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The Bethe-Ansatz equations for the ground state of the Coqblin-Schrie8'er model for j =
2

are

solved for a special axial-crystal-field-splitting scheme. The occupations of the crystal-field levels,
the specific-heat contribution linear in the temperature, and the magnetic susceptibility parallel and
perpendicular to the crystal axis are obtained as a function of the crystal-field strength. The univer-

sality of the results is discussed and a comparison with experiments on YbCu2Si2 and YbCuA1 is
made.

I. INTRODUCTION

Crystalline electric fields are known to quench the or-
bital angular momentum of magnetic ions, lifting in this
way the degeneracy of the Hund's-rule ground multiplet.
In the case of Yb + ions the total angular momentum of
the ground state is j =

—,'. A cubic crystalline field splits
the octuplet into two doublets (I 6, I 7) and a quartet (I 8)
and the small-magnetic-field susceptibility remains isotro-
pic. Axial crystal fields, on the other hand, give rise to
four Kramers doublets and the magnetic susceptibility is
in general anisotropic, i.e., different for a small magnetic
field parallel or perpendicular to the principal crystal
axis. The system has a singlet ground state as a conse-
quence of a Kondo spin-compensation, for all crystal-
field-splitting schemes. Fermi-liquid arguments are then
valid and the susceptibilities are always finite and at low
T the specific heat is proportional to the temperature,
with proportionality constant y. All three quantities g~~,

y~, and y are functions of the splitting scheme and the
strength of the crystal field. With increasing splitting
there is a gradual crossover from the behavior of an iso-
tropic octuplet for a small crystal field to that of a dou-
blet for large axial crystal fields.

The thermal properties of these two extreme cases are
very different. As a consequence of the spin compensa-
tion (Kondo efFect) in the ground state, the low-energy
excitation spectrum shows a peak known as the Kondo
resonance. The position of the Kondo resonance deter-
mines the low-temperature thermodynamics: the peak is
well above the Fermi level for an octuplet, but on reso-
nance with the Fermi level for a doublet. The qualitative
changes as a function of the crystal-field strength can in
this way be understood in terms of a qualitative change in
the Kondo resonance.

Exact results for a general crystal-field splitting scheme
yielding four Kramers doublets are very tedious to ob-
tain, but can be extracted analytically from the Bethe-
A nsatz equations for special relations between the
crystal-field energies. The purpose of this paper is to ob-
tain the low-temperature properties of the impurity for
the special choice of crystal-field parameters for which
the energy differences between the Kramers doublets

should be 1:&2:1.
Our starting point are the Bethe-Ansatz equations for

the Coqblin-Schrieffer model, which have been obtained
independently by Tsvelick and Wiegmann, ' Rasul, and
Andrei, Furuya, and Lowenstein. These equations also
correspond to the stable magnetic moment limit in the
Bethe-Ansatz equations of the SU(N) Anderson model.
For X =8 they consist of seven linearly coupled integral
equations of the Wiener-Hopf type, determining the
seven relative occupations of the impurity levels as a
function of the seven integration limits. For an arbitrary
splitting scheme then these seven integration limits are all
different and the coupled integral equations must be
solved numerically. Within our special choice of splitting
scheme only one integration limit is relevant and the sys-
tem of equations can be solved by the standard Wiener-
Hopf technique.

The effect of crystal fields on magnetic impurities in
metals has been previously analyzed within the frame-
work of Bethe's Ansatz for various cases. The occupa-
tion of the crystal-field levels, the magnetic susceptibili-
ty, and the specific heat were obtained for a j =—', im-

purity (Ce +) in cubic symmetry. The interplay of
valence fluctuations and cubic-crystal-field splittings for
j =

—,
' has been discussed in Ref. 7. The specific heat of a

quartet split into two Kramers doublets was calculated in
Refs. 8 and 9. Finally, the effect of an axial crystal field
splitting the Ce + sextuplet into three equally spaced
Kramers doublets on the occupation of the levels, the sus-
ceptibility, ' and the specific heat has also been studied.
This last example is closely related to the case presented
here, which actually is its extension to Yb + impurities.
Although the splitting scheme used is not a general one,
our results are expected to give valuable information with
possible application to systems such as YbCu2Siz.

The rest of the paper is organized as follows. In Sec. II
we restate the ground state Bethe-Ansatz equations for
the Coqblin-Schrieffer model and brieAy discuss the rela-
tion between the integration limits and the splitting
scheme. The situation of four Kramers doublets with a
relative splitting of 1:&2:I is solved in Sec. III in the ab-
sence of a magnetic field and the population of the levels
is obtained as a function of crystal-field strength. In Sec.
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IV, the y coefficient of the specific heat is calculated and
including a small magnetic field in addition to the crystal
field. we obtain the magnetic susceptibility. The magnetic
susceptibility is anisotropic and contains van Vleck
terms. A discussion of the results follows in Sec. V, to-
gether with a comparison to Mossbauer measurements of
the quadrupolar moment of the 4f shell of Yb in
YbCu2Si2 and YbCuA1.

km k, k'
m, m'

(2.1)

where Ck creates a conduction electron of momentum
k =

~
k

~
and total angular momentum component m

~m
~

~j=
—,', and similarly f creates a localized f elec-

tron. For convenience we have interchanged electrons
with holes. The first term in (2.1), represents the kinetic
energy and J is the exchange coupling constant.

