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Structural phase transitions with little phonon softening and first-order character
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We review a number of features of diffusionless structural transformations in materials where

phonon dispersion or elastic constants are highly anisotropic and have anomalously low values in a
few directions. Though those may change with temperature, they neither soften significantly nor
become harmonically unstable at a transition. Standard soft-mode theory is not applicable. In-
stead, a generic first-order Landau-model free energy describes most of the features found experi-
mentally, including limited phonon softening and precursor Auctuations (e.g., "central peak"). The
microscopic basis of such models is demonstrated using anharmonic many-body phonon theory.
The ideas are illustrated for cg phase transitions in zirconium.

I. INTRODUCTION

A significant fraction of solid-solid phase transitions
are purely structural, i.e., they occur at constant compo-
sition and are diffusionless. A significant conceptual ad-
vance was made, independently, by Cochran and Ander-
son. Given that these transformations are structural,
they proposed that a phonon became unstable at temper-
ature To, its (effective) frequency being co, =a ( T —To),
whence the lattice displaced spontaneously in this mode
to a finite amplitude which was limited by higher-order
nonlinear contributions to the free energy. The eigenvec-
tor pattern for this mode defined the new crystal struc-
ture. This mechanism has been called the "soft-mode"
model, and a large amount of effort has been devoted ex-
perimentally (particularly inelastic neutron scattering)
and theoretically (many-body anharmonic phonon
theory) toward verifying the predictions of the model. In
specific respects, for a small percentage of structural
transformations (e.g. , Nb3Sn, SrTi03, and KzSe04), the
predicted features have been verified. However, of the
hundreds of transformations studied, true soft-mode sys-
tems can almost be counted on the fingers of one hand.
The problem is thus that soft-mode theory is simply
inapplicable; it is the purpose of this paper to discuss
why, and outline by an example (the co phase in Zr and its
alloys) the nature of alternative, relevant models.

For orientation, we itemize particular features of the
soft-mode model; they are as follows. (I) One phonon, or
several equivalent phonons, has an anomalously low fre-
quency compared to most of the modes. In fact, at low
temperatures this mode would be harmonically unstable.
(2) Anharmonic efFects stabilize the higher-temperature
phase and yield co, =a ( T —To ), where To )0, and is ap-
proximately the transition temperature. (3) Below To, in
terms of an order parameter g„ the static amplitude of a
frozen-in soft mode, the simplest theory (widely used) is
that the Landau-type free-energy expansion is
F(ri, ) =a (T —To)(sl, l2)+b (g, l4)+ . . (4) From
this free energy several results follow: (i) above To,
(q, ) =0, (ii) below To, (sl, ) —(T —To)'~, i.e., the am-
plitude of the distortion increases "continuously" from

zero, therefore corresponding to a second-order transfor-
mation, and the lattice displaces smoothly into the new
structure, and (iii) the susceptibility diverges at To. (5)
The Landau theory does not include fluctuations; when
these are introduced and properly treated by
renormalization-group theory, there are modifications in
the dependence of the order parameter, and critical Auc-
tuations show the proper universality class behavior. (6)
Other than critical fluctuations, there is observed a "cen-
tral peak, " i.e., an essentially static amplitude of the on-
coming phase, above T, . Soft-mode theory in itself pro-
vides no explanation.

Are these features characteristic of structural phase
transformations? The answer is not very. A survey of a
number of alloys and ferroelectrics, and reports on
several metallic elements' show the following. (I) Pho-
non frequencies soften only slightly, and do not indicate
harmonic instability. " (2) Though frequently nearly con-
tinuous, there is a finite discontinuity in the microscopic
order parameter at the transition, i.e., first order. (3)
Critical Auctuations are usually missing, and susceptibili-
ties do not diverge. (4) Strong precursors'z of the "new"
phase, or a distorted form of it, are observed far above
the transition temperatures; these provide a mechanism
for a central peak. These features are significantly
different from the soft-mode doctrine, and have led to
reservations' about the relevance of soft-mode theory to
most structural transitions. Metallurgists are not
surprised, and alternatives have been proposed; we show
here that those may be placed in generic form and have
similar microscopic origins; moreover, intrinsically non-
linear features characterize the physics of these transfor-
mations. Quasiharmonic concepts are not applicable.

