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The inelastic-electron-scattering cross sections of surface and antinode adsorbate-induced bulk
phonons are calculated for the Ni(001)-c {2X2)Ssystem. The calculated cross sections are sensitive
to variations in the incident electron energy, phonon q~~, and the spacing between S and Ni layers.
By comparing calculated cross sections with measured electron-energy-loss spectra at difterent elec-

0
tron energies and phonon q~~

vectors, we determined the S-Ni spacing unambiguously at 1.35 A. An
ad hoc non-central-force model was introduced to explain the measured dispersion curves.

I. INTRODUCTION

Recently, there has been much progress in the analysis
of vibrational motion of atoms on clean and adsorbate-
covered surfaces by inelastic He scattering' and inelastic
electron scattering. ' In the case of inelastic electron
scattering, a major advance is the ability of microscopic
multiple-scattering theory to quantitatively calculate
the electron-energy-loss cross sections [or electron-
energy-loss-spectroscopy (EELS) cross sections] of sur-
face and bulk modes of a system covering a wide range of
electron energies (30—350 eV). Such an analysis has re-
cently been done for Ni(001), ' Ni(110), Cu(001), ' and
Cu(111)." In this paper we present a detailed cross-
section analysis for the Ni(001)-c(2X2)S system. In an
earlier paper we have shown that surface modes and an-
tinode adsorbate-induced bulk modes have large
inelastic-electron-scattering cross sections. ' The cross
sections of these modes are sensitive to variations in
momentum transfer q~~, incident electron energy, and the
scattering geometry. ' We show in this paper that the
relative intensities of the modes are accurate indicators of
the S-Ni spacing and that by comparing data with the
calculated EELS cross sections, the S-Ni spacing can be
quantitatively determined. This determination is unam-
biguous in spite of the fact that the correct lattice dynam-
ical model for this system may not be known. The reason
for this selective sensitivity of EELS cross sections to sur-
face spacings over atomic displacement amplitudes is as
follows. Modes that have large inelastic scattering cross
sections generally have significant (perpendicular or
parallel) atomic displacements in the first two to three
surface layers. ' The short electron mean free path also
biases in favor of the top surface layers. ' Therefore, the
EELS cross section is dominated by the interference of
phonon-loss vertices between the first three layers. By
changing the S-Ni spacing, the phases of electron wave

functions between these layers are varied by large
amounts. These changes dominate over variations in the
eigendisplacements due to di6'erent lattice dynamical re-
sults. We shall show this explicitly in Sec. IV.

The organization of the remainder of this paper is as
follows. In Sec. II, we present the experimental measure-
ments. The dynamical model for an inelastic-electron-
phonon-scattering calculation is given in Sec. III. Lattice
dynamical models and dispersion relations for the
Ni(001)-c (2X2) system are given in Sec. IV. Comparison
between theory and experiment for the EELS cross sec-
tions as a function of electron energy and phonon wave
vector

q~~
as well as the determination of the S-Ni spacing

are given in Sec. V. Section VI is a summary.

II. EXPERIMENTAL MEASUREMENT

The experimental details of sample and sulfur-
overlayer preparation were the same as in a recent paper
of Lehwald et a/. ' where the dispersion curves for the
Ni(001)-c (2 X 2)S system have been measured. Briefly,
the Ni single crystal was cleaned by repeated cycles of
Ne-ion bombardment and annealing to 1400 K until the
crystal was leached of carbon and sulfur and no traces of
either impurity could be detected neither by Auger nor
by EELS. The c(2X2) sulfur layer was obtained by ex-
posing the sample to H2S with the sample temperature
held at 500 K. The sulfur surface coverage saturated
after an exposure of —15 Langmuire and saturation cor-
responding to a peak-to-peak ratio in the Auger spectrum
of Is /IN; =1.0. A sharp c(2X2) low-energy elec-

152 848

tron diffraction (LEED) pattern was observed after this
treatment.

In contrast to Ref. 15, the electron-energy-loss spectra
were now recorded using an improved version of the
double-pass electron spectrometer, the energy dispersive
elements and the lens system of which had been opti-
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noncentral forces between the S atom and its Ni neigh-
bors, then we write for the diagonal matrix element of the
force constant matrix

4zz = ~N. c.ks-Nicos~

where 0 is the polar angle measured from the surface of
the nearest-neighbor S-Ni bond. The factor o, N & is the
non-central-force parameter (a=1 for the central force
model). One can now adjust aN c such that when the

0
Ni-S spacing is 1.35 A, the dispersion curves are practi-

0
cally those shown in Fig. 2 (for Ni-S distance = 1.45 A, in
the central force model). The optimal value of aN c is
1.15 to achieve an excellent fit to Fig. 2.

The atomic displacements at X of the surface modes S4
even, S6L, S5 even, SI~ even, and Sj, as well as those of
the antinode AIB modes R, , Rz for a nine-layer slab are
listed in Table I. For the electron loss spectra, we find

that the Gaussian-broadened spectra of a nine-layer cal-
culation is indistinguishable from that of a 29-layer slab.
While the calculated spectra drawn in the figures corre-
spond to results of the thicker slab, the atomic displace-
ments listed here are for a nine-layer slab, for easier
identification. The tabulated results are for: (i) central-
force model, ds N;

= 1.45 A, (ii) central-force model,
0

ds N;=1.35 A, (iii) non-central-force model, ds N;=1.35
0

A. Multiple-scattering calculations for electron-energy-
loss cross sections are carried out and compared to exper-
iment to determine the Ni-S spacing. The results are dis-
cussed in Sec. V.