The model (2.1) is soluble for a dispersion that is linear-
ized around the Fermi level. ' Since j =

—,
' the impurity

has X =2j + 1 =8 levels with the constraint that
f f =1, i.e., with seven internal degrees of free-

dom. The exact solution is then obtained in terms of
seven nested Bethe Ansatze, each of which eliminates one
internal degree of freedom. Each Bethe-Ansatz generates
a set of rapidities and these sets are interrelated by the
Bethe-Ansatz equations. For the ground state these ra-
pidities are all real and are conveniently described by
density functions o' "(g ), l = 1, . . . , 2j in the thermo-
dynamic limit. The energy of the system expressed in the
terms of the rapidities is

2J
E = g l f dago'(g), (2.2)

so that it is energetically favorable to occupy all states
with rapidities in the interval (—oo, B&) It is usu. al to in-

troduce "hole"-distribution functions oz"(g'), which are
complementary to the o'"(g), i.e., they vanish in the in-
terval ( —~,B&). Particle and hole densities are linearly
related by the following Wiener-Hopf integral equations:

2j
aI, (g)+ g f dg'o'~~'(g')IC/~(g g')—

oo

sinh[ —,'x (2j+1—l)]
dxe

2 jT 00 sinh[ —,'x (2j + 1)]

1 . X1+—exp —i—
L J

where
ICIq (g) is the Fourier transform of

(2.3)

II. EQUATIONS AND GENERAL CONSIDERATIONS

Yb + impurities embedded in a simple metallic host
are usually described in terms of the Coqblin-Schrieffer
Hamiltonian

e I I &&sinh[ —,'x (2j + 1 —max I l, q I ) ]

sinh( —,'x mintl, q] )

sinh( —,'x)sinh[ —,'x (2j + 1)]
(2.4)

and I. is the length of the box. The right-hand side con-
sists of the driving terms of the equations; the term pro-
portional to 1/I. is the impurity term, while the extensive
term corresponds to the free-electron gas. The density
functions can then be separated into an impurity and a
host part, o'"=oh",„+(I/L)cr;'"~. Note that the integral
equations for impurity and host are formally very similar
and the latter is obtained from the former in the limitJ~ oo.

Let us denote by nI the occupation numbers of the im-
purity levels labeled in decreasing order,
n, ~ n2 ~ ~ n» ~ n»+, ~0, such that n& corresponds
to the lowest-lying level and n2 +& is the least populated.
Similar relations can be defined for the populations X& in
the electron gas. The density function o'"(g) is associat-
ed with all n (N ) for q ~l occupied and q ) l empty.
The relative occupation of the impurity levels is then
given by

81
nI n~+—~= f dgo; ~(f) n2j+2

and similar relations hold for the host.
The BI are a set of 2j constants to be determined by the

external conditions imposed on the impurity. They deter-
mine the number of electrons of each "color" in the host
and hence the relative population of the impurity levels.
The splitting of a (2j+ 1)-fold multiplet can be expressed
as a linear combination of Stevens operators 01, where
1 ~ I ~ 2j. In the ionic Hamiltonian of the impurity there
are then 2j independent coefficients which uniquely deter-
mine the BI. The Zeeman splitting, for instance, can be
characterized by an 0& Stevens operator and is the only
possible splitting for a spin —,. A triplet can in addition
be split by an axial crystal field, i.e., and 02 Stevens
operator. The degeneracy of a quartet can be lifted with
an arbitrary splitting between the levels by means of the
axial crystal fields 02 and 02 and a magnetic field.

We diagonalize the ionic fHamiltonian and new eigen-
states (colors) replace the spin eigenstates. It is assumed

that the host has a splitting similar to that of the impuri-

ty, such that the number of electrons of each color is a
conserved quantity of the system (host with impurity).
This assumption is not restrictive if the bandwidth is
much larger than the splittings. The corrections induced
are then of the order of the splitting divided by the band-
width and hence negligible. Equations (2.3)—(2.5) remain
unchanged when reinterpreted in terms of colors. Hence
the splitting scheme of the isolated ion completely deter-
mines that of the interacting system, i.e., in the presence
of the Kondo effect. This paper is devoted to the situa-
tion of Yb +, i.e., j =—'„for which we brieAy discuss three

examples to illustrate the above general discussion.
(a) In a pure Zeeman splitting" all degeneracies are

lifted such that, according to (2.5), all BI= —~. The pa-
rameters BI are determined such that for small fields,

n&
—

n~+ &
in (2.5) is proportional to H and independent of

I. From the symmetries of the kernel of the integral
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equations we have then that 8, =87, 82=86, and
Bz =85. Only one 8&, e.g., 8&, is independent and
parametrizes the field, 8, =4ln(H/sz)/n, where sz is
the Fermi energy. The remaining 8& have been found nu-
merically" to be given by 82 =8

~
+0.255,

83 8, +0.388, and 84 =8 ) +0.430.
(b) In a cubic environment the octuplet splits into a I 6

doublet, a I 7 doublet, and a I 8 quartet. Only two of the
8& parameters are then different from —oo (8&= —oo for
odd l). Two parameters, a fourth-order and a sixth-order
one, determine the splitting' such that the problem
reduces to a numerical solution of two coupled linear in-
tegral equations of the Wiener-Hopf type. The ground
multiplet is always a doublet, so that 82 is always finite.

(c) In a pure axial crystal field the j =—,'splits into four
Kramers doublets and hence B& = —~ for odd l. The pa-
rameters 82, 84, and 86 are finite and are determined by
the second-, fourth-, and sixth-order Stevens operators in
the ionic scheme. In this case three Wiener-Hopf integral
equations rem. ain and must in general be solved numeri-
cally.

The integral equations for cases (b) and (c) can, howev-

er, be solved analytically in some special situations,
namely, when the integration limits 8& di6'erent from
—~ are equal. In case (c), i.e., for an axial crystal field,
this corresponds to crystal-field excitation energies from
the Kramers ground doublet of b„(1+&2)b., and
(2+&2)b, . The solution of this situation is presented in

the next two sections. Although this represents a special
splitting scheme we believe that the conclusions drawn
are generally more valid.

