateral states are discrete in QBRT, and res-
onant tunneling should occur at different applied biases for different subbands. The discrete density
of lateral states produces one peak in the resonant tunneling current for each well state and occu-
pied source-contact subband. We determine the conditions necessary to resolve structure that is
due to the discrete lateral levels. Even when only one source-contact lateral subband is occupied,
tunneling through other levels will occur if subband mixing at the interfaces, due to lateral wave-
function mismatch at the interfaces, is possible. We determine the strength of subband mixing at an
interface necessary to produce structure in the resonant-tunneling current. The second mechanism
does not occur in normal resonant tunneling because the lateral wave vector is conserved during
tunneling. Subband mixing produces two sets of fine structure. The first set appears for any
contact-subband filling. The second set of peaks, which alternate with the first set of peaks, appears
when two or more subbands are occupied. The results are used to better understand the recent ob-
servation of QBRT.

I. INTRODUCTION

With the recent advances in the art of microfabrica-
tion, zero-dimensional quantum structures can now be
made which should exhibit quantum carrier confinement
in all three dimensions. The effects of three-dimensional
confinement in microcrystallites' have been observed
by use of exciton luminescence. However, exciton
luminescence of nanostructures made by laterally
confining motion in two-dimensional semiconductor
quantum wells (quantum boxes '') does not yet provide
conclusive evidence for three-dimensional confinement in
quantum-box structures.

Recently, Reed et al. ' investigated electronic trans-
port through a three-dimensionally confined quantum
well to provide another characterization of the quantum
box that might reveal the three-dimensional confinement
effects more conclusively. The structure (see Fig. 1) was
fabricated from a multilayer quantum-well structure con-
taining n+-type GaAs layers for contacts, Al Ga& As
barriers, and an In Ga& As quantum well. Electron-
beam lithography and reactive-ion etching were used to
define isolated O. 1-pm-wide columns. Lateral motion was
confined in the contacts, barriers, and quantum well.
Reed et ah. developed a procedure to contact the top of a
single isolated column and they measured the resonant-
tunneling (RT) current through the quantum box. Reed
et al. investigated a structure which had an n = 1

quantum-well resonance near the GaAs conduction-band
edge and an excited state (n =2) resonance near the top

of the Al Ga
&

As barrier. Resonant tunneling through
the n =2 quantum-well resonance was observed. At high
temperature, the current-voltage characteristics are simi-
lar to the current-voltage characteristics for normal RT
through two-dimensional wells and barriers. At low tem-
perature (T-1.0 K ), additional fine structure was ob-
served to be superimposed on the normal RT characteris-
tics [see Fig. 1(b)]. The lowest two fine-structure peaks
were split by an applied bias of 80 meV. Other peaks
were split by 50 meV. Estimates made for the lateral
confinement in the box due to the sidewall depletion sug-
gested that confinement splits the states in the box by 25
meV, which is consistent with the 50-meV splitting of the
RT peaks. As a consequence, Reed et al. concluded that
the fine structure corresponds to the discrete density of
states in the zero-dimensional quantum box. In this pa-
per we will investigate theoretically two mechanisms to
help understand the fine structure observed in quantum-
box resonant tunneling (QBRT).

In a normal double-barrier resonant-tunneling struc-
ture that is formed from two-dimensional barriers and
wells, the lateral motion (parallel to the interfaces) of the
tunneling electron is described by a plane-wave eigenstate
with wave vector kz. The wave vector k~ is conserved as
the electron tunnels through the double-barrier structure,
unless some extrinsic scattering mechanism is present.
Thus each tunneling electron remains in a single channel
and mixing of channels is not possible. Since the density
of lateral states is continuous, no fine structure appears in
the normal double-barrier RT current.
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QBRT differs from normal RT in two important
respects: first, the density of lateral states is discrete in
QBRT; second, there is no analog to the conservation of
momentum rule. If the lateral-confinement potential is
different for different regions (contacts, barriers, and
box), then the laterally quantized states will have different
energies and wave functions in the different regions. A
lateral state in one region can couple to a lateral state in
the adjacent region if the overlap between the states is
nonzero. An electron initially in a specific source-contact
subband can tunnel through any box subband which cou-
ples to the contact subband due to wave-function mixing
at the interfaces. The tunneling is a multichannel pro-
cess.

