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Phonon spectra of alkali metals in real space
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The exponentially damped two-body interaction obtained in second-order perturbation theory us-
ing the rational dielectric function and the Heine-Abarenkov model potential is used to calculate
the phonon spectra of alkali metals. The interaction is also used to predict the binding energy and
elastic constants of these solids. The calculations are repeated using the Lindhard-Taylor dielectric
function and compared. The calculations of phonon spectra using the Lindhard-Taylor dielectric
function are performed in wave-number space, as usual. The results obtained using the two screen-
ing functions are exactly the same as were expected. It is found that the use of an exponentially
damped pair potential for obtaining phonon spectra of a metal at the same number of points reduces

the computer time by about 90%.

I. INTRODUCTION

The Hartree dielectric function for screening due to
electrons with or without modifications combined with a
pseudopotential is used to write down the ion-ion interac-
tion in second-order perturbation theory.! Using this in-
teraction Soma et al.? obtained the elastic constants of
alkali metals very recently. The structure in the effective
interaction is intimately associated with the logarithmic
singularity at ¢ =2k, in wave-number space. The long-
range Friedel oscillations are, in turn, responsible for
poor convergence of the force constants between ions ob-
tained with two-body interaction, therefore, the calcula-
tions of phonon spectra are being performed in reciprocal
space."”® The calculations in wave-number space have in-
dicated that this singularity has very limited impact on
the properties of interest; while it does give Kohn
anomalies in vibrational spectrum. The general form of
the spectrum does not depend upon the singularity. This
explains why the effective interaction between ions can be
so sensitive and uncertain, while the mathematically
equivalent calculations in wave-number space can be
quite stable but insensitive. This suggests that we may
simplify the screening to obtain a suitable and simple in-
terionic interaction which still could give a good account
of most properties of the metals.*

The replacement of the Hartree dielectric function
with its logarithmic singularity by the rational dielectric
function’® is a good choice. The rational function repro-
duces the Hartree function exactly except its logarithmic
singularity. It has the correct low- and high-q behavior
and is 0.5 at ¢ =2K . The rational dielectric function
combined with a pseudopotential gives rise to a simple
analytic form of the ion-ion pair potential® in second-
order perturbation theory. The exponentially damped
pair potential has the advantage of not containing the
very long-range Friedel oscillations. It is found that the
sum of first three damped oscillatory contributions to the
pair potential is sufficient to explain the structural phase
transitions of Na, Mg, and Al under pressure.® In the
present work, we calculate the binding energy, the elastic
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constants, and phonon spectra of alkali metals using the
exponentially damped pair potential, which leads to rap-
idly converging calculations. It is found that even prop-
erties such as elastic constants and phonon spectra can be
treated entirely in terms of a simple and fast converging
two-body interaction.

II. THE EFFECTIVE INTERACTION
BETWEEN IONS AND DYNAMICAL MATRIX

For a system of N ions of valence Z and which are held
in a finite volume V, the total energy within the local
pseudopotential model taken to second-order may be
written as’

—Eg=E(ng)+ 3V (r=0)+5 3 V(r;) . (1)

i#0

E ,(ng) is the energy of all electrons in a homogeneous
electron gas of density ny=NZ/V. The exchange-
correlation corrections appropriate to the metallic densi-
ties® have been included in E(n,). V,, (r=0) is ob-
tained from the band-structure part of the energy by
evaluating the integral appearing in it in conjunction
with the rational dielectric function and the Heine-
Abarenkov® model potential.

The derivation of ion-ion interaction in second-order
perturbation theory using rational dielectric function in
conjunction with pseudopotential is carried out by Ward®
in detail. Here, we simply note that the part of the
effective potential exactly cancels the electrostatic
Coulomb repulsion and within linear screening theory the
remainder is an effective screened Coulomb potential,
given for Heine-Abarenkov® pseudopotential by

7202 3
= > A,coslk,r+a,)exp(—A,r), (2)

Vir)=

n=1
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where the amplitude A4, is given by

A,=2d,1d(q,)I?, (3)

and the phase «,, is given by

N D’ (1—D)
v(g,)|= | —5————(cosh2A,r, — cos2k,r, )+ ——
o, 2K+ 22 )r2
%LL—ZA(?»,, sinh2A, r, +k, sin2k,r,)
(ki+A;)r,
and
b
| ki,
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a, =38, +2argdlq,) . 4)

The modulus of the normalized Heine-Abarenkov model
potential 9(g,)=D sing,r,/q,r,+(1—D)cosq,r., where
D and r, are potential parameters, is defined as

(cosh2A,r. + cos2k,r,)
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) (5)

(k, tanhA,r,—A, tank,r,)—(1—D)tanhA,r, tank,r,

argd(q,)= tan™ D

(k24+A2)r,

(A, tanhA,r. +k, tank, r.)+(1—D)

The parameters k,,, A,,, d,,, and 8, are functions of the electron radius® r,. g, =k, +tA, is the pole of the inverse dielec-

tric function.