III. j =—IN AXIAL SYMMETRY
AND ZERO MAGNETIC FIELD

We consider the integral equations (2.3) for the situa-
tion in which 8, =B~=85 =87 = —~ and 82 =84
=86 =B. This corresponds to a splitting of the octuplet
into four Kramers doublets with cr~stal-field excitation
energies b„(1+&2)b„and(2+v'2)b, . The energy b
determines the integration limit 8; this relation is derived
below. 8 grows monotonically with 6, being —~ for
6=0. Equations (2.3) reduce to three coupled Wiener-
Hopf integral equations for the density functions o' ',
o' ', and o' '. Since the integration limits are all equal,
this system of equations exactly decouples into three sin-
gle integral equations. In view of the symmetries of the
kernel we introduce the following linear combinations of
the density functions:

P h(k)+ f dk P (4 )+ (S 5 )=g (k)

where K;(g) are the Fourier transforms of

k, (x)=e ' [ cosh(x /2)/ cosh(2x)]

(3.2)

X4 cosh(x /2+in/8 .
) cosh(x /2 i —n/8 .),

(3.3a)

kz(x ) =e ~" ~ ~ [ cosh(x /2) / cosh(2x) ]

X4 sinh( x /2+i n /8 ) sinh(x /2 i n—/8 ).,

k& (x)= e ~" ~ ~ cosh(x /2) / coshx,
(3.3b)

(3.3c)

and g;(g) are the corresponding driving terms, which are
given by the Fourier transform of

g (x)=&2 1+—exp
1

1 L
cosh(x /2+ i n /8 )

X cosh(x/2 in/8)—/co. sh(2x), (3.4a)

1
g (x)=&2 1+—exp2 L

sinh(x /2+i n /8 )

X sinh( x /2 i n/8 ) /—cos. h( 2x ), (3.4b)

gi(x) =2 1+—exp coshx . (3.4c)

We solve the Wiener-Hopf integral equations following
the standard procedure. ' The kernels IC, (x) are writ. ten
as a product of two functions IC;(x)=G; (x)G; (x),
where G; (x)=G;+( —x), G;+(x) approaches a constant
as x~ ~, and G;+(x) [G, (x)] is analytic in the upper
(lower) complex half-plane. The function G;+(x), ob-
tained from Eqs. (3.3), is given by

G,+ (x )=2n [( ix + 0—) /a i
]'"

I ( —,
' —i2x/n)

X I"( ,' ix/2—n—)I ( —', —ix/2n. )I ( ', ix/2n—)—
(3.5a)

gz(x) =2n.[( ix +0)/az]—'"~

I'( —,
' —i 2x /n. )

I ( —,
' —ix /2n)I ( ,' ix /2n. )I. ( —', ———ix /2n. )

(3.5b)

p, (g)= —[o' '(g)+o' '(g)+&2o' '(g)],
2

(3.1a)
I ( ,' ix/n)——

g~(x) = [( i +x0)/a~—]' ~2"
I'( ,' ix /2n )—— (3.5c)

(3.1b)

(3.1c)

and analogous expressions for the hole functions. The
densities diagonalize the kernel K&, Eq. (2.4) for
l, q =2,4, 6, such that the integral equations take the
form

where a, =a2 =en/2 and a~ =n.e/2. Here 0 denotes an
infinitesimal. The Wiener-Hopf equations can now be
rewritten as

p;q(x)/G;+(x)+p;(x)G; (x)=g;(x)/G, +(x) . (3.6)

The first term on the left-hand side is analytic in the
upper complex half-plane, while the second one is analyt-
ic in the lower half-plane. A similar separation can be
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—i'
p,„()=g,+( )

2in y —x iO g—,+(y)
(3.7a)

done on the right-hand side of (3.6) by means of a Cauchy
transform. These two solutions (analytic in the upper
and lower half-planes, respectively) coincide on an
infinitesimal strip around the real axis, so that one can be
considered the analytic continuation of the other. In this
way we obtain

1 dy g,.(y)e-" 1
p, (x)=-

g (x} I 2i~ y —x +t0 g,. (y)

(3.7b)

Note that each p; and p;& consists of a host and an impur-
ity part. The number of electrons with a given crystal-
field symmetry is obtained from (3.7b) for x =0 via Eqs.
(2.5) and (3.1). The impurity part of (3.7b) for x =0 can
be rewritten in a more convenient way by making use of
(3.4) and (3.5):

3/Z . exp[ iy(B—+1/J)] iy+0
' I (Y'+i2y/~)I ( —,

' —iy/2')
p, ; (0)= — . [2' sin(3m/8)] '

dy
2l 7T QO y+iO (en /2 ). I ( ', +iy—/2m)I (

.
', +iy/—2~)

(3.8a)

exp[ iy(B + 1/J)] iy +0 I ( +i2ylvr)I ( ,' iy/—2—rr)
pz; (0)= — . [2 sin(m. /8)] ' dy

2l& oo y +iO (ne/2 ) I ( ,'+iy—/2m)I ( ,'+i—y!2m)

(3.8b)
—iy /27'

1 3/g —] d exp[ iy (B—+ 1 /J)] iy +—0
2im. y +iO ne/2

I ( —,
' iy /2—m)l ( ,'.+iy —/rr) . (3.8c)

p& h„,(0)= —[&h,'„(0)+&'h,'„(0)+&2oh, '„(0)]
2

—[Nq Ns + ( v'2 —1)(N—4 N6 )]—
1/8

[n'r sin(3~/8)]2

X [I ( —,')/I ( —')] exp(rrB/4) (3.9)

(recall that N, =Nz, Ã3=N4, N5=N6, and N7=Ns),
which in linear response is to be equated to 2&2(b. /2sF ),
where 1/2sF is the density of states of the host. Hence B
is roughly given by (N/2m ) ln(h/sF ), with
X =2j + 1 =8. It is also easily verified that for small 6