In this paper we will determine whether either of these
two differences between QBRT and normal RT can ex-
plain the fine structure observed in QBRT. One might
expect to see fine structure just because the states are
discrete. However, if the lateral confinement is the same
throughout the structure (i.e., the contacts, barriers, and
well densities of lateral states are the same), then one ap-
plied bias voltage will align a11 of the subband states in
the well with the corresponding subbands in the contact.
Slight shifts in the RT for each subband would occur be-
cause different sets of states contribute to the RT of sub-
bands with different lateral-confinement energies. How-
ever, Chou et al. ' calculated the QBRT when
confinement is the same in each region and found that
RT peaks due to different subbands are not resolvable.
When the lateral confinement is different in different re-
gions, the same applied bias will not align every well state
with the corresponding contact subband. We will deter-
mine whether the discreteness of the density of states can
provide RT fine structure when lateral confinement is
different in each region.

Multichannel tunneling is also possible when lateral
confinement is different in each region. Even when only
one source-contact subband is occupied, multichannel
tunneling through other subbands in the quantum box
will produce fine structure in the QBRT. In this paper
we will determine how strong the subband mixing at an
interface must be to produce structure in the QBRT
current.

Our results will show that having discrete states in the
quantum box is not sufficient to produce fine structure in
the QBRT if the lateral confinement is the same in all re-
gions. The lateral confinement must be different in
different regions for fine structure to be observed. In Sec.
II we will present the model we use for the nanostructure
investigated by Reed et al. ' to observe QBRT. We will
explain why the lateral confinement is expected to be
different for different regions of that structure. In Sec.
III we will briefly describe the calculation of multichan-
nel transmission probabilities and RT currents when sub-
band mixing at an interface must be included. Results
and conclusions will be presented in Secs. IV and V.

II. MODELING THE QUANTUM-BOX
NANOSTRUCTURK

The nanostructure investigated by Reed et al. is shown
in Fig. 1. The post contains 0.5-pm-wide n -type GaAs

n+ — GaAs
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@~red

Contact
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layers for contacts, 4-nm AlQ25GaQ 75As barriers, and a
5-nm InQ Q8GaQ 9/As quantum well. After etching, the
post radius is 0.05 pm. We model motion along the post
(z direction) by use of the effective-mass approximation
with barrier and well potentials determined by the
conduction-band offsets. Specifically, we use for effective
masses the following~ M ~aAs 0 067m e y Pl A]
=0.087m„and mi -o -A =0.063m„' and for
conduction-band offsets, VGaA, =0, VAl Ga A, =0.203 eV,
and V»GaAs= —0.072 eV. For this choice of material
parameters, we use a 6-nm In„Gai, As well (slightly
larger than the well used by Reed er al. ) so that we ob-
tain two quantum-well resonances, the ground state
(n = I ) near the GaAs band edge and the n =2 resonance
near the top of the barrier, as observed by Reed et al.

Reed et al. estimated a minimum width 13 nm for the
(circular) flat-band conduction-path core in the quantum
box; this estimate implies that the sidewall-depletion
depth in the box is -43 nm. Since the flat-band core is
small, the sidewall-depletion potential should be approxi-
mately parabolic everywhere in the box. For a parabolic
potential with a Fermi-level pinning of %~=0.7 eV and
box radius R =50 nm, Reed et al. estimated that the
box-subband splitting is

ficob, „=(2@T/mi„o, A,
)'~ iiiR

=26 meV .

The barriers and the well are undoped and should have
similar sidewall-depletion depths. If the barrier has the
same sidewall-depletion potential as the box, then
A'cob, „„„scales as ( m b,,„;,„/m b,„)' and A'cob„„;,„=22
me V. If the GaAs contacts had the same sidewall-
depletion depth, then A~, „„„would scale as

contacts are doped while barriers and well are undoped.
The depletion depth should be shorter in the GaAs con-

Voltage (V)

FIG-. 1. I'a) Schematic of the nanostructure used to observe
quantum-box resonant tunneling. (b) Low-temperature ( T—1.0
K) current-voltage characteristics of an isolated quantum-box
nanostructure. Tunneling occurs through the n =2 quantum-
well resonance.
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tacts. For example, the depletion depth 8' in GaAs
doped at 2X10' cm is about 22 nm. ' Thus, the Aat-
band conduction-path core in the GaAs contact could be
much wider than 13 nm and confinement effects could be
weaker in the contact than in the box. A depletion depth
as short as 22 nm implies a Hat-band conduction-path
core which is 56 nm wide. An infinite square well 56 nm
wide would have a level splitting Ace„„„„ofabout 1 —2
meV. We expect similar level splittings in the GaAs con-
tacts.

