PHYSICAL REVIEW B

VOLUME 39, NUMBER 5

15 FEBRUARY 1989-1

Quantum oscillations in the point-contact magnetoresistance

H. M. Swartjes, A. P. van Gelder,* A. G. M. Jansen, and P. Wyder
Hochfeld-Magnetlabor, Max-Planck-Institut fiir Festkorperforschung,
25 avenue des Martyrs, Boite Postale 1 66X, F-38042 Grenoble CEDEX, France
(Received 8 August 1988)

The resistance of metallic point contacts at a temperature of 4.2 K shows oscillations as a func-
tion of magnetic field. These oscillations are due to the Landau quantization of the conduction elec-
trons as is proven by their frequencies. The oscillations can originate both in the Maxwell and in
the Sharvin part of the point-contact resistance. The oscillations in the Maxwell resistance are a
direct result of the oscillations in the bulk resistivity of the material (the Shubnikhov—de Haas
effect). For a proper understanding of the oscillations in the Sharvin resistance, it is necessary to
take diffraction effects of the electron wave functions into account.

I. INTRODUCTION

Metallic microcontacts offer the possibility to study the
energy dependence of the electronic scattering processes
in a metal by measuring the voltage dependence of the
nonlinearity in the current-voltage characteristics at low
temperatures.’? An important criterium for the spectro-
scopic application of point contacts is given by the condi-
tion that the mean free path of the electrons is large com-
pared with the dimension of the contact (Sharvin limit).
For such a situation, an applied voltage over the contact
accelerates the electrons within a mean free path upon
passing the contact area. This phenomenon results in a
nonequilibrium distribution of the electronic system,
where the applied voltage defines the excess kinetic ener-
gy of the electrons. Inelastic scattering of the electrons
yields corrections to the current which contain spectro-
scopic information about the interaction mechanisms of
the electrons with excitations in a metal. For instance,
the second derivative of the voltage with respect to the
current is directly proportional to the Eliashberg func-
tion for the electron-phonon interaction. In the Sharvin
limit the expression for the contact resistance is indepen-
dent of the electron mean free path and is only deter-
mined by the topology of the Fermi surface and the con-
tact area. In the opposite limit (Maxwell limit with mean
free path smaller than the contact dimension), the con-
tact resistance depends on the electronic scattering and is
proportional to the bulk resistivity.

In the spectroscopic point-contact technique magnetic
fields are used occasionally for several purposes. In the
first place, material properties sometimes change with the
magnetic field, and when these properties have influence
on the scattering of electrons, their dependence on the
magnetic field can be studied by means of point contacts.
In the second place, magnetic fields suppress supercon-
ductivity, and in this way it is possible to apply point-
contact spectroscopy on superconducting systems that
are otherwise inaccessible for a study with point contacts.
In the latter case it is tacitly assumed, that the magnetic
field has no influence on the point-contact resistance oth-
er than the suppression of superconductivity.

39

Apart from changes in the material properties several
other effects occur when a magnetic field is applied, that
are inherent to the point-contact geometry and are in
principle always to be reckoned with. One of these effects
is a classical term in the magnetoresistance of a point
contact. This term has it’s origin in a resistivity-
dependent component of the point-contact resistance.’
For metals with a large bulk magnetoresistance, the con-
tact resistance contains an additional term, roughly given
by the square resistance of the macroscopic sample in the
case of a point contact on a flat metallic disk. Moreover,
the magnetoresistance of a contact can be enhanced be-
cause of the specific Corbino geometry.>

A second observed influence of the magnetic field is the
presence of an oscillating term in the point-contact resis-
tance. This term, that is also inherent to the geometry of
the contact, is the subject of this paper. The origin of
these magnetooscillations in the point-contact resistance
lies in the Landau quantization of the electrons, as is im-
mediately clear from the frequencies of these oscillations.
Via different physical mechanisms this quantization
influences both of the two parts in the expression for the
resistance of a metallic contact, the ‘“Maxwell” part
which depends on the scattering of the electrons and the
“Sharvin” part which is independent of the electronic
scattering. In this paper we will investigate both these
mechanisms, and we will discuss the influence of several
parameters on the observed oscillations. The discussion
will be based on experiments with point contacts on
bismuth, gallium, and aluminum. These materials show a
wide range of resistivities and emphasize the different
mechanisms that are responsible for the oscillations.

II. THEORY

When a metal is placed in a magnetic field, a redistri-
bution occurs of the conduction electrons over the Fermi
sphere. This redistribution is a very general phenomenon
and is a direct consequence of the quantization of the
electron orbits. For the closed orbit of an electron in a
magnetic field, the enclosed magnetic flux is quantized in
units of & /e. As a result, the allowed electron states in k
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space now lie on so-called Landau tubes, with a cross sec-
tion area perpendicular to the magnetic field given by the
Onsager formula*

A;=(j +1)(2meB /%) . (1

The influence of this quantization is particularly manifest
whenever a cross section 4; is equal to an extremal area
A, of the Fermi surface. As can be seen from Eq. (1)
this happens periodically in 1/B, with the period A(1/B)
given by

A(1/B)=2me /Hid,, . )

At an extremal orbit the occupation of the Landau tube j
changes rapidly with magnetic field and this change is
reflected in all properties that depend on the electron dis-
tribution. Among numerous examples we cite the de
Haas—van Alphen (dHvVA) effect,’ i.e., the oscillating
magnetic susceptibility, which is the best known and
from a practical point of view the most versatile, and the
Shubnikhov-de Haas (SdH) effect,® the oscillating resis-
tivity, which is particularly relevant in the context of the
point-contact resistance. Numerous reviews and books
have appeared on these effects.’