Note that these expressions, as well as (3.7) for arbitrary
x, are universal expressions as a function of B + 1/J. The
same expressions hold for the electron gas if J is set equal
to ~. For small crystal fields, A&&Tz or B+1/J &&0,
expressions (3.8) can be expanded in powers of
exp( n B /4 ) by closing the contour through the upper
half-plane. The contributions arise from the poles of
I ( —,'+i2y/rr), I ( ', +i2y—/n. ), and I ( —,'+iy/m), respec-
tively. The pole closest to the real axis in each case deter-
mines the leading behavior for small 6; these poles are at
im/4, i3n. /4, and in/2, respectively, giving rise to a
linear dependence in b, only for p, (0) [note that
pz(0) —6 and p3(0) —b, ]. Since b, is always much small-
er than sF, the linear approximation to p, h„,(0) can be
used to relate 6 and B. From the definition of p, [Eq.
(3.1a)] and (2.5) we have that

I

as expected from our splitting scheme.
For large 6, i.e., 6))Tz, the contour has to be closed

through the lower half-plane. As expected, n, = n z

asymptotically approaches the value —,', while the occupa-
tions of the other levels tend to zero. The deviations
from these saturation values are logarithmic, characteris-
tic of asymptotic freedom in the Kondo problem.

The populations of the impurity levels as a function of
/sly' ' are shown in Fig. 1. Here Tz' ' refers to the Kon-
do temperature of the degenerate octuplet, Tz(8)

=sF exp( —m /4J), defined such that the magnetic suscep-
tibility of the octuplet at T =0 is y =j (j
+ I )/3' =21/4'. T.he response of the multiplet to
changes of the crystal-field strength 5, i.e., the derivative
of the energy with respect to 6, is given by

q(b, ) =p, ; (0)= —[n~ n+s(&—2 —1)(n4 n6)] . —

(3.10)

This expression is linear in 5 for small crystalline fields
and approaches asymptotically on a logarithmic scale its
saturation value q», =1/2v'2 for large b, . A plot of
q/q„, is shown in Fig. 2. It is interesting to note that the
linear regime of q (b. ) extends beyond b, /Tz' '=0. 12 and
deviations from the straight line at 5/T~ '=0. 15 are only
of the order of 3%%uo. A similar large linear regime was
found previously with respect to a Zeeman splitting of
the octuplet.

IV. SPECIFIC HEAT AND ANISQTROPIC
MAGNETIC SUSCEPTIBILITY

In order to obtain the magnetic susceptibility we add a
small magnetic field to our splitting scheme. The mag-

1
n~ —n4= —(n4 —n6) =(n6 ns)-b, , —
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netic field lifts all remaining degeneracies, i.e., splits the
Kramers doublets. Hence all integration limits BI,
/ = 1,2, , 7, are now finite, but since the Zeeman energy
for a small field is much smaller than the crystal splittings
and the Kondo temperature, we have that

8 ] y83y85 87 «B»84,8,
The susceptibility is obtained in linear response to the
magnetic field. It is then convenient to express the in-
tegral equations in terms of the density functions o'",

I

0' ', 0' ', and 0' ' and the hole-density functions o. 'h ',

az ' and oI, '. For this purpose we eliminate o' ', cr' ',
and o' ' from the integral equations (2.3) for I =1, 3, 5,
and 7.

Consider the integral equations (2.3) for l =2, 4, and 6.
In order to invert this system of equations we form the
linear combinations (3.1) which diagonalize the kernel of
this subspace and Fourier transform. The inversion is
now straightforward and after some tedious algebra we
obtain

g(2)( ) y(&)( )
—

I ~I /22 cosh~+ y &4&( )
—

I ~I /2+ 1+ e c~/J— 2 cosh(co/2),

&' '(a))= I[&I, '(co)+&'h '(co))e —o' '(co)e 2 cosh' —&' '(co) —&' '(co)I /2cosh(co/2),

&' '(co)=[&I, '(co)e ~ —&'h '(co)~e 2coshco —&' '(co) —0' '(co)]/2cosh(co/2) .

(4.1a)

(4.1b)

(4.1c)

The above expressions are inserted into the other four integral equations (for odd values of i) yielding after Fourier
transforming back into rapidities space

d~ exp[ical(gg')+' —
—,
'

/co]]
(4.2)

0.5 '

l.0

OA

0.5

0.2

O. I

/~ &a)
K

0.2
Il

0.5

I

O. I A/ (8)
Tpc

i

0.3

FICx. 1. Population of one level of each of the Kramers dou-
blets as a function of the crystal-field strength over the Kondo
temperature of the octuplet.

FIR. 2. Crystal-field response function q(A), defined by Eq.
(3.10), over its saturation value q„,=1/2&2 as a function of
5/Tz '. The dashed line is the extrapolation of the linear re-
gime.
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where the driving terms f&(g) are the Fourier transforms
of

fi(~)= —iso/I +y(2)(e I, co 2 cosh(co/2),

f, (~)= [&'h"(~)+o h '(co)]/2 cosh(co/2),

f5 ( co ) = [a» '(co+ 8» '(~ ) ]/2 cosh(co /2 ),
f7(co) =cr» '(co)/2 cosh(co/2) .

(4.3a)

(4.3b)

(4.3c)

(4.3d)

The hole functions corresponding to the densities associ-
ated with the crystal-field splittings, o.

&
', o.

&
', and o.

&
',

have been incorporated into the driving terms. Only the
integral equation with l=1 has a Kondo driving term.
The density ir'"(g) describes the splitting of the lowest-
lying Kramers doublet.