An accurate model for the nanostructure would re-
quire accurate solution of the sidewall-depletion problem.
Because the intent of this paper is to model QBRT rather
than sidewall depletion, we have adopted the following
simplified model for lateral confinement based on the esti-
mates previously mentioned. The lateral-confining poten-
tials are assumed to be parabolic and centered on the post
axis. Thus, lateral wave functions (x and y directions) are
harmonic-oscillator states and the energy levels are equal-
ly spaced. In the box, %cob„=26 meV, and in the barrier,
%cob„„„=22meV. Two extreme choices are possible for
the contacts: either the contact has a similar depletion
potential and %co„„„„=25meV, or the depletion depth is
much shallower and %co„„„„=1meV. We will test both
choices to determine which conditions produce RT fine
structure. In either case the sidewall-depletion potential
in the contact is not likely to be exactly parabolic. We
use harmonic-oscillator states and equally spaced levels
as a matter of convenience. The results we present will
not be affected qualitatively by how we model the
confinement.

III. CALCULATION OF MULTICHANNEL
QUANTUM-BOX RESONANT TUNNELING

H~(x, y) =—fi d d+ + V,',„r(x,y ), (2a)
2m; dx dy

H~~(z)=—
d + V;+ U;(z),

2m; dz

where m, is the effective mass, taken to be isotropic, V, is
the conduction-band offset (relative to the GaAs band
edge), U; is the applied bias potential, and V„„r is the
confining potential. In our model,

V,',„r(x,y)= —,'m;co;(x +y ), (2c)

where A~, is the subband splitting due to confinement.
Eigenstates for H ~ and H

ll
can be found:

The theory of resonant tunneling through a single
channel, '" used to model normal RT, has been general-
ized to study multichannel tunneling in a confined quan-
tum nanostructure. We assume that for each region in
the structure the Hamiltonian can be separated into
transverse (x andy directions) and parallel (z) parts,

H'=H~( yx)+H~~~(z),

where i indicates the region. In the effective-mass ap-
proximation

H~P;„(x,y) =E;„P,„(x,y),
H~~f; (z)=F; f; (z) .

Then the total wave function in region i is

4;= g M„' f, p,„o(E E,—„F,—),
n, m

where

(3a)

(3b)

(4a)

(4b)

1 d 1 d'P;(x,y, z) = 4, +,(x,y, z)
m dz z=z m+i dz

Q

Evaluating the boundary conditions, we obtain

g C„'+'(zo)= g C ~~(z o) &i +l, n i, q ),
pq

V„'+'(zo ) V' (zo )
&i+ 1,n li, q),

m m)+& p q

with

. Z =Z
Q

(Sb)

(6b)

C„' (zo ) =f, (zo )M„' 5(E E,„F, —), — (6c)

and

dC„'
V„' (zo) =

dZ z =zQ

&J, mls, q) = f dx f dy y,
*

y;, .

(6d)

(6e)

If confinement is the same on both sides of the interface,
then & i + 1,m li, q ) =5 and tunneling is a single-
channel process. When the confinement is different in
two adjacent regions, then subband mixing at the inter-
face is possible.

The applied bias potential in Eq. (2b) is assumed to
vary linearly in each region. The wave functions f; are
found by solving Eq. (3b). The linear bias potential is ap-
proximated by a set of step functions and Eq. (3b) is
solved numerically. Two solutions exist for each energy
F; corresponding to waves propagating in opposite
directions. By use of the f, to evaluate Eq.s. (6c) and
(6d), and Eqs. (6a) and (6b) to match wave functions at an
interface, one obtains a matrix equation connecting the
M„' of the source contact with the M„' for the drain
contact. Let F; (m )0) correspond to solutions propa-
gating from source to drain, and F~ (m (0) correspond
to solutions propagating in the reverse direction. The
matrix equation connecting M„' and M„, in which s
and d refer to source and drain, is solved by assuming
that the tunneling electron incident on the source-contact
barrier is in a single state M„' =5 6„„ if m & 0, and