Although the magnetic oscillations in the electrical
resistivity were among the first to be discovered experi-
mentally, their theoretical understanding is of much later
date and is very complex.®® A very simplified, but trans-
parent model of the Shubnikhov—-de Haas effect has been
given by Pippard.!® It can be understood as the oscilla-
tion of the electron relaxation time 7. This relaxation
time depends on the number of occupied electron states
that an electron can scatter from and the number of emp-
ty states that an electron can scatter to, and hence it de-
pends on the density of states at the Fermi surface.
When because of the Landau quantization this density of
states oscillates, the relaxation time will oscillate. Be-
cause the resistivity of a metal in the Drude approxima-
tion is proportional to 77!, it will also oscillate as a func-
tion of magnetic field.

In an interpolation model the resistance of a point con-
tact can be thought of as a series resistance of a ballistic
component, the Sharvin resistance Rg, =4pl /3ma?, and a
diffusive component, the Maxwell resistance R,, =p/2a.
The two components are the limiting cases for a pure
contact in the Sharvin limit (mean free path / >> contact
radius a) and a dirty contact in the Maxwell limit
(I <<a). The diffusive part of the resistance is directly
proportional to the bulk resistivity p and therefore the
Maxwell term will oscillate with magnetic field in the
same way as the bulk resistivity does. Whether or not
these oscillations are observable depends on various fac-
tors. The oscillation amplitude 8p for the resistivity p is
approximately given by!°

_SB,\, SD(GF)

p  Dilep) ’ )

with € the Fermi energy and D (g ) the density of states
at the Fermi surface. For a Fermi surface, consisting of
one spherical piece, with a quadratic dispersion relation,
this yields
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_53 ~q —1/2 , (4)
p

where g =ep/fiw, with w,=eB/m the cyclotron fre-
quency. The integer part of g is equal to the number of
Landau tubes that intersect the Fermi surface. Small
pockets of electrons would, therefore, have the largest
relative oscillation amplitude. In practice, however, such
pockets carry only a small part of the current, except for
semimetals such as bismuth and poorly conducting met-
als such as gallium. The amplitude of the oscillations is
further weakened by collision broadening of the Landau
levels and by a smearing of the Fermi function because of
nonzero temperature. For common metals oscillation
amplitudes can therefore be expected of no more than
one part in 10* under typical conditions. In point con-
tacts the observation of oscillations in the contact resis-
tance is further hampered by the fact that the Maxwell
part of the resistance is only a small part of the total
resistance. In high magnetic fields the expression for the
Maxwell part of the contact resistance has to be modified
to approximately the square resistance p/d, where d is
the macroscopic thickness of the sample on which a point
contact is placed.’ In the case of a strong magnetoresis-
tivity the square resistance becomes the dominant contri-
bution to the contact resistance in high magnetic fields.
As a rule of thumb we can therefore state that no oscilla-
tions in the Maxwell resistance can be observed when
they are not observable in the bulk resistance. In practice
the observability of Landau quantization in point con-
tacts will be hampered even more because of the mechan-
ical instability that is inherent to point contacts.

For the ballistic part of the point contact resistance,
the situation is more complex. At first sight it would ap-
pear that there is no oscillation effect, since in the expres-
sion for the Sharvin resistance Rg, =4pl /3ma? the prod-
uct pl is independent of the scattering length /. This im-
plies that the oscillations in the relaxation time will not
lead to oscillations in the Sharvin resistance.

The derivation of the Sharvin expression,!! however, is
only correct in the absence of a magnetic field. For an
applied voltage V over the contact the current density J
at the orifice is found by integrating the velocity com-
ponent v, perpendicular to the contact over all occupied
k-states within a distorted Fermi sphere S consisting of
two halfspheres with energy difference eV,'>!3

3
J=2 kv, .
e J d%v, (5)

1
21

In the presence of a magnetic field, perpendicular to the
contact, the integral over k, and k, has to be replaced by
a sum over the different Landau tubes,

’ g
S NB) [ dk, v, , (6)

j=1

J =2e

1
21
where N (B)=2meB /% is the field-dependent degeneracy
factor and [q] is the entier function of q. The integral
over k, is independent of magnetic field and given by

eV/#. Since the extremal area of the Fermi surface is
given by A.,=(g +1/2)N(B), we see that the current,
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and hence the observed Sharvin resistance, oscillates with
a relative amplitude

SR 1
—_— . 7
R ~9 (7)

The relative magnitude is smaller than that of the
Shubnikhov-de Haas effect because the electrons on ex-
tremal orbits, which in principle are responsible for the
oscillations, have a velocity in the z direction v, =0. Os-
cillations arising solely from this source will therefore be
weak although the Sharvin term is usually the major part
of the point-contact resistance.

The oscillation amplitude can be considerably enhan-
ced because of diffraction in the point-contact area. In
the absence of a magnetic field, no diffraction has to be
taken into account, because the size of a typical point
contact is large, compared to the de Broglie wavelength
of an electron. The electrons can therefore be considered
as well-defined particles, following well defined trajec-
tories, and the electron transport through the contact can
be treated semiclassically. When on the other hand a
magnetic field is applied, the “fuzziness” of the electron
is no longer determined by the de Broglie wavelength, but
by the magnetic length A=(2%/eB)!/?, the size of the
inner Landau tube. For a field of a few tesla this length is
of the order of 100 to 200 A, i.e., comparable to typical
point-contact sizes.