It is worth pointing out that for small magnetic fields
the integral equations corresponding to the lifting of the
degeneracy of the Kramers doublets are all independent
and of the Wiener-Hopf type. In other words, the kernel
does not couple different densities of odd index l. More-
over, the kernel is the same one as for a spin- —,

' Kondo
impurity. The [2cosh(co/2)] ' in the driving terms is
also characteristic of the spin- —,

' Kondo problem.
Since we are interested in the linear response to a mag-

netic field, 8i ((0 (for l being odd) and only the asymp-
totic behavior as g —+ —oo matters in the driving terms.
The contour in the Fourier transform of the f~(co) is then
closed through the upper co half-plane and the leading
contribution arises from the pole of [2 cosh(co/2) ]
closest to the real axis, i.e., at co=i~ A. ll f&(g) for
g~ —oo are then proportional to exp (sr'). The propor-
tionality factors are, respectively,

a =1+—e +&' '(im)e1

L h

a3=[8» '(i~)+o'h '(in)]e.

a, = [& 'h '(i m)+ .& 'h '(i ~ ) ]e

a, =a'„"(i~)e

(4.4a)

(4.4b)

(4.4c)

(4.4d)

The constants cx& consist of a host and an impurity contri-
bution, since each of o'h'(i~), l =2,4, 6, is a sum of such
terms. Hence, the impurity and host solutions for o' '(g),
I = 1,3, 5, 7, are proportional, their ratio being given by

a';",(g)/irh". „(g)=ai(imp)/ai(ho st) . (4.4e)

This relation is a consequence of the Fermi-liquid proper-
ties of the system. The expressions for &h; ~(i ~),
l =2,4, 6, can be obtained from those for p, h; (in),
i =1,2, 3. For x =i+, Eq. (3.7b) yields

1 exp[ iy (8 + 1/J)] iy +0 '
( ,'+i2y —/~)P(—,

' —iy /2n)

(4.5a)

1, , & . exp[ iy (8—+1/J)] iy +0— ~( +'2y/~)

1, ized, exp[ iy(8+—1/J)] iy+0-
(vre/2)

—iy /277

I (
i iy/2m. )—I ( ,'+iy/~)—,

(4.5b)

(4.5c)

and the corresponding expressions for the electron gas
are obtained by taking J~~.

In analogy to Eqs. (3.8) the small-crystal-field expan-
sion is obtained by closing the integration contour
through the upper half-plane from the pole at y =i~ and
the poles of the I functions. Again only pi»(iver) has a
contribution linear in 6,

The large-crystal-field limit of p, »; (i~) shows the ex-
pected logarithmic behavior as a function of 6/Tk '.

The specific heat at low temperatures is proportional to
T, as a consequence of the singlet ground state and the
concomitant Fermi-liquid properties. The proportionali-
ty factor y is thus determined by the ground-state density
functions'

pi»h „(i~)=(e/2) ~ sin(vr/8)[I ( —', )/I ( —,')]
X exp(vr8/4),

so that
1

ah hos&(im) = —&h hos&(in)
~(2) . (4)

2
(6) ~ 1

Plh host(i~)2v'2

(4.6)

(4.7)

2 1 2J

[aloIp(8i ) /ahosi(8i )]
3 xcF,

(4.8)

Note that for 6~0 the ratio of impurity and host densi-
ties becomes independent of l and equal to exp(vr/4J), so
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Ny' '=2j~ /3T' ', N=2j+1=8 . (4.9)
I

that the well-known result for the Coqblin-Schrieffer
model is recovered:

If b,&0 we distinguish two types of contributions: (a)
those arising from densities with odd l and (b) those from
densities with even I. The contribution (a) to (4.8) can be
written as

m2

24'.F
2 exp[7r(8 + 1/J)]+ ', p—(h;m (i 7r)+ p2I, ; (i 7r)3/2 43/Z

3 P lb host (4.10)

where all expressions have already been defined above. The remaining three terms are reformulated by means of the fol-
lowing property of the Fourier transform:

o'"(8&)= lim cr'"(g)= lim ix&'"(x),
a, —o Q —+ oo

which are easily obtained from the expressions for p;(8), i = 1,2, 3,
r

p, (8)= lim ixp, (x)=(7r2 )
'

dy e
—i +0

&~oo oo (7re/2 )

27/2) —I
dy e

—i(B+(/J)y y—i +0
& —+ oo 00 (7re/2 )

I ( ,'+i—2y/7r)I ( ,' iy /—2—7r)

I ( —,'+iy/27r)I ( —,'+iy/27r)

I ( —,'+i2y/7r)I'( —,
' iy/2—7r)

I ( ', +iy/—27r)l ( —', +iy/27r)

(4.11)

(4.12a)

(4.12b)

p3; (8)= lim ixp3; (x)=(7r 2 )
' f dy e

—iy +0
(e7r/2)

' —iy /2m

I ( —,
' —iy/27r)I ( ,'+iy/—7r) . (4.12c)

The corresponding expressions for the host are obtained
by setting J = ~. For small crystal field 6, again only

p; (8) has a linear contribution, in b, given by
I /8

p,„„,(8 ) = — [I ( —', ) /I ( —,
'

) ]e (4.13)

and a relation analogous to (4.7) also holds. The contri-
bution (b) can now be expressed as follows

2

3/2[( 2+ 1)p(; (8)
24EF

+ (&2—1)p2; p(8) ]/p( h„,(8), (4.14)

T(2) e (s /g)3e —tt/J (4.15)

so that y is finally given by the sum of Eqs. (4.10) and
(4.14).

A plot of y normalized to its value for no crystal-field
splitting [y' ', Eq. (4.9)] as a function of 5 is shown in
Fig. 3(a). y grows monotonically with the splitting, qua-
dratically for small 5, and asymptotically for large 6
only the first term of (4.10) remains. Here the three excit-
ed Kramers doublets are nearly frozen out and only con-
tribute to a renormalization of the Kondo temperature
associated with the lowest-lying doublet. The y
coefficient is then inversely proportional to the renormal-
ized Kondo temperature of the ground doublet

I

Similar renormalization factors have been found previ-
ously for other crystal field schemes.

The magnetic susceptibility strongly depends on the
choice of the crystal-field levels and requires further as-
sumptions. We are going to discuss two different ar-
rangements of Kramers doublets: in (a) we assume that
the levels l =1,2 refer to the quantum numbers m =+—,',
l =3,4 to m =+—,', 1=5,6 to I =+—,', and l =7, 8 to
m =+—'„while in (b) we associate them in decreasing
populations with I =+—,', +—,', +-'„and +—,', respectively.
In addition, for both cases the situations of the magnetic
field being parallel and perpendicular to the crystal-field
axis have to be distinguished, since the susceptibility is
anisotropic as a consequence of the crystal-field splitting.