Q r Q

by requiring that M„=O if m (0. The rejected particle
current due to an incident electron with energy E, wave

The boundary conditions at the interface (z =zo) be-
tween layers i and i + 1 are

%, (x,y, zo) =4, +,(x,y, z„),
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vector k0, and lateral state no is

Ak
S (E,n, )= g'

p, m(0 s

where the sum is restricted to states with E, +F, =E,
where m, and md are the effective masses in each region,
and k is the wave vector of state f, . The transmitted
particle current is

S,(E, no)=
r, m)o md

with Ed, +Fd =E. Probability density is conserved, so

Ako
S,(E,no)= +S„(E,no) .

m

The total RT current is

S,(E,n )m,
g I dE [f,(E)—fd(E)],

n

where f, d are the source and drain Fermi functions,

fd(E) =f,(E+ U), U is the applied bias, k is the wave
vector for an incident electron in subband n with energy
E, and the sum is over occupied source-contact subbands.

In our calculations we evaluate J„, at zero tempera-

ture. The number of occupied contact subbands is deter-
mined by the Fermi energy EF. EF is related to the
charge density p in the source contact by ( T =0)

l 2m, (EF E,—„)p= g, , (10)
Am

(g (F )

where 3 is the cross-sectional area of the contact
( A =vrR, R -0.05 p, m for the structure of Reed et cil.).

The strength of the coupling of difFerent channels is
determined by the overlap between lateral states of
different regions. If we make the approximation that the
confining potentials are parabolic [Eq. (2c)], then the
overlaps can be determined analytically. Even if the
confining potential is not exactly parabolic, the parabolic
approximation should give a good qualitative estimate of
the overlaps if the correct effective mass and level spacing
Ace are used to model the parabolic potential.

The one-dimensional harmonic-oscillator state with en-
ergy fico(n+ —,') is

(x)=N, H„(ccx )e

where H„ is the Hermite polynomial, N„ is the normali-
zation factor, and a = (m A'co)' /A'. The overlap
&i, n

~ j,m & [Eq. (6e)] is a function of g=ccj /a;.
Specifically

& i, n ~j, m & =0 if n+m is odd,

&i, n j,m &= 2(n!m!
( 1 +g2)n +m +1

1/2

I, I= min(n, m)

p =0,2, . . . if n even

p=1, 2, . . . if n odd

(n —p)/2
1 —

g
2

(m —p)/2
g —1

2

n p m p A@1

J

For example, if n =m =0, then

1/2

&i, o~j, o&= 2

1+/

(see Fig. 2). Using the level splittings and eff'ective

masses for Al Ga& As and In&Gai &As,

eA] ~, A, / ai„~,~,= 1.08. Level mixing at
Al Ga, ~ As/In~ Gai ~ As interfaces should be very
weak. If the confinement in GaAs is similar to the
confinement in In Gai As, then Amo, A, =25 meV and

a~] ~, A, /a~, A, =1.07. However, if the confinement is

much weaker in GaAs and A~&,~,= l meV, then

aA] G, A, /a&, &,=5.34. In the latter case
&GaAs, O~A1 Gai As, o&-0.6 and level mixing should
be significant.

The overlap matrix is unitary when all subbands are in-
cluded. However, only a finite number of subbands are
included in the multichannel problem, so that the matrix
equations can be solved to determine the multichannel
transmission probabilities. The overlap matrix for re-
stricted sets of subbands, constructed using, for example,

0.75

0.50—

0.25—
1 5

FIG. 2. Overlap between n =0 oscillator states as a function
of g.

the harmonic-oscillator states, is not unitary because
overlap with excluded states is not included. The
transmission probabilities cannot be accurately deter-
mined when the overlap matrices are nonunitary. Thus,
even for a restricted set of subbands, the overlap matrices
must be made explicitly unitary.



39 RESONANT TUNNELING IN ZERO-DIMENSIONAL NANOSTRUCTURES 3149

When the quantum nanostructure is cylindrically sym-
metric, as in the model with parabolic confining poten-
tials, subbands in diferent regions can mix at the inter-
face only if each subband has the same x (y) parity. Thus
there are four sets of coupled channels. The subbands
with even x parity and even y parity are coupled. These
subbands couple to the lowest-energy subband in the con-
tacts. Similarly, subbands with even (odd) x parity and
odd (even) y parity are coupled and couple to the first-
excited-state subbands in the contacts. Subbands with
odd x parity and odd y parity are coupled and couple to
one of the second-excited-state subbands in the contacts.