V. S-Ni SPACING VIA KKLS
CROSS-SECTION ANALYSIS

From Sec. IV we have seen that the dispersion data of
Ni(001)-c (2 X 2)S can be fitted by results of either

TABLE I. The atomic displacement amplitudes of the surface modes S4 even, S«, S~~ even, S„S,even, and the antinode AIg
modes R „Rz at X point (e„[100];e„[010];e„ towards vacuum).

Mode

S4 (even)

Layer
index

0.40
0.0
0.0

—0.15
—0.15

0.40
0.0
0.0

—0.15
—0.15

0.0
0.52
0.53
0.0
0.0

Central force model
dq (S-Ni) = 1.45 A

e ey ez

0.36
0.0
0.0

—0.16
—0.15

0.39
0.0
0.0

—0.15
—0.16

0.0
0.55
0.51
0.0
0.0

Central force model
d& (S-Ni)=1.35 A

e ey ez

0.32
0.0
0.0

—0;17
—0.14

0.42
0.0
0.0

—0.14
—0.17

0.0
0.56
0.43
0.0
0.0

Non-central-force model
d~ (S-Ni)=1.35 A

ey e,

SI~ (even)

S, (even)

0.0
0.0
0.21
0.0
0.0

0.44
0.0
0.0

—0.21
—0.21

0.0
0.0

—0.52
0.0
0.0

0.0
0.0
0.0

—0.63
0.33

0.0
0.0
0.30
0.0
0.0

0.0
0.0
0.26
0.0
0.0

0.0
0.$1
0.0
0.0
0.0

0.45
0.0
0.0

—0.21
—0.21

0.0
—0.52

0.0
0.0
0.0

0.0
0.0
0.0

—0.33
0.63

0.0
0.30
0.0
0.0
0.0

0.0
0.26
0.0
0.0
0.0

0.46
0.0
0.0
0.0
0.64

0.0
—0.45
—0.44

0.0
0.0

0.66
0.0
0.0
0.0

—0.15

0.0
0.0
0.0
0.0
0.0

0.36
0.0
0.0
0.0

—0.50

0;33
0.0
0.0
0.0

—0.30

0.0
0.0
0.18
0.0
0.0

0.50
0.0
0.0

—0.19
—0.22

0.0
0.0

—0.54
0.0
0.0

0.0
0.0
0.0

—0.36
0.61

0.0
0.0
0.32
0.0
0.0

0.0
0.0
0.23
0.0
0.0

0.0
0.18
0.0
0.0
0.0

0.44
0.0
0.0

—0.22
—0.19

0.0
—0.54

0.0
0.0
0.0

0.0
0.0
0.0

—0.61
0.36

0.0
0.32
0.0
0.0
0.0

0.0
0.23
0.0
0.0
0.0

0.45
0.0
0.0
0.0
0.67

0.0
—0.41
—0.46

0.0
0.0

0.63
0.0
0.0
0.0

—0.16

0.0
0.0
0.0
0.0
0.0

0.44
0.0
0.0
0.0

—0.51

0.33
0.0
0.0
0.0

—0.23

0.0
0.0
0.24
0.0
0.0

0.46
0.0
0.0

—0.21
—0.24

0.0
0.0

—0.52
0.0
0.0

0.0
0.0
0.0

—0.68
0.20

0.0
0.0
0.21
0.0
0.0

0.0
0.0
0.29
0.0
0.0

0.0
0.24
0.0
0.0
0.0

0.40
0.0
0.0

—0.24
—0.21

0.0
—0.52

0.0
0.0
0.0

0.0
0.0
0.0

—0.20
0.68

0.0
0.21
0.0
0.0
0.0

0.0
0.29
0.0
0.0
0.0

0.50
0.0
0.0
0.0
0.60

0.0
—0.41
—0.47

0.0
0.0

0.66
0.0
0.0
0.0

—0.15

0.0
0.0
0.0
0.0
0.0

0,24
0.0
0.0
0.0

—0.44

0.35
0.0
0.0
0.0

—0.44
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dz, s=1.35 A lattice dynamical models. Thus, it is not
possible to determine the Ni-S spacing unambiguously
solely from phonon dispersion curves. %'e show in this
section that the EELS cross section indicates that the S-
Ni spacing is 1.35 A, in agreement with results of other
spectroscopies.

As mentioned earlier, the EELS cross section is dom-
inated by the interference between loss amplitudes associ-
ated with the S layer and the Ni layer below. That this is
the case is supported by the fact the cross section is a rap-
id function of incident electron energy, momentum
transfer q~~, and the scattering angles (0;,P;, i9f, gf ). The

FIG. 7. Similar to Fig. 4 for E= 185 eV.
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shown in Figs. 11—14. At low energies (165-170 eV), the
calculated cross sections of the antinode AIB modes are
too small, while that of the S6L mode is too strong. At
high energies, the calculated cross section of the S!!even
mode is much too weak. These comparison clearly indi-
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