If the magnetic field is parallel to the crystal-field axis
the magnetization is straightforwardly obtained, since no
van Vleck corrections arise e.g., for case (a),

S,=—,
' f dgo'"(g)+ —', f dgo' '(g)

+ s f dye(&)(g)+ 7 f dye(7((g) (4.16)

and similarly for case (b). For small magnetic field the
magnetization is obtained by comparing impurity and
electron-gas contributions using Eqs. (4.4), i.e, the
Fermi-liquid properties of the system, without actually
solving the integral equations for odd l. This yields

3

3
[2' eFP (I host( i7r ) ] (4.17a)
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for case (a) and for case (b)

[2' EFpw hos~(i vr)] . (4.17b)

In the small-6 limit both expressions reduce to the well-
known result g' '=j(j +1)/3'' '=21/4'~ '. For large
5, on the other hand, the relevant term is the Kondo ex-
ponential of the lowest-lying Kramers doublet,
exp[a(B +1/J)]. The parallel susceptibility is then
roughly inversely proportional to the Kondo temperature
of the fundamental doublet, Eq. (4.15). A plot of yii nor-
malized to its zero-crystal-field value as a function of
5/Tz ' is shown for case (a) in Fig. 3(a) and for case (b) in

Fig. 4. Note that the susceptibility in each case has a
universal dependence on 6/T~ '. The Wilson ratio in the
large-crystal-field-splitting limit becomes y/y =3/2~ in
case (a) and y/y =49(3/2vr ) in case (b). This value is

I

twice as large as for free electrons and is the expected
Wilson ratio for a spin- —,

' impurity, (y/p )/(3y/m ) =2.
It is somewhat more tedious to obtain g~, since for our

choice of crystal-field levels the Zeeman and crystal-field
Hamiltonians do not commute with each other. This
gives rise to van Vleck contributions. For both of our ex-
amples the magnetic field has only nonvanishing matrix
elements between states whose j, quantum numbers I
differ by +1. The ionic energy matrix (crystal field and
Zeeman) is diagonalized and the energy eigenvalues are
expanded in powers of the magnetic field. Only terms up
to order H are needed to get the transverse susceptibili-
ty. For case (a) we obtain

I2.0 1.0

0.8

8.0

(8)

0.6

X(I
+(8)

X
X(8)

0 4

4.0

0.2

I.O

Qbcu~ Si~
I 1

O. I 0.2 O. I P. 2

FIG. 3. Linear temperature coefficient of the specific heat y over its value in the absence of crystal-field splitting and magnetic sus-
ceptibility for the field (a) parallel to the crystal field axis, y~~, and (b) perpendicular to it, y&, as a function of 6/T&". The susceptibili-
ties are normalized to its value in the absence of crystal fields, y' ', and correspond to the crystal-field levels arranged as +—,', +—', , + —,',
and + ~, in increasing order of their energies. A dash indicates our estimate of the crystal-field parameter for YbCu&Si& ~
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S,=2 f dgtT'"(g)

+ 15 f" dg~"'(g)+6&v f" dg ~(&)(g)

Xl &h imp(t~)/EFPlh host(t~

+[7&'; ' (0)+6&2& ' (0)+15crI ' (0)]/4b, .

+7 f dgo' '(g)
. 45

and for case (b)

S,=2 f" dg~"'(g)

+ 7 f dgo' '(g)+6&2 f dg' '(g)

(4.18a)

+15 f dgo' '(g)
4Q

(4.18b)

for case (a), and similarly, for case (b)

Following the procedure outlined before we get

&i=2'"[e"""'+&'h" (t~)]«FP1hh t«~)

+[15&; p(0)+6&2&,' 'p(0)+7&; p(0)]/4b,

(4.19a)

(4.19b)

The first term in (4.19a) and (4.19b) is due to the Zeeman
splitting of the Kramers doublet. Note that this Kramers
doublet (within our choice of crystal-field levels) is the
only one split by a transverse magnetic field. The remain-
ing terms with 6 in the denominator are van Vleck con-
tributions. For small b, expressions (4.19) reduces to the
isotropic susceptibility of the Coqblin-Schrieffer model,
g' '=21/4'' 1. Again, (4.19a) and (4.19b) are universal
functions of b, /T~t ' which are displayed in Figs. 3(b) and
4, respectively. Their dependence on 6 is very different,
which is due to the exponential term present in case (a)
but absent in case (b). The origin of this term is the same
as for the analogous terms in y and y~~, namely the Kon-
do effect of the lowest-lying Kramers doublet. The term
is inversely proportional to Tz' ', Eq. (4.15). This term is
absent in case (b), since a transverse magnetic field cannot
split the lowest-lying Kramers doublet m =+—,', because
the matrix element connecting the two states vanishes.

Contrary to the common belief, for sufficiently large
splitting, the Kondo effect only appears for the lowest-
lying Kramers doublet, but not for the excited doublets.
In addition, the susceptibility only shows a Kondo term if
the lowest-lying Kramers doublet is actually split by the
magnetic field (see also Ref. 10).

0
O. 05

{s)
O. IO O. I5

FICx. 4. Anistropic magnetic susceptibility normalized to its
zero-crystal-field value as a function of 6/T& ' for the Kramers
doublets having the following magnetic quantum numbers: +—,,
+ 2, + 2, and + 2, in increasing order of their energies.