To obtain a qualitative understanding of the eFects of
subband mixing, we have considered the following model:
for each type (x and y parity) of channel we include the
lowest-energy subband of that type and the three higher-
energy subbands which are formed from the ground state
and first-excited oscillator states for x motion and for y
motion with the appropriate parity. For example, for the
channels with even x parity and even y parity (i.e.,
for harmonic-oscillator states n„=0,2, 4, . . . and
n =0,2, 4, . . . ) we include the subbands with
(n, n~)=(0, 0), (0,2), (2,0), and (2,2). The form of the
overlap matrix between subbands which mix at an inter-
face is determined by the unitarity requirement. For our
simplified model the overlap matrix for x (y) motion is
2X2. A real, unitary 2X2 matrix has the form

where ~y~ =(1—p )' (other choices for the signs of the
matrix elements are possible by changing the signs of the
basis functions). By specifying p„and p for the x and y
overlaps, the total overlap matrix for the four coupled
subbands can be determined. We have performed calcu-
lations for the simplest case: p =p =p, with p the same
for all channels.

TABLE I. Subband filling in the contact. The contact-
subband filling is determined by use of Eq. (10), assuming the
post radius is 50 nm and T =0.

Ac&)„„„„(meV)

25

p (cm ')

1X10"
4X 10'
1X10"
2X10"
4X10"
2X 10"
5X10"

F~~~contact

1.35
2.35
3.42
4.55

1.22
2.35
3.42

p are related by Eq. (10). We have performed calcula-
tions for one, two, three, and four occupied subbands
when Am„„„„«h~b„and for one, two, and three occu-
pied subbands when Acg)contact ~~box AH calculations
were performed for T=0.

As mentioned, we have tested two models for the la-
teral quantization: Ace„„„„=%cob,„and
«A~b„. Two models for the applied bias potential have
also been tested. In one model, equal potential drops
occur across each barrier; there is no potential drop
across the well. In the other model the potential drops
across the well and across each barrier in proportion to
the width of each region. The first-excited state of the
quantum well (the state observed by Reed et al. in
QBRT) is sharper in the first model for the potential drop
than in the second model. Thus QBRT fine structure will
be easier to resolve when the first model for the potential
drop is used.

The eAect of the discrete density of lateral states on
QBRT is determined by calculating the RT in the
diagonal-tunneling approximation so no efFects of level
mixing are included. Figure 3 shows the QBRT current-

IV. RESULTS

Calculations have been performed to determine (1)
what conditions are necessary for lateral confinement
effects to be significant, and (2) whether the discrete den-
sity of states or subband mixing can explain the QBRT
fine structure. To answer, in part, the first question, we
have performed calculations for nanostructu res with
similar lateral confinement in the box and contacts
(irido„,„=irido„„„„)and with lateral confinement in the box
very different (stronger) from confinement in the contacts
(%cob,„)&A'co,o„„„).We have performed calculations to
investigate each of the two mechanisms. We have calcu-
lated the QBRT assuming that subbands do not couple
(referred to as diagonal tunneling because the overlap
matrices are diagonal). In diagonal tunneling, fine struc-
ture occurs because the density of states is discrete and
the diferent channels have difFerent subband energies.
We also have calculated the QBRT by assuming that sub-
band mixing at interfaces is important. The fine struc-
ture depends on the number of occupied contact sub-
bands. Table I lists the cases we have considered; EI; and

10 I I I

p(cm 3)

5 x ioi6

io-1

10 2

10 3

1O-5

r'
rrr

lb

10~
0

I

0.2
U (ev)

0.4 0.6

FIG. 3. QBRT current-voltage characteristics calculated in
the diagonal tunneling approximation, with no potential drop in
the well, and %cob„=k~o„„„„.Arrows indicate the peak posi-
tions of RT through the first-excited well state from each sub-
band in the contact. The contact charge density is indicated.
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voltage characteristics calculated in the diagonal-
tunneling approximation with no potential drop in the
well and with similar lateral confinement in the box and
contacts (ficob,„=h'n)„„„„).Arrows indicate the peak po-
sitions of the RT through the first-excited (n =2) well
state from each subband in the contact. Individual peaks
are broad (see the RT for p=4X10' cm, which in-
volves only one subband) and cannot be resolved when
more than one contact subband is occupied. Moreover,
there is no evidence for tunneling through the well
ground state (n =1). Chou et al. '3 also found that indi-
vidual peaks were not resolvable. Since Ace„„„„=%cob,„,
the same applied voltage should line up all of the box
subbands with the corresponding contact subbands. The
small shifts (less than 2fin)b, „) in RT peaks for diff'erent