A formal treatment of the diffraction problem will be
given elsewhere.'* The main result of diffraction is that
an electron on the Fermi surface can no longer be given
both a specific velocity component v, and a specific Lan-
dau number j. As a consequence, Eq. (6) is no longer val-
id and has to be replaced by

1
J:2 —
¢ 2T

3
N(B) 2 Z fdkz,j vz,j’Ay(j»j') . (8)
j 7 .

Here A, (j,j') is a function that describes the coupling be-
tween k, ; and v, ; for a given value of the parameter y,
which is the size of the point contact in units of the mag-
netic length A. For y>>1, A (j,j') is equal to the
Kronecker delta 8, and the result of Eq. (6) is found.
For y~0, however, A,(j,j’) is independent of j and j’
and the sums over j and j' are completely decoupled.
Since the electrons on extremal orbits are now no longer
weighted by v,, the current is again proportional to the
density of states, which for the case of a spherical Fermi
surface gives an oscillation amplitude 8R /R ~¢q ~'/? as
in the case of the Shubnikhov—de Haas effect. In this
limit there is an analogy between the Shubnikhov-—de
Haas effect and the oscillations of the point-contact resis-
tance. Instead of an ensemble of randomly distributed
isotropic scatter centers, we now have one isotropic
center, but the simplified picture of Pippard still holds,
where the current is determined by the number of occu-
pied states that an electron can come from and the num-
ber of empty states that an electron can be diffracted to.

III. EXPERIMENTAL DETAILS

The experiments, described in this paper, were per-
formed with a standard point-contact setup,2 and resis-
tances were measured phase sensitively. The magnetic
fields were provided either by a superconducting coil,
capable of producing 11 T at 4.2 K, or by a 20 T Bitter
magnet. The measurements were done in the tempera-
ture range of 1.5 to 4.2 K. Except where mentioned oth-
erwise, the magnetic field was always oriented parallel to
the nominal current direction.

Three different materials were used for the experi-
ments, namely, bismuth, gallium, and aluminum. The
bismuth sample was a single crystal, of SN + purity. It -
was of circular shape with a thickness of 1.8 mm and a
diameter of 7.5 mm. The trigonal crystal axis was orien-
tated perpendicular to the sample plane. This sample
was etched in a mixture of 50% concentrated nitric acid
and 50% concentrated acetic acid. Contacts were made
on this sample with 49 °C solder.

The gallium samples were less well defined. They were
made of high-purity material by melting above 30°C.
The melted drops had a size of a few millimeters. This
drop was “etched” by scraping the surface with a scalpel.
Thin copper wires were then injected in the drop to pro-
vide the electrical contacts and the sample was allowed to
solidify again. Because of the low melting point gallium
easily anneals at room temperature and a single crystal is
obtained. '

Several aluminum samples were used of various shapes
and sizes. Most experiments were done on small single
crystals of known orientation, which were more or less
plane, with a thickness of 0.5 to 1 mm and a typical
width and length of 3 mm. For Al-Al point contacts
wedge-shaped samples were pressed together with known
crystalline orientation.!> The experiments on polycrystal-
line samples were done with small pieces of aluminum of
irregular shape, that were cut from a larger sheet of ma-
terial. The aluminum samples were etched with the fol-
lowing process.!> First they were immersed in a mixture
of 50% phosphoric acid, 40% sulfuric acid, and 10% ni-
tric acid. After that the samples were transferred to a
heated solution of 25% sulfuric acid. Finally, the sam-
ples were cleaned and kept in propanol. The electric con-
tacts on the samples were first made with silver paint.
Because of the oxide layer on the aluminum, this often re-
sulted in unsatisfactory contacts of rather high resistance.
Later, therefore, a method was used, developed by
Bruls,!® by attaching very tiny particles of 49 °C solder on
the samples, in a very diluted etching solution, that was
warmed to more than 50°C.

Apart from the aluminum-aluminum contacts, we al-
ways used a copper whisker, electrolitically etched to a
sharp point, as second electrode. This was necessary,
since for contacts between identical materials the orienta-
tion of both crystals had to be identical. Even with an in-
sert with an orientable head to control crystal orienta-
tion, this remained an unsolved problem. The advantage
of copper is that it does not contribute an oscillation sig-
nal to the point-contact resistance. The conduction elec-
trons in copper have too high an effective mass and too
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large Landau numbers to give an observable signal, as
will be discussed later.