V. DISCUSSION AND COMPARISON
WITH EXPERIMENTS

We considered an Yb + ion in an axial crystal field,
such that the excited Kramers doublets have energies 5,
(1+&2)b,, and (2+V2)b, . Under these conditions the
exact solution of the Coqblin-Schrieffer model can be ob-
tained analytically. The results display a universal depen-
dence on b, /TIJ ', where Tz' ' is the Kondo temperature of
the Yb + octuplet. The population of the Kramers dou-
blets is shown in Fig. 1 as a function of the crystal-field
splitting and in Fig. 2 we present the crystal-field
response function defined by Eq. (3.10). Note that this
response is linear up to about b, /Tz' '=0. 15. The ground
state is a singlet for all values of A. As a consequence the
impurity specific heat at low temperatures is linear in T.
The specific-heat coefficient y is displayed in Fig. 3(a) as a
function of b, /Tz' '. Note that for small splitting y(b, ) in-

creases as 6 while for large 6 it increases as 6 . This in-
crease of is due to the gradual reduction of the degenera-
cy of the f level. The occupation numbers, the correla-
tion function q(6), and y(5) are all independent of the
magnetic quantum numbers associated with the Kramers
doublets. This is not the case for the magnetic response.

As a consequence of the axial crystal field, the magnet-
ic susceptibility is anisotropic, i.e., g~~~g~. In addition, it
depends on the magnetic quantum numbers of each Kra-
mers doublet. We considered two cases: in Fig. 3 we as-
sociated +—,', +—,', +—,', and +—', with the doublets in de-
creasing order of population and the inverse order in Fig.
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4. y always increases as a function of 6 due to the Kon-
ll

do effect in the ground multiplet with reduced degenera-
cy (TK shows the crossover from T~ ' to Tz' '), while yt
only shows a Kondo term if there is a matrix element
with the Zeeman Hamiltonian that lifts the degeneracy of
the lowest-lying Kramers doublet, present for the case
displayed in Fig. 3, but absent in the case shown in Fig. 4.
This property of axial crystal fields has been found previ-
ously for Ce ions. ' Note that only the lowest-lying Kra-
mers doublet may give rise to a Kondo exponential term,
not the excited Kramers doublets.

Finally, we would like to use our results for a compar-
ison with experiments. We consider systems with rela-
tively small crystal-field splittings compared to the Kon-
do temperature of the octuplet. Two such systems are
YbCu2Si2 and YbCuA1, which crystallize in tetragonal
and hexagonal structures, respectively. The quanitity of
primary interest is the quadrupolar moment of the Yb +

4f shell, Q(T). This quadrupolar moment is induced by
the lattice symmetry via the crystalline fields and can be
measured by means of the Mossbauer effect.

Assume first that the crystal-field strength 6 for the
system under consideration is such that it belongs to the
linear regime of q(h) (see Fig. 2), i.e., 5/Tz '~0. 15. Un-
der these circumstances linear response with respect to
the crystal fields is valid. The range of validity of linear
response is expected to grow with temperature, as a
consequence of the smearing of the Kondo resonance.
Hence, in linear response we have for all temperatures
that

Q ( T) /Q (0)=y( T)/y(0), (5.1)

where y(T) is the magnetic susceptibility of the degen-
erate octuplet. This result holds for arbitrary crystal-field
splitting, as long as it is small compared to Tz ', even in
the mixed-valent regime. y(T) has been obtained previ-
ously by numerically solving the thermodynamic Bethe-
Ansatz equations' for the degenerate Anderson model
with excluded double occupancy of the f level. Both the
experimental data' for Q ( T) and the g( T) curves for
various valence admixtures' show a maximum as a func-
tion of T. Defining the Kondo temperature via
y(0) =j(j+1)/3'' ' also if there is some valence admix-
ture, we find that the temperature T at which y(T) is
maximum is proportional to Tz ' over a large regime of
parameters s (f-level energy with respect to the Fermi en-
ergy) and I =vrpV, I being the hybridization width. It
is then natural to adjust Tz ' so that the position of the
maxima of experiment and theory coincide. For
YbCu2Siz this yields Tz~ '=357 K (see Fig. 5). The value
of the susceptibility at the maximum, i.e., y(T )/y(0), is
not universal but depends on the valence admixture.

Further input is necessary to determine other energy
parameters for YbCu2Si2. The electric field gradient as
measured by the Mossbauer effect is a superposition of at
least two contributions; one due to the quadrupolar mo-
ment of the lattice which is expected to be almost temper-
ature independent, the other arising from the quadrupo-
lar crystal-field splitting of the Yb 4f shell. This latter
contribution is temperature dependent. These two con-
tributions to Q (0) cannot be separated experimentally,

0
0 125

Temper ature (K)

FIG. 5. Temperature-dependent quadrupole moment Q(T)
of the Yb4f shell in ,YbCuzSi2. The experimental points are
taken from Ref. 17 and the curve is our fit with the parameters
given in the text.
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FIG. 6. Temperature dependence of the f-hole occupation of
Yb in YbCu2Si&. The parameters are given in the text.

250

but Q ( T) in (5.1) only refers to the f-shell part.
The valence admixture of the 4f ' configuration has

been determined by L„,x-ray-absorption measure-
ments. ' At low T the average 4f hole expe-ctation' is

nf =0.82. We use this result to determine the second en-

ergy parameter of the Anderson model, i.e., I =714 K
and (e —A)/I = —4.05. Note that nf(0) is only weakly
dependent on the crystal-field splitting, in particular if
this splitting is small, as assumed here (there is no linear
change of nf with the crystal field, since the trace of
Stevens operators vanishes). The temperature depen-
dence of nf for the above parameters of Anderson's mod-
el is shown in Fig. 6.

The ratio of g( T,„)g/( 0) for the above parameters'
is 1.37, so that the 4f contribution to the quadrupolar
moment can be determined from Q ( T,„)—Q (0),
Q(0)=4.04. The quadrupolar splitting caused by the 4f
shell is then b,E&(T)=KQ (T), where K =0.647 mm/sec
for ' Yb. At T =0 this amounts to b,E0 (0)=2.61
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mm/sec arising from the 4f shell. The total splitting
measured at 4 K is b,E (4 K) =0.946 mm/sec, ' such that
the lattice contribution to the quadrupolar splitting is
then hE& „«=—1.67 mm/sec.