Finally, in this introductory section, further features
need to be mentioned. Many transitions involve both
spatially modulated displacements with wavelengths near
that of an anomalous (i.e., low-frequency) phonon, as well
as elastic distortions [i.e., q =(2sr/A, )~0]. They can be
purely the former, or latter, or a mixture, and can even be
incommensurate with the lattice. Such modulated phases
must be regarded as true equilibrium phases, not as due to
defects, and they can play an important intermediate role
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in the thermodynamics of structural transformations and
in their precursors. ' There is a class of transitions in
martensites and ferroelectrics, for which de Gennes' has
used the term "nucleation type, " which can be continu-
ous (in some control parameter, e.g., stress field) yet not
be of the "mode-instability" type. There is then structure
at two length and time scales, one being the atomistic and
associated with anomalous phonons, but the other at the
mesoscopic scale, that is, domain structure, twin arrays,
antiphase patterns, etc. The actual structures achieved
by transformation are then determined by minimization
of a free energy consisting of both a local and long-range
(elastic, Coulombic, magnetic, etc.) contribution. In this
case both the local (free) energetics and the geometry of
the mesoscopic structure (i.e., domain-wall energy) deter-
mine the transition. Reviews of such transformations
have been given by Khatchaturyan' and by Pushin,
Kondrat'yev, and Khachin. ' The richness of the general
phenomena is remarkable, as metallurgists have realized
for some time. Indeed the phenomenology of a generic
formalism appropriate to first-order structural phase
transitions was developed in detail by Cook, ' who also il-
lustrated the model for the co phase transition in zirconi-
um alloys extending earlier work of deFontaine. ' Phe-
nomenologically, Cook's concepts are in substantial
agreement with many recent experiments, but have not
been cited adequately. The work presented here comple-
ments Cook's ideas by extending the theoretical micro-
scopic foundation, and by relating results of recent non-
linear theories of displacive transition regions (e.g. , twin
boundaries) to heterophase fiuctuations. In addition, the
nature of nonlinear coupling between anomalous phonon
modulations and elastic distortion is noted; these more
general, intrinsically nonlinear models have been applied
by us to martensitic transformations in the alkali met-
als, and by Lindgard and Mouritsen. '

II. GENERIC MODEL FOR DISPLACIVE
FIRST-ORDER TRANSFORMATIONS

We discuss now the generic features of one anharmonic
Landau-type model appropriate to displacive structural
transitions. Motivation has been discussed by Cook, '

and Kondrat'yev, and by one of us. ' In a great majori-
ty of cases the transition is dominated by one member of
a small set of anomalously "soft" distortive modes, which
because of great anisotropy occupy only narrow regions
of the phonon-dispersion Brillouin zone. The former
consideration suggests writing a Landau-type free energy
in terms of only a few order parameters, i.e., static expec-
tation of amplitudes or phases of the distortive modes;
the latter results in the physics being essentially one di-
mensional, except possibly for higher-order effects. One
more absolutely essential point needs to be made at the
outset; unlike soft-mode models for second-order transi-
tions, where as temperatures are lowered below T, the
new phase builds homogeneously from infinitesimal am-
plitude and can be described by quasiharmonic theory,
for first-order transitions, as the transition is approached
the "phonon" concept loses meaning because of the finite
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Then the following conditions apply.
If a )—,', F has a real minimum at g =0, only.

(4)
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FIG. 1. A generic-model free-energy function for a single-
order-parameter first-order phase transformation. Critical pa-
rameter values are indicated.

jurnp and large anharmonic content in order parameter.
Fourier modes continue to have validity as a spatial basis
set for displacements, however, if translational symmetry
is effectively valid.

Consider a model free energy for a single-component
order parameter g,

F= g+ —q+ —g+B 3 C 4

2 3 4

If B is negative, 3 and C positive, for certain values of
the parameters a first-order transition is possible, from
F=O at g=O to some finite value of g where F is also
zero. Various discussions of the physical origins of A, B,
and C have been given' ' ' and will be discussed further
below. A is approximately the quasiharmonic force con-
stant, B and C are third- and fourth-order generalized
force constants. The general behavior of F is shown in
Fig. 1. Various fittings of the coefficients A, B, and C
and their variation with temperature have been studied;
because of the large value which g may take on, it has
been noted that the conditions for the transition are far
more sensitive to parameter variations than for second-
order transitions. A generic functional representation
does not seem to have been given; it is instructive to do
so. Equation (1) contains three parameters; by scaling en-
ergy and displacement it can be reduced to a standard
form with one control parameter a, which may vary with
temperature

—2 —3 —4
(F/Fo)=a ~ —~ + ~

2 3 4

where

F =(B /C ), g=(C/~Bi)g, a =(/IC/B ) .