IV. OSCILLATIONS IN THE
MAXWELL RESISTANCE

The semimetal bismuth is known to show very strong
Shubnikhov-de Haas oscillations, and was the material
in which the effect was first discovered.® In our experi-
ments the bismuth sample was usually oriented with the
magnetic field parallel to the trigonal crystal axis and
parallel to the nominal current direction. A typical mea-
surement of the point-contact resistance in this orienta-
tion, and at a temperature of 4.2 K is given in Fig. 1. The
zero-field resistance of this point contact was 33 . On
the basis of the Sharvin expression of Eq. (5) the radius of
the contact is a =1500 A, where we have taken
pl= 10712 Q m?, as estimated from the size of the Fermi
surface. With the value for the resistivity of this sample,
po=13 nQl m, the Maxwell contribution Ry, =p/2a is 40
m{2, so that the contact is well within the Sharvin limit.
Two distinctive features of the measurement of Fig. 1 are
immediately obvious. First, a continuously increasing
term in the magnetoresistance is observed, which at high
fields forms a considerable part of the total resistance.
This magnetoresistance term has its origin in the
modified Maxwell component of the resistance,® which
depends on the resistivity and resembles the square resis-
tance p/d of the sample. Secondly, large oscillations are
visible in the measurement of Fig. 1. That these oscilla-
tions are caused by Landau quantization can be seen by
comparing the peak positions with those of bulk resistivi-
ty measurements,!”>!1® which have been tabulated in Table
I. In principle, four distinct series are observed with the
magnetic field parallel to the trigonal axis. Two of these
series are associated with the hole band and two with the
electron band, which are both split because of the elec-
tron spin. When we compare the values in Table I with
the measurements of Fig. 1, it appears that the up-spin
electrons give the dominant contribution to the signal,
whereas the down-spin electrons are responsible for most
of the other structure. The oscillations of Fig. 1 are fairly
accurately periodic in 1/B. Small departures of this be-
havior can occur at fields above approximately 5 T.
Above this field value the Fermi energy begins to rise'”
because the extreme quantum limit is reached, where all
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FIG. 1. The resistance dV /dI of a bismuth-copper point con-
tact as a function of magnetic field, for zero bias voltage and at
a temperature of 1.8 K. The magnetic field was oriented paral-
lel to the trigonal crystal axis and perpendicular to the plane of
the bismuth sample. At zero magnetic field, the resistance of
the point contact was 33 Q.

electrons are in the lowest Landau levels.

That the oscillations in the point-contact resistance are
a manifestation of the Shubnikhov—de Haas effect is seen
when the measurement of the point contact is compared
with that of a bulk resistivity measurement. Figure 2
shows such a measurement, taken on the same day and
under the same circumstances as that of Fig. 1. The simi-
larity between the two measurements is clear, in spite of
the fact that the oscillations in the point-contact resis-
tance are sharper. For the case of bismuth the classical
magnetoresistance of a point contact is directly propor-
tional to the bulk resistivity.> Therefore the point-
contact oscillations must. also result from resistivity oscil-
lations. The difference in sharpness between the bulk and
the point-contact measurements must be ascribed to the
rigid sample mounting, necessary for stable contacts.
The strain that is hereby introduced is much more likely
to affect the bulk measurements than the point contact,
because the major part of the point-contact resistance is
concentrated in the direct vicinity of the contact.

Shubnikhov—-de Haas oscillations in the point-contact

TABLE 1. Values of the magnetic field, for which the Fermi surface of bismuth touches the Landau
tube with level number g, where the magnetic field is taken parallel to the trigonal crystal axis. Values
are given for the electron and hole bands series, each of which shows a large spin splitting. The series,
corresponding to spin-up and spin-down, have been labeled as s =+ and —, respectively. The data

have been taken from Ref. 17.

Electrons Holes
q 5= - + - +
0 395 T
1 585 T 241 T
2 409 T 338 T 433 T 1.766 T
3 2.817 T 2.406 T 260 T
4 2.146 T 1.896 T 183 T
5 1.724 T 1.566 T
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FIG. 2. Bulk resistance vs magnetic field, for the same
bismuth single crystal and under the same circumstances as Fig.
1. At zero magnetic field, the measured resistance was 4.85 u(.

resistance are not limited to semimetals like bismuth.
This is illustrated in the measurements on gallium, that
are presented in Figs. 3 and 4 for a point-contact resis-
tance and a bulk resistance, respectively. These figures
were also taken both under the same conditions and on
the same day and are therefore directly comparable. Gal-
lium is a metal in which Shubnikhov-de Haas oscilla-
tions have been demonstrated in the past.?’ It is a com-
pensated metal and thus has a large, nonsaturating quad-
ratic magnetoresistance as is shown in the bulk measure-
ment of Fig. 4. This magnetoresistance term is also ob-
served in the point-contact measurement of Fig. 3. The
sharp rise in resistance below 3 teslas ( only partly drawn)
is no ordinary magnetoresistance, but arises because of
the suppression of superconductivity of gallium. The ob-
servation of the superconducting 8 phase (T,=6 K) of
gallium is quite common in point contacts.?! In general,
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FIG. 3. The resistance dV /dI of a gallium-copper point con-
tact as a function of magnetic field, for zero bias voltage and at
a temperature of 1.8 K. The orientation of the crystal itself was
unknown. At zero magnetic field, the point-contact resistance
was 0.52 Q.
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FIG. 4. Bulk resistance vs magnetic field, for the same galli-
um single crystal and under the same circumstances as Fig. 3.

in order to suppress superconductivity in point-contact
experiments, magnetic fields are required that are much
higher than the critical fields of the bulk materials. In
the work of Shklyarevskii et al.?! a field of 3 T was used,
which in Fig. 3 also is the field where the suppression can
be considered complete.

The observed ratio between the point-contact magne-
toresistance term and that of the bulk measurement is ap-
proximately 15. This is much higher than the ratio of ap-
proximately 2 that we found for bismuth. The discrepan-
cy between these two values must be ascribed to the ir-
regular size of the gallium sample, which in no way
resembled a disc of uniform thickness, and to the method
of contact preparation by inserting copper wires rather
deeply in the material in its liquid phase, which is not a
good method for reliable resistivity measurements.

The frequencies that are observed in de Haas—van Al-
phen experiments of gallium fall in several groups, that
cover almost the complete frequency range between 50
and 5000 T.2? It is therefore impossible to give a definite
assignment for the dominant oscillation that is present in
Figs. 3 and 4 with a frequency of 75 T. An important
point is that the relative magnitude of the oscillations in
the point-contact measurements, with respect to it’s con-
tinuously rising magnetoresistance term, is equal to that
of the bulk measurements, which justifies the conclusion
that the observed oscillations in the gallium point contact
are caused by the Shubnikhov-de Haas effect.