subbands occur because a different distribution of states
is occupied in each subband. However, these shifts are
smaller than the width of the individual peaks. Similar
results were obtained when the bias potential was
modeled with a drop across the well.

%'hen lateral confinement is much weaker in the con-
tact than in the box (fico„„„„((ficob,„), the QBRT fine

structure is clearly resolved (see Fig. 4). The RT through
the first-excited state (n =2) can be resolved even though
this state is not as sharp as the ground state. One peak
appears for RT through each well state (n = 1,2, . . . ) for
each occupied contact subband. The fine structure is
resolved when Ace„„„„«%cob,„since a different bias
voltage is needed to line up each contact subband with
the corresponding box subband. Adjacent RT peaks are
separated by a bias of about 2Acob„. All of the contact
subbands have nearly the same energy (relative to the
much larger box-subband energies); therefore, the separa-
tion in RT fine-structure peaks is determined by the ener-

gy separation of the box subbands. When the bias volt-

age is modeled with a drop in the well, the n =2 peaks
cannot be resolved.

The effects of subband mixing at the contact-barrier in-
terface on the QBRT current-voltage characteristics are
shown in Figs. 5 —7. The subband mixing at the contact-
barrier interface is described by use of the simple model
discussed in the preceding section. Subband mixing at
the barrier-box interface is ignored because each region
has similar lateral confinement. Figure 5 shows the RT
when P, =@~=0.8 for even- and odd-parity states and
the lateral confinement in the contact is much weaker
than the box lateral confinement. %'hen only the lowest-
energy contact subband is occupied, RT fine-structure
peaks appear for tunneling from the ground-state contact
subband through each well subband with even x parity
and even y parity, not just for tunneling through the
lowest box subband as occurs in diagonal tunneling. The
peaks are separated by 4hcob„because the even-parity
subbands are separated by 2A'cob„. When the second con-
tact subband [even x (y) parity and odd y (x) parity] is
occupied, an additional set of RT peaks appears. These
peaks are also separated by 4Acob„, but the peaks are
shifted by 2A'cob„ from the set of peaks due to tunneling
from the ground-state contact subband. No additional
peaks occur when more than two subbands are occupied
because the RT peaks for higher-energy contact subbands
occur at the same bias voltages as the RT peaks for the
two lowest-energy subbands.

The peaks are clearly resolved in Fig. 5 for both n = 1

and 2 well states. When the applied potential is modeled
with a voltage drop in the well, the n =2 RT fine struc-
ture is more dificult to resolve when several contact sub-
bands are occupied. When the box and contact lateral
confinement are similar (fia)b, „=fin)„„„„),the n =2
peaks cannot be resolved if more than one contact sub-
band is occupied.

We have also calculated QBRT when the subband mix-
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FIG. 4. QBRT current-voltage characteristics calculated in
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ing is possible but weak (P„=13 =0.98 for each channel).
Fine structure due to subband mixing is present for both
the n = 1 and 2 well states (see Fig. 6), even for weak cou-
pling. However, when more than one contact subband is
occupied, additional fine structure in the n =2 peak due
to the subband mixing is difficult to identify (compare
Figs. 4 and 6). Structure in the n =1 peak due to weak
subband mixing is easy to identify even when four con-
tact subbands are occupied.

The QBRT fine structure for the n =2 peak is shown in
Fig. 7 as a function of the subband coupling. The
current-voltage characteristics are shown for a structure
with weak contact confinement (A'co„„„„((A'co„,„) and
with three occupied contact subbands (p = 1 X 10'
cm -'). The resolution of RT peaks for P=0.98 and 0.8 is
clearer in Fig. 7 than in Figs. 5 and 6 because a linear,
rather than logarithmic, scale is used in Fig. 7. The mag-
nitudes of the current (I—1 —10 nA) is consistent with
the currents observed by Reed et al. In fact, a compar-
ison of Figs. 3 —6 sliows that the magnitudes of the

current are consistent with the results of Reed et aI. , ex-
cept when %co„„„„=%cob„,in that case, the currents are
too large.