This generic form is plotted in Fig. 1. Its significant be-
havior is found by locating the extrema. The condition
q=O corresponds to the parent phase. There are several
regimes depending on the parameter a; the condition
(BF/Bg) =0 yields
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If a =
—,', F has a rea1 minimum at g=O, and an

inAection at g =
—,'.

If —', (a (—', (=—„'), F has a stable minimum at rI=O, a
metastable minimum at g=(1+V'1 —4a )/2, and a rela-
tive maximum at il=(1 —&1—4a )/2.

If a =—'„F has two minimum values with F=0, at
g=O and g= —', , and a maximum at g= —,'. This is the
condition for a first-order phase transition.

If 0 & a (—,', F has a metastable minima at g =0, and is
stable at g & —'„with a maximum F & 0 for g between.

The condition a (0 is not relevant to first-order transi-
tions.

The microscopic physics of the parameters will be ex-
amined further below. Meanwhile, a number of phenom-
enological features distinctly different from soft-mode
theory are found, many discussed by Cook, ' ' as fol-
lows.

(1) Given a = [AC/4B ]. At high temperatures
anharmonic many-body theory yields A =coo+ R T
=co (T), where coo is the "bare" harmonic frequency of
the order parameter mode. Unlike soft-mode second-
order transitions where a ~0, here a =—,'and co ( T)
remains finite at the transition. Assuming that B and C
are constant, the quasiharmonic behavior can thus be re-
lated to the transitional behavior.

(2) In the case where B and C are constant, the entire
change in co (T) from the first onset of significant anhar-
monicity, i.e. the inAection condition a =—', to transition
T„ is only co (T, )=—,'co;„&, or co decreases by only about
6%. This provides a generic explanation of why so many
displacive transitions, known to result in modulations re-
lated to an anomalous low-frequency phonon, actually
show very little softening as temperature is changed to
achieve a transition. Note, particularly, co (T)=R (T
+To), rather than R (T —To) as in conventional soft-
mode theory. Thus in this model co (T) softens to zero
only for negative temperatures. This has been noted in
Inany systems, a recent example being the Ni6z 5A137 5 al-
loy, where the martensitic (first-order) transition is
around 80 K, but co (T) goes to zero linearly only at
T= —30 K. However, there are other considerations for
this alloy, which will be addressed elsewhere.

(3) Although it is convenient as a first approximation
to assign the major temperature dependence of a(T) to
A, i.e., co (T), in general a =( AC/B ) and ~B~ and C can
also have a temperature dependence. Particularly, if the
transition is only weakly first order, B being small can
have a strong temperature dependence. Thus, if both 3
and B are strongly proportional to temperature the
quasiharmonic frequency may change by much more
(less) than —,

' to achieve the first-order transition.
(4) At least harmonically the high-temperature struc-

ture is stable at all temperatures; the instability is anhar-
monic in origin, in contrast to soft-mode theory where
anharmonicity stabilizes the high-temperature phase.
Thus critical Auctuations are not to be expected and
linear-response susceptibilities do not diverge at the tran-
sition (cf. de Gennes' ).

(5) Perhaps most significantly this model provides one
very clear mechanism for both precursor structure and a

"central peak. " The term central peak in the context of
structural phase transitions simply means the appear-
ance, at positions in reciprocal space for the distortive
mode, on an intensity versus scattering energy loss (gain)
plot, of a large essentially elastic (static) peak at zero en-

ergy loss in addition to the dynamic inelastic scattering.
This central peak is found as a precursor to the transition
in both second-order and first-order transitions. Howev-
er, as Cook has pointed out the mechanism in first-
order transitions is fundamentally different from that for
soft-mode (second-order) transitions.

The rationale is simple; below T;„& but above T&, refer-
ring to Fig. 1, there is a metastable minimum. Hetero-
phase fluctuations from q=O into this g „are equiv-
alent to the appearance of precursors of the new struc-
ture. In principle there is no reason why these Auctua-
tions cannot set in at temperatures far above the actual
transition at T&. Obviously, this mechanism is complete-
ly different from second-order critical fluctuations, or de-
fect effects. The spatial shape of such fluctuations was
discussed by Cook, in terms of a droplet model; but by
extending the concepts proposed by Krumhansl and
Schrieffer, recent studies by Barsch and Krumhansl,
and similar ideas of Kondrat'yev, it is clear that the
fluctuations are not simple waves, but domains of the new
phase separated by "domain walls" containing the parent
phase, highly anharmonic quasistatic distortions. Thus
the presence of a central peak can be a purely intrinsic
manifestation of strong displacive nonlinearity in aniso-
tropic materials with first-order transitions. Undoubted-
ly, such Auctuations can, be nucleated by impurities to be-
come locally stable, and there may be several other mech-
anisms for a central peak. The essential point is that it is
an intrinsic property of first-order transitions, whether
nucleated or not. Generally, though, the origin of the
central peak is still an open question.