Using the interionic potential V' (r), we obtain the radial K, and tangential K, force constants given by

K,= dde(z” , = szz }3‘, A, cos(k,r+a,)exp(—A,r) 242X, r +A2r2—kir*+2k,r(1+A,r)tank,r +a,)] ,
r rmon=1
o))
and
Kt=_} dl;i") = 2:392 nil A, cos(k,r+a,)exp(—A,r)[1+A,r+k,rtan(k,r+a,)] . (8)

In the limits k, —0 and §, —O0, Eq. (2) reduces to the an-
alytic expression for effective potential
2

Z2e2 sinhAr,
Vrip(r)= -+(1—D) coshAr,
Ar,
X exp(—Ar), 9)

in the Thomas-Fermi approximation, provided one sets
A, equal to the Thomas-Fermi inverse screening length A
and 232 _,d,=1. Similarly, the expression of radial
and tangential force constants given by Egs. (7) and (8)
reduce to

2.2
Kr:VTF(r)2+27ur+2r+kr , (10)
r
and
K,=—Vip(n 2 (11)
r

respectively, in the Thomas-Fermi approximation. For

r

the empty-core pseudopotential Eq. (9) reduces to the ex-
pression

72,2
Voip(r)= cosh®Ar, exp(—Ar) . (12)
The effective potential defined by Eq. (12) is also obtained
by Harrison and Wills.*

From K, and K, at any interionic separation, we obtain
the interionic force constant K ,; defined as the tensor
given by

_d*V(r)

I
B dradrg

afl rz

rarﬁ
K+=37K, . 13

From the interionic force constants K5 at nth neighbor
separation, we obtain the elastic constants for alkali met-
als by using the dynamical long-wave phonon method.!®
Finally

D (@)= 3 K 5(r))[1— exp(—iq1,)], (14)
!

was used to generate the phonon frequencies.
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TABLE 1. Binding energy — Ep; (eV/atom) obtained using
Eq. (1). a, the Pettifor® dielectric function; b, the Lindhard-
Taylor'? dielectric function.

Li Na K Rb Cs
a 7.340 6.139 5.205 4.980 4.688
b 7.469 6.318 5.303 5.022 4.696
Expt.* 7.020 6.253 5.274 5.032 4.694
2Experimental values are estimated using the relation,

—Ep=—E_,—E;, from the data summarized by Kittel (Ref.
20). Here E_,, and E; are cohesive energy and first ionization
energy, respectively.

III. NUMERICAL RESULTS

In numerical calculations we use observed!! atomic ra-
dii for all alkali metals. The potential parameters are
taken the same as has been reported by Popovic et al.'?
Theoretical results of binding energy and elastic con-
stants have been found in good agreement with their ex-
perimental values and are compared in Tables I and II,
respectively. Meaningful but not very accurate results
can be obtained in some cases including only a few
nearest neighbors, here we carry each calculation to con-
vergence. On the other hand, one has to include contri-
bution beyond the tenth shell to get meaningful results
using two-body interaction defined with Lindhard-
Taylor!® dielectric function, here we have included con-
tribution up to 16th shell. The values of binding energy
and elastic moduli obtained using the Lindhard-Taylor'?
dielectric function are also given in Tables I and II, re-
spectively, for comparison. The elastic moduli obtained
using the two screening functions are almost the same as
were expected.