Two features of the RT fine structure depend on the
strength of subband coupling and have direct relevance
to the results of Reed et al. For weak coupling, only the
RT fine-structure peaks at low bias are important. As the
coupling increases, peaks for RT through higher-energy
box subbands become just as important. The peaks at
higher bias have the larger magnitude when P=0.6. In
the experiment of Reed et al. , the fourth fine-structure
peak (see Fig. 1) for RT in the n =2 state has the largest
magnitude. Because the fine-structure peaks at high bias
are observable, the subband mixing should be significant.

Reed eI al. also observed a difference in bias voltage
between the first two fine-structure peaks that was rough-
ly twice the difference between other peaks. The box
confining potential does have a Aat-band core region. A
state localized in this region should experience less
confinement than if the parabolic confining potential ex-
tended through the core. Thus the energy spacing be-
tween the ground state and the first-excited state could be
larger than predicted by a parabolic confining potential
that has been modeled to provide the correct spacing for
the higher subbands. A wide separation between RT
peaks might also occur if the lower of the two peaks were
a fine-structure peak for tunneling through the n = 1 well
state. However, the large separation between the first
two peaks can also be explained when subband mixing is
large. As shown in Fig. 7, the second fine-structure peak
is small compared to the first two large peaks, which are
due to tunneling in the channels coupled to the ground-
state subband. The second peak might be missing if any
additional broadening were present. Thus, two features
of the observed QBRT fine structure, the missing peak
and the higher currents at peaks for tunneling through
higher-energy subbands, are consistent with having large
subband coupling during the resonant tunneling.

V. CONCI, USIONS

Calculations of quantum-box resonant tunneling have
been performed to determine what conditions are neces-
sary to observe lateral-quantization effects in QBRT and
to determine how different mechanisms reveal the
lateral-quantization effects. A. phenomenological model
has been used to investigate QBRT because modeling
QBRT accurately is a complicated problem. The model
is too simple to provide quantitative results. However,
the results do identify qualitatively the conditions neces-
sary for lateral quantization to affect QBRT. One neces-
sary condition which can be identified is that lateral
confinement in the box should be different from lateral
confinement in the contact. When contact and box sub-
bands have similar energy spacings, these peaks are
difficult to resolve.

Two intrinsic mechanisms have been investigated to
determine how they reveal the lateral-quantization
effects. The discrete density of lateral states (diagonal
tunneling) produces fine structure in the QBRT: one
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fine-structure peak occurs for each occupied contact sub-
band for each well state that is a channel for resonant
tunneling. When %cob„))A'co„„„„, the fine-structure
peaks for tunneling through a particular well state are
separated by a voltage of 2A~b„.

When subband mixing at the contact-barrier interface
is important, two sets of QBRT fine-structure peaks can
appear. The first set of peaks results from tunneling that
involves channels which couple to the contact ground-
state subband. Those fine-structure peaks in the first set
which are for tunneling through a particular well state
are separated by a bias of about 4hcob„when
%cob„))%co„„„„.The second set of peaks, shifted from
the first set by a bias of 2hcub, „, appears when more than
one contact subband is occupied. These peaks corre-
spond to tunneling which involves channels that couple
to the first-excited subbands in the contact. Tunneling
from other contact subbands exhibits RT peaks which
occur at the same biases as the first two sets of peaks.
The missing peak and relative intensities of fine-structure
peaks observed by Reed et al. can be explained if sub-
band coupling at the contact-barrier interface is large.

Subband coupling appears to provide a more consistent

explanation of the observed QBRT fine structure. How-
ever, the dependence of the fine structure on contact-
subband filling is very different for the two mechanisms.
A study of QBRT as a function of subband filling should
identify the importance of each mechanism.

Our results provide qualitative insight on lateral quant-
ization effects in QBRT. The current-voltage characteris-
tics of QBRT are extremely sensitive to the model used to
describe the potential drop in the well, the model used to
describe lateral confinement in each region, and the band
filling. Accurate three-dimensional modeling of the
charge depletion at the interfaces and near the sidewalls
will be necessary to treat accurately the effects of lateral
confinement, the state filling, and the potential profile on
QBRT.
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