V. OSCILLATIONS IN THE
SHARVIN RESISTANCE

The third material that was used in the experiments
was aluminum. Contrary to bismuth and gallium no reli-
able observation of the Shubnikhov-de Haas effect in this
metal is known. Large oscillations in the resistivity have
been observed in certain symmetry directions,?® but these
are caused by magnetic breakdown and not by the
Shubnikhov-de Haas effect. Through the de Haas—van
Alphen effect the Fermi surface of aluminum is known
very well.2#?* The second Brillouin zone of aluminum is
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almost completely filled and gives rise to high-frequency
oscillations, of approximately 40000 T. The third zone
contains small, tubular pockets of electrons, where the
tubes lie on the sides of a small square. There are three
nonequivalent pieces, with the normal to the square along
each of the (100) axes of the crystal, and the sides along a
(110) axis. The fourth zone is empty. For two symmetry
directions the frequencies corresponding to the third
zone pockets are listed in Table II, together with their
effective masses.

Because of the nearly-free-electron character of alumi-
num, we will use the free electron value for the parameter
pl, ie, pl=3.99%X1071 Qm? Our samples typically
had a residual resistance ratio of 10000, and hence a
mean free path can be estimated of the order of 150 um,
and a resistivity of approximately 2.5 pQQ m at low tem-
peratures. Aluminum is not compensated and only a
small, linear magnetoresistance term is usually observed
in the bulk resistivity. Because of the Corbino geometry
in point contacts an enhanced magnetoresistance is ob-
served® proportional to the bulk magnetoresistivity. In
Fig. 5 a point-contact measurement is shown for an
aluminum-aluminum contact of 0.7 , which was mea-
sured at a temperature of 1.5 K. Here the classical mag-
netoresistance term has a magnitude of a few m{).

Also present in Fig. S is a relatively large oscillation
signal. When this signal is plotted against 1/B and the
Fourier transform is consecutively taken, Fig. 6 is ob-
tained. In this figure, as in the other Fourier transforms
in this paper, a linear term was usually subtracted from
the measured resistance in order to correct for the mag-
netoresistance term, and an antialiasing function was ap-
plied, but no other signal processing prior to the trans-
form was performed. Upon comparing the peak posi-
tions in Fig. 6 with the known de Haas—van Alphen fre-
quencies from Table II, it is clear that the origin of the
signal must lie in the Landau quantization. Both the
low-frequency a and 3 oscillation are observed, as are the
somewhat higher y frequencies. (The observation of mul-
tiple peaks between 500 and 600 T can be ascribed to
misalignment, since these oscillations are multiply degen-
erate and the point contact consists of two crystals,
which may not be perfectly aligned.) The
Shubnikhov-de Haas effect as a possible cause of the os-
cillations can be ruled out by giving an order of magni-
tude estimate. The dominant frequency in Fig. 5 is 289
T, arising from one of the y orbits. At a magnetic field of
7 T the number of Landau levels that are present in the
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FIG. 5. dV/dI(B)—dV /dI(0) of an aluminum-aluminum
point contact as a function of magnetic field, for zero bias volt-
age and at a temperature of 1.8 K. The magnetic field was
oriented parallel to a (110) axis and perpendicular to the nomi-
nal plane of the contact. At zero magnetic field the resistance
was 0.70 Q.

corresponding branch of Fermi surface is therefore
g =41. The relative contribution of these pockets of elec-
trons to the total current can not easily be calculated,
since they are not very ellipsoidal. A rough estimate can
however be given by comparing the extremal areas of
these pieces with that of the main, second zone part of
the Fermi surface. The ratio between these extremal
areas is the same as that of the corresponding de
Haas-van Alphen frequencies, which are 289 T for the y
piece and 43 150 T for the second zone ¥ piece.?> Since
there are two equivalent y pieces, their contribution to
the total current is approximately 1.5%. With a depen-
dence of the amplitude on g given by Eq. (4) we can ex-
pect a Shubnikhov-de Haas effect of 2.3X 107 of the
classical magnetoresistance term or only approximately
10 uQ, even when no damping of the signal because of
finite temperature T or finite relaxation time 7 is taken
into account.

Another possible source of resistivity oscillations is
magnetic breakdown. This is known to cause large sig-
nals in aluminum,?® when the magnetic field is oriented
along certain symmetry directions. The oscillations that
are observed in point contacts, however, are not limited

TABLE II. The observed de Haas—van Alphen frequencies F for the third zone of aluminum, for the
magnetic field along two symmetry directions, together with their effective masses m *. The values for
the frequencies have been taken from Ref. 25 and for the effective masses from Ref. 24. The B mass in
the (110) direction is mentioned in Ref. 24 as unreliable, because of difficulties in separating the & and

B oscillations.

100 F (T) m*/mg 110 F (T m*/mg
P 28.2 0.091 a 26.1
B 46.8 0.102 B 50.7 0.119(?)
y 391.4 0.180 v 289.4 0.130

y 508 0.227
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FIG. 6. Fourier transform of Fig. 5, when plotted against
1/B, showing the frequencies from electrons in the third zone of
aluminum.

to these symmetry directions. Furthermore, all frequen-
cies that can be expected for the third Brillouin zone ap-
pear in the resistance, not just those that are found from
magnetic breakdown, and hence this can also be ruled out
as a possible cause.