The measured value' ' of the specific-heat coefficient
y is 135 mJ/mole K . This value, normalized for one Yb
atom, corresponds to y=0. 0162/Yb-atom K. On the
other hand, using (4.9) and Tz' '=357 K we obtain
y's'=0. 000806/K. Hence crystal fields enhance y by
about a factor of 2. This enhancement can be used to get
an estimate of b, . From Fig. 3(a) we have that 6/Tz' ' is
approximately 0.125, i.e., 6=44.6 K. Note that this
value of 5/Tz' ' is still within the linear regime of the
response function (see Fig. 2). This proves our assump-
tion that linear response with respect to the crystal field
is valid for the system YbCuzSi2.

As already discussed in Sec. IV, the anisotropic mag-
netic susceptibility depends strongly on the wave func-
tions associated with the Kramers doublets. For exam-
ple, in tetragonal symmetry there are five Stevens opera-
tors contributing to the crystal-field splitting, i.e., there
are five independent fine-structure coe5cients to deter-
mine three energy differences. The character of the wave
functions can then not be determined from the energy
spectrum. We limit ourselves to discussing the two cases
discussed Sec. IV. From Fig. 3 (the ground doublet cor-
responds to m =+—,') we obtain, for 5/Tx' '=0. 125,
that y~~/y' '=0. 37 and yi/y' '=2. 86. Since
y' '=g 21/4'''=0. 0192 K ', where g =

—,
' is the Yb

g factor, w. have &,~=0.0071 K-' (O.OO266 emu/moi)
and pi=0. 055 K ' (0.0206 emu/mol). In this case
y~/y~~ &)1 contrary to the experimental observation. '

On the other hand, if the ground doublet corresponds to
m =+—,

' we obtain from Fig. 4 that g»/g' '=0.67 and
yl/y' '= 5.57, yielding pi =0.0128 K ' (0.0048
emu/mol) and pl=0. 107 K ' (0.040 emu/mol). Here
gz/g~~=0. 12, while the best experimental estimate ' is

gi /g~~ =0.3 with gl —0.028 emu/mol. Our estimate of yl
and g~ gives the correct order of magnitude and should
be considered as an upper bound. The result is very sen-
sitive to the magnetic character of the ground doublet: a
crystal-field admixture of the +—', states with the + —,

'

necessarily reduces gI~ and increases g~.
In summary we have shown that most of the available

data for YbCu2Siz can be explained with a relatively
small crystal-field splitting. The temperature dependence
of Q ( T) is due to the gradual population and smearing of
the Kondo resonance. Coherence effects within the Kon-
do lattice only seem to play a minor role. A similar ex-
planation has been previously proposed by Zevin et aI. '

Our energy parameters are close to the values employed
by them, e.g., their energy difference between the two
lowest-lying Kramers doublet is 39 K as compared to
6=45 K and their value of I is 550 K, while we obtain
I =714 K. Now variations of I can be absorbed into a
change of s, keeping Tz' ' invariant. Their dressed (by the
crystal-field splitting) Kondo temperature is 200 K, while
our bare Kondo temperature is Tz '= 357 K. Our
dressed Tz can be estimated from the y coefticient to
be of the order of 180 K. Our quadrupolar
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FIG. 7. Temperature-dependent quadrupole moment Q(T)
of the Yb 4f shell in YbCuAl. The experimental data are from
Ref. 22 and the curve is the fit to the magnetic susceptibility for
the same compound taken from Ref. 16. The parameters are
given in the text.

moment due to the 4f shell, Q (0), is roughly lo%%uo larger
than in Ref. 17.

An analogous analysis can be performed for the qua-
drupolar splitting in YbCuA1. For this compound a
very good agreement of the impurity theory with the data
for the field dependence of the low-temperature magneti-
zation, " the temperature dependence of the specific heat
and the susceptibi1ity, ' as well as for the valence', has
been obtained. The main parameter is the bare Kondo
temperature Tz''=100 K (note that the Tz of 66 K of
Ref. 11 when rescaled into the definition of Tz' ' used here
corresponds to 98 K). The fits in Ref. 16 were obtained
with I'=527 K and (E —A)/I = —10.2. Again, as a
consequence of the Kondo resonance Q ( T) increases as
a function of T. The amplitude, i.e., Q(0), is smaller in
this case since crystal fields are less important for this
compound than for YbCu2Si2. With the above parame-
ters the theoretical curve has its maximum at about 40 K.
The experimental data do not follow this trend and stay
above the theoretical curve for the higher temperatures,
similar to those for YbCuzSiz. Note that the Mossbauer
measurements for YbCuA1 were performed on a different
isotope, namely ' Yb. We converted the energies in Fig.
1 of Ref. 22 into effective quadrupolar moments, the con-
version factor being K =0.28 mm/sec. The data for
YbCuiSi2 of Refs. 17 and 22 then agree within 10%. The
data for YbCuA1 of Ref. 22 are shown in Fig. 7, together
with the theoretical curve obtained via (5.1) using y(T)
from Ref. 16. Our estimation of Q(0) is 1.75 so that the
quadrupolar splitting at T =0 arising from the Yb + f
shell is b,E& =0.50 mm/sec. Since the total quadrupolar
splitting is -0.75 mm/sec we have that the lattice contri-
bution is approximately —1.25 mm/sec.

It is worth pointing out that the discrepancy between
theory and experiment for Q (T) at higher temperatures
may be due to experimental dif5culties. The recoil-free
fraction of the y-emission f is proportional to

f—exp[ E(x )/(hc—) ],
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where E is the energy of the photon and (x ) is the
mean square displacement of the atoms. Both Yb iso-
topes, ' Yb and ' Yb, have large E energies of 78 and
84 keV, respectively, so that f is small. The recoilless
fraction f decreases further with temperature, since (x )
grows, so that measurements become difBcult.
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