The phonon frequencies of alkali metals along three
symmetry directions are shown in Figs. 1-5 as obtained
with Egs. (2)-(8) and (14) along with experimental re-
sults. The values obtained in wave-number space' using
the Lindhard-Taylor!? dielectric function are shown by
dashed lines in the respective figure of each metal. As ex-
pected, the two results obtained using the two screening
functions agree very well. It is found that the exponen-
tially damped pair potential reproduces the experimental
results reasonably well for all alkali metals in the long-
wavelength region. As a result, the calculated elastic
moduli were in good agreement with experimental values.
Comparing the phonon frequencies near zone boundary,
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it is found that the agreement with experimental values
improves dramatically as we move towards heavier ele-
mental metals. In case of Rb and Cs, some discrepancies
of calculated results with experiments are bound to occur
as some important contributions arising because large
core size and s-d mixing have been neglected in the
present second-order perturbation treatment. For exam-
ple, the comparison of the density-of-states effective mass
m* for Rb on the Fermi surface in the [100], [110], and
[111] directions, calculated'# by solving the secular deter-
minant being 0.99, 1.05, and 0.94, respectively, compared
with the value 1.17 from first-order perturbation theory,
indicates that we might have different errors by neglect-
ing third- and higher-order contributions. Similarly for
Cs, comparison of m™* (0.98, 1.17, and 0.90 versus 0.84)
indicates that higher-order perturbation corrections
might be important. The contribution due to s-d hybridi-
zation, though its effect on w(q) even for Cs is negligi-
ble,!® may also add to some discrepancy. An important
contribution arising due to orthogonalization-hole'®
correction, which has been neglected here, may also
cause some error. Therefore, such an agreement of calcu-
lated results with experiments for Rb and Cs should not
be considered seriously, especially, when so many impor-
tant contributions have been left out in the treatment of
lattice dynamical properties and elastic constants.

Here we should note that we have avoided the model
potential parameter fitting since our aim is to learn about
the validity of this approach. The calculations up to the
seventh shell have been found sufficient to achieve con-
vergence for these calculations. However, to achieve
convergence of the same order in performing the calcula-
tion of phonon spectra in reciprocal space with usual
practice, i.e., usin§ the effective potential defined with the
Lindhard-Taylor!® dielectric function in second-order
perturbation theory, one has to include contribution up
to the twenty-seventh shell. Thus a numerical calculation
of phonon spectra in all seven branches of three symme-
try directions using the present pair potential requires
about one-tenth of computer time than that required by
the calculation of it in wave-number space at same num-
ber of points using the Lindhard dielectric function. It is
to be noted that in the present method, there is no need
to calculate the electrostatic Coulomb part of the phonon
frequencies, as a part of the band structure exactly can-
cels the electrostatic Coulomb repulsion in the effective
potential.

TABLE II. The calculated elastic constants of alkali metals. The experimental data is summarized
by Shimada (Ref. 21) and Huntington (Ref. 22). q, the Pettifor dielectric function; b, the Lindhard-

Taylor dielectric function.

C,, (Mbar) C,, (Mbar) C4 (Mbar)
a b Expt. a b Expt. a b Expt.
Li 0.168 0.168 0.157 0.144 0.143 0.133 0.111 0.110 0.116
Na 0.110 0.098 0.095 0.091 0.086 0.078 0.063 0.059 0.062
K 0.045 0.041 0.042 0.037 0.035 0.034 0.027 0.026 0.029
Rb 0.033 0.031 0.032 0.027 0.026 0.026 0.020 0.020 0.021
Cs 0.023 0.022 0.026 0.019 0.019 0.022 0.015 0.014 0.016
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FIG. 1. Dispersion curves of Li along symmetry directions. The solid and dashed curves represent the present calculations in real
and wave-number space, respectively. The points are the experimental data by Smith et al. (Ref. 23) at 98 K. g, is the lattice param-

eter.
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FIG. 2. Dispersion curves of Na. The points are experimental data by Woods et al. (Ref. 24) at 90 K. The rest of the description

is the same as that of Fig. 1.
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FIG. 3. Dispersion curves of K. The points are experimental data by Cowley et al. (Ref. 25) at 9 K. The rest of the description is
the same as that of Fig. 1.
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FIG. 4. Dispersion curves of Rb. The points are experimental data by Copley et al. (Ref. 26) at 12 K. The rest of the description
is the same as that of Fig. 1.
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FIG. 5. Dispersion curves of Cs. The points are experimental data by Mitzuki and Stassis (Ref. 27) at 280 K. The rest of the

description is the same as that of Fig. 1.

IV. CONCLUSIONS

In summary use of the rational dielectric function has
eliminated the complexity and slow convergence of two-
body interaction obtained using the Hartree dielectric
function. Its prime virtue is its simplicity and ease of ap-
plication. This approach can easily be extended to calcu-
late the elastic properties of the entire range of simple
metals and their alloys. Several first-principle
theories!” 7! have been used in the past to study phonon
spectra, elastic constants, and other properties of alkali
metals both in crystalline and liquid phase. Use of this
two-body potential makes the assessment of these proper-
ties comparatively easy. The use of this pair potential for
calculating the elastic and dynamical properties of a met-

al reduces the computer time manifold. It is to be noted
that the exchange-correlation corrections due to Taylor!3
are inherited in the rational dielectric function through
its parameters.
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