On the basis of the amplitude of the observed signal it
must be concluded that the total point-contact resistance
is responsible for the oscillations, i.e., it’s main source is
found in the Sharvin resistance component. The ampli-
tude of the 289 T y oscillations is 0.5 mQ at 7 T, or
7X107* of the total point-contact resistance. An esti-
mate, based on the semiclassical relation of Eq. (8), gives
an expected amplitude of 0.25 m{). Here we again have
assumed that the contribution of the ¥ electrons to the
total current is given by the ratio between the de
Haas—van Alphen frequencies. Since damping effects di-
minish the signal by roughly a factor of 3 to 5, as will be
seen later, the observed amplitude is still too large to be
accounted for by the pure semiclassical model. In order
to fully explain the signal it is necessary to assume some
enhancement because of diffraction effects. That this
must indeed be expected is seen by comparing the mag-
netic length A=(24%/eB)!/? with the contact size, which
can be estimated with Eq. (5). With p/ =3.99X107!®
Qm? and a resistance of 0.7 () we find a contact radius
a =150 A, whereas A=135 A at a field of 7 T. Although
the contact is not fully in the quantum limit, the resulting
spread in wave functions is sufficient to explain the ob-
served amplitude, and the observed variation of the am-
plitude with magnetic field will be somewhere between a
g 'anda g 1'?law.

The contact of Fig. 5 shows an oscillation signal that is
of more than average amplitude, although still larger am-
plitudes have been obtained in other point contacts.
Over a large number of contacts, measured under compa-
rable circumstances, the magnitude of the oscillations
varies over more than an order of magnitude, with no ap-
parent relation to experimental parameters as, e.g., the
contact resistance. The best cases that have been ob-
served showed an amplitude at 7 T for the 289-T ¥ orbit
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of 1 part in 10° of the total resistance. For the contacts
with low amplitude the observability was usually limited
by noise because of mechanical instability, which was
typically 10™% to 107° of the total signal. Several causes
are plausible for this large spread in amplitude. One of
the main problems with aluminum point contacts is the
oxide layer that covers the aluminum. As a result of this
layer, the point contact may in some cases not be purely
metallic but possibly also has a tunneling character. In
that case, the contact dimensions will actually be larger
than estimated on the basis of the Sharvin expression of
Eq. (5), and hence diffraction effects will be less impor-
tant. A further complication that has been neglected in
our diffraction theory is the shape of the contact which
we for simplicity assumed circular. A real point contact
will likely show a more irregular shape and, e.g., a slit-
shaped contact may show a larger diffraction effect.

Another problem concerns the orientation of the point
contact itself. The plane of the contact was assumed to
be perpendicular to the applied magnetic field. In reality,
though, the contact is of microscopic size and it’s actual
orientation is determined for a large part by irregularities
on the surface of the samples and could be different from
the perpendicular one. The magnetic length A only sets
the length scale for the direction perpendicular to the
magnetic field, whereas in the parallel direction the de
Broglie wavelength is still the determining factor. Thus,
the actual importance of diffraction may differ for both
orientations. Experiments, that were performed with the
field parallel to the nominal plane of contact showed no
conclusive evidence. The resistance curves as a function
of the magnetic field for this orientation were both quali-
tatively and quantitatively similar to those for the per-
pendicular orientation, and showed the same spread in
oscillation amplitudes, but these contacts suffer from the
same uncertainty in the real orientation.

Although the theory was derived for contacts between
identical metals and for spherical Fermi surfaces, hetero-
geneous point contacts between aluminum and other ma-
terials also gave good results. Experimentally, this even
was to be preferred, since this eliminates the problem of
alignment between the two electrodes that form the con-
tact. In most of our measurements a copper whisker was
used as the second electrode. The oscillations of copper
are much too feeble to be observable, both because of the
larger g and because of damping effects, that will be dis-
cussed in the next paragraph. An example of an
aluminum-copper contact is shown in Fig. 7, with the
corresponding Fourier transform in Fig. 8. The orienta-
tion of the aluminum sample in this case was the same as
for the point contact of Fig. 5, i.e., with the magnetic
field parallel to a (110) axis. On the whole, qualitatively
the same oscillation behavior is observed for both Al-Al
and Al-Cu contacts, with the oscillations in the
aluminum-copper contact in general somewhat lower in
amplitude. The spread in oscillation amplitude for the
aluminum-copper contacts was very large but on the
average their signal strength was roughly a factor of 3
smaller than for the aluminum-aluminum contacts. The
frequencies, observed in both contacts are nominally the
same. The multiple peaks between 500 and 600 T in Fig.
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FIG. 7. dV /dI(B)—dV /dI(0) of an aluminum-copper point
contact as a function of magnetic field, for zero bias voltage and
at a temperature of 1.8 K. The magnetic field was oriented
parallel to a (110) axis of the aluminum single crystal and per-
pendicular to the nominal plane of the contact. The resistance
at zero magnetic field was 0.74 Q.

6 are reduced to one peak in Fig. 8, whereas the peak at
100 T in Fig. 8 is a higher harmonic of the 50-T signal.
Contacts between two polycrystalline samples were
deliberately made in order to check that the oscillation
effect is really a local effect, and occurs in the direct vi-
cinity of the contact. For this purpose, samples were cut
with scissors out of a sheet of high purity, polycrystalline
aluminum. The samples had a size of a few millimeters
and were of irregular shape. The size of the crystallites,
that were visible in the crystals after etching, was of the
order of tenths of millimeters, although it can be assumed
that along the border of the sample, where the cutting
heavily deformed the material, the crystallites were
smaller. The contact was then made by pressing together
two samples and an example of a measured resistance
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FIG. 8. Fourier transform of Fig. 7, when plotted against
1/B. Only the part of Fig. 7 between 3.5 and 7 T has been used
in the transformation.

QUANTUM OSCILLATIONS IN THE POINT-CONTACT . ..

3093

versus magnetic field is shown in Fig. 9. This contact
shows all the features of a properly oriented aluminum-
aluminum contact, although the oscillation pattern is
more complex. Apparently, the very rough treatment
through the cutting process did not seriously affect the
observability of the oscillations.

In the Fourier transform, presented in Fig. 10, a limit-
ed number of peaks can be observed. The observed spec-
trum can be compared with known de Haas—van Alphen
data. We used the measurements of Larson and Gor-
don,** who give data for a wide range of crystal orienta-
tions. The frequencies below 1000 T fall in two groups,
one group of very low frequencies, containing the a and 8
oscillations, and one group of intermediate frequencies,
associated with the y electrons. The low-frequency
group covers the range from 25 T to approximately 70 T,
with a high probability around 50 T, where oscillations
are found over a wide range of orientations. The 50 T
peak that is found in Fig. 10 is due to these branches.
Furthermore, eight clearly distinguished peaks are visible
between 280 and 600 T..No attempt was made to recon-
struct the crystal orientations from the values of these
frequencies. This would require more knowledge about
the frequencies for directions out of the planes of symme-
try and even then it would be a very difficult task. Some
general observations can be made, however. When the
Fermi surface of aluminum is considered, it turns out
that at most six different y frequencies can be found for
each crystal orientation. In practice, at least one of these
oscillations will usually not be observable, because the
corresponding tube is oriented too closely perpendicular
to the magnetic field. The lowest ¥ oscillation that can
occur is the 289 T oscillation in the (110) direction,
whereas the main part of the oscillations for different
orientations falls below 500 T. This is also observed in
the Fourier transform of Fig. 10. the total number of
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FIG. 9. dV/dI(B)—dV /dI(0) of an aluminum-aluminum
point contact as a function of magnetic field, for zero bias volt-
age and at a temperature of 1.8 K. Both electrodes of the con-
tact consisted of polycrystalline material. The magnetic field
was oriented perpendicular to the nominal plane of the contact.
The resistance at zero magnetic field was 0.42 Q.
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FIG. 10. Fourier transform of Fig. 9, when plotted against
1/B.

eight different peaks in this figure supports the assump-
tion that only the two crystallites forming the actual
point contact contribute to the observed signal. Further-
more, it can be observed, that both crystallites contribute
signals of comparable strength. The amplitude distribu-
tion over the peaks agrees well with that of single-crystal
measurements, as in Figs. 6 and 8. The lower amplitude
for the higher frequencies can be attributed to the higher
value of the quantum number g and to the higher
effective masses that cause a larger damping of the oscil-
lations, as will be discussed in the next paragraph.

VI. DAMPING MECHANISMS

Quite a number of mechanisms act to reduce the ob-
served amplitude of the various quantum oscillations that
are observed in metals. Shoenberg’ cites as the most im-
portant ones inhomogeneity of the sample, inhomogenei-
ty of the applied magnetic field, damping because of in-
terference between the two different spins and damping
because of finite temperature and relaxation time. All of
these mechanisms can be treated with the general con-
cept of phase smearing?® and the resulting damping fac-
tors have a very general character, irrespective of the os-
cillation phenomenon that is studied.

Of the several sources, cited above, inhomogeneity of
the magnetic field clearly will not be very relevant in our
experiments, because of the very small size of the actual
point-contact area. Sample inhomogeneity would also
appear to be unimportant, although it is difficult to deter-
mine whether damage, that occurs in the process of mak-
ing the contact, in the first place acts to reduce the mean
free path or also causes mosaic spread in the contact re-
gion. In general, this distinction is experimentally hard
to make’ as sample inhomogeneities are also accom-
panied by an increased scattering. Phenomenologically
we will assume it to be included in the reduction factor
because of finite relaxation time and here we will not con-
sider it further. Damping because of spin is a constant
factor for a given field direction. In our present experi-
ments it cannot be studied because it is impossible to
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keep a contact stable upon changing the orientation in a
magnetic field.

The other two damping effects are very similar in ap-
pearance, although their physical origin is different. A
finite temperature causes smearing of the Fermi function
and gives a vaguer transition between occupied and unoc-
cupied electron states, but keeps the Landau tubes well
defined. A finite relaxation time on the other hand blurs
the Landau levels but the transition between occupied
and unoccupied states remains sharp. It is obvious that
the observable effects are quite similar, and for historical
reasons the effect of a finite relaxation time 7 is expressed
in a phenomenological parameter, the Dingle tempera-
ture Tp.?7 Still, the factors that describe the two damp-
ing sources are not quite the same. For a given oscilla-
tion the amplitude of the pth harmonic at a finite temper-
ature T is reduced with a factor of

X
Ry sinh(X) ©)
with X =2m%pk, T /#w,, where kj is the Boltzmann con-
stant. A finite relaxation time 7 causes a similar reduc-
tion, given by the Dingle reduction factor

R, =exp(—2mky Tp /#i00,) , (10)

expressed in the Dingle temperature T, =#/77.

The temperature dependence, described by Eq. (10),
was checked as follows. The oscillation pattern was ob-
served over a limited field range for different tempera-
tures, but on one and the same contact. For the oscilla-
tion that was observed, we chose the 391.4-T y oscilla-
tion, that is found when the field is parallel to a (100) axis.
Although this frequency is fourfold degenerate and hence
can cause a rather complicated beat pattern, the four os-
cillations all have identical mass and will vary with tem-
perature in the same way. The advantage in choosing
this frequency is that no other oscillations above 50 T are
present in the observed signal. For every period between
6.5 and 7.0 T the amplitude ratio between the signal at
4.2 K and at 2.5 K was determined. This, via Eq. (10), re-
sulted in a value for #iw, and hence for the effective mass.
Averaging over several periods yielded an effective-mass
value of m*/my=0.176+£0.010, expressed in free-
electron masses. This compares very well with the value
of Larson and Gordon,?* who give m * /m,=0.180.

A reliable determination of the Dingle temperature T,
poses more problems, because it can only be determined
from the dependence of the amplitude on the magnetic
field. This field dependence also comprises other factors,
among which is the dependence on the Landau number gq.
Furthermore, care must be taken to eliminate the effect of
a slow beat between two oscillations that are close in fre-
quency. In order to prevent such beat problems, we
chose the frequency of 289 T in the (110) direction,
which is fairly isolated in frequency and is nondegen-
erate. For a large number of aluminum-copper contacts,
we determined the ratio of the amplitude of this frequen-
cy between 3.5 and 7 T. It is not expected that
aluminum-aluminum contacts differ too much from the
aluminum-copper contacts with respect to the Dingle
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temperature, since the data are very similar in appear-
ance. As average dependence of the amplitude on the
Landau number g we took ¢ “%7°. The mass of the elec-
trons, associated with the 289 T frequency, is
m*/my=0.130. Taking into account the temperature
damping factor, we determined an average Dingle tem-
perature T =3.5 K or w7=3.5 at a magnetic field of 7
T. In de Haas—van Alphen measurements this is a rather
high value for the used purity of aluminum. Using other
exponents in the g dependence, slightly different values
are found for the Dingle temperature, with values be-
tween 3.0 and 4.0 K for a ¢ ~! and a ¢ ~!/? dependence,
respectively. Still, such a high value for the Dingle tem-
perature must be seen in view of the rather violent pro-
cedure with which the contacts are made. The mean free
path, that corresponds to a value of 3.5 for w7, is ap-
proximately 2 um. This value does not vary too much
from contact to contact as the Dingle temperatures most-
ly fall in the range of 3 to 4 K for different contacts.

When apart from the small modulation voltage over
the contact (typically 1 mV or less) a dc bias voltage was
applied over the contact, an additional damping of the
signal was observed. This is illustrated in Fig. 11, where
the open circles give the relative amplitude of the 289-T
frequency at a field of 6 T. The Eliashberg function
a’F (o) for aluminum!® that is also drawn in the figure,
suggests that this damping has a relation to the electron-
phonon interaction. For the precise nature of this rela-
tion two simple models are possible. The hot electrons,
generated in the point-contact region, have a reduced
mean free path when their energy increases to typical
phonon energies and hence a larger Dingle reduction may
result. It is equally well possible, that a small increase in
temperature, caused by Joule heating, gives a larger tem-
perature reduction. This effect will be most important
when the typical electron energy becomes comparable to
phonon energies. At a starting temperature of 1.8 K, the
temperature increase, necessary to give a reduction with
30%, is 3.5 K. Since this is also a very acceptable value,
it is difficult to decide which mechanism is valid for the
observed amplitude reduction.

VII. CONCLUSIONS

In this paper we have shown that Landau quantization
can cause oscillations in both the Maxwell and the Shar-
vin part of the point-contact resistance. Which of the
two is most important is determined mainly by material
parameters. For metals like bismuth and gallium, where
the bulk resistivity shows a considerable Shubnikhov-de
Haas effect, the oscillations in the point-contact resis-
tance result from the resistivity-dependent Maxwell resis-
tance. Due to the strong and anisotropic bulk magne-
toresistivity the Maxwell contact resistance becomes im-
portant in a magnetic field and is given by the square
resistance of the macroscopic sample. However, for good
conductors such as aluminum with no appreciable
Shubnikhov-de Haas effect, the point-contact resistance
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FIG. 11. Relative amplitude of the point-contact oscillation
amplitude vs bias voltage for an aluminum-copper point contact
of 0.7 Q, at a temperature of 1.8 K. The open dots give the am-
plitude of the 289-T oscillation at a magnetic field of 6 T parallel
to a (110) axis. The solid line gives the Ehliashberg function
a*F(w) for aluminum, as given in Ref. 15.

still shows oscillations. Since magnetic breakdown can
be ruled out as a possible cause, the origin of the effect
must lie in the Sharvin resistance. Some enhancement is
usually necessary to explain the observed oscillation am-
plitudes. When diffraction at the metallic constriction is
taken into account such an enhancement must indeed be
expected and in the extreme diffraction limit (A >a) the
dependence of the oscillation amplitude on the magnetic
field is similar to that of the Shubnikhov—de Haas effect,
but now related to the resistivity-independent Sharvin
resistance.

No oscillations have been observed in our experiments,
corresponding to electrons with effective masses higher
than 0.3 free-electron masses or with Landau numbers g
higher than 150. In view of the importance of the damp-
ing, due to a finite relaxation time in the contact region,
this can easily be understood. With an effective mass of
0.5 and a Dingle temperature of 3 K, the reduction factor
at, e.g., 10 T is R, =0.11, and this value decreases ex-
ponentially with the effective mass. In combination with
the large Landau number g that is usually associated with
the heavier electrons, this makes the amplitude of the
effect too low to be observed. Unfortunately, this limits
the observability of quantum oscillations in the Sharvin
resistance to materials with small pockets of light elec-
trons.
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