In summary, essentially a11 those features which are re-
garded as anomalies in soft-mode (second-order) models
fall out quite naturally within the phenomenological
first-order model.

III. AN ILLUSTRATIVE EXAMPLE—THE a) PHASE
IN Zr'ALLOYS

The previous discussion has been generic. As a result
of experimental studies, and microscopic computations of
electronic and phonon structure over the past two de-
cades, a good deal is now known about the relevant pa-
rameters of a number of materials. Perhaps the ideal
candidate for application of the present ideas is Zr and its
alloys which display the formation of the ~ phase. Its
phonon spectrum is highly anisotropic. Figure 2 shows
the phonon dispersion for Zr exhibiting a low-
frequency longitudinal (1,1,1) branch with an anomaly at
q, =

—,
'

( 1, 1, 1 ). The dispersion surfaces are highly aniso-
tropic, in such a sense as to be pseudo-one-dimensional.
As discussed previously' various response functions and
diffuse diffraction would mirror this anisotropy. Al-
though this pho non broadens markedly in co-

transforming zirconium alloys as temperature is lowered
to the transition, it cannot be said to soften appreciably.
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i)I and y the e-phase displacement pattern may be ob-
tained. The rationale for the amplitude i/I to yield just
the right magnitude of [111]displacements to produce
the "perfect" co phase is another matter, recently studied
by Toledano et al. ,

" as well as Horovitz, Gooding,
and Krumhansl. ' ' The co phase is a topic with many
facets; the intent here was to relate the transition to a
generic first-order Landau-type model.

IV. MICROSCOPIC CONSIDERATIONS

!
0 bccZr I

I
I I I I t I I I I

0 O.2 OA 0.6 0.8 I .0

FIG. 2. Phonon dispersion data (Ref. 28) for Zr, Nb, and Mo.
Note the pronounced difference in the 3(1,1, 1) anomaly. This
is attributed (Ref. 31) to differences in the role of bond-bending
interactions between materials.

g(x;q, ) = A (x )e'P'-'

such that particle displacements are

u(x)=e A (x) sin[q, x+y(x)],

(5)

The least stable mode is the longitudinal —',( l, l, 1), and
the Landau-type free energy is developed in terms of the
amplitude A (x ) and phase p(x ) of a modulating function

In the above co, (T) was taken to be coo+aT, where
~o,a) 0. This implies that for small displacements the
high-temperature lattice is metastable at T =0, unlike the
conventional soft-mode model where coo&0. On the
other hand, for T (Ti the free energy can have a lower
energy minimum for finite displacements. Is there micro-
scopic justification for this view? The answer is
afhrmative and explicitly demonstrated in the frozen pho-
non "first-principles" T =0 calculations by Ho, Fu, and
Harmon. ' Figure 3 exhibits their T=O energy versus
displacement amplitude in the —,( 1, 1, 1 ) longitudinal
mode for Zr, Nb, and Mo. For small displacments the
upward curvature is )0, but the stable minimum is at a
finite displacement which produces an co-like distortion.

In addition to the energetics there is the question of
how the coef5cients in the Landau expansion relate to
dynamical qualities, e.g., phonon frequencies as observed
by neutron scattering.

The issues of principle involved here are not simple,
but have already been discussed in connection with the
anharmonic phonon many-body perturbation theory of
soft modes, particularly in its application to displacive
ferroelectrics by Cowley. The difference in the present

E=—e, (T)lpl'+ [g'+(@')']+——I@I + ' ' '

2 3
(7)

where e is the longitudinal eigenvector for this mode.
qa

Following the nonlinear Landau phenomenology for
first-order transitions, and imposing that F must be in-
variant under lattice translations as well as the Im3rn
space-group symmetry of the bcc phase, if q, =—', (1,1, 1)
then g must enter as P and ( g* ) as well as

I g I and
l P I

.
The arguments are similar to those in the Appendix of
Ref. 20. The result to fourth order is that E

O
O

1 1

I 25 I 23 I 25
I I I I I I I I I

I II I II I II

I I I I I I

OI

~ =—~'. (nl@l'+ —
lyl "os(3~)+—I@I'a 3 4

O.O— «O~Q
I(For a uniform co phase, g =const, and the choice of

phase determines the patterns of the modulation with
respect to the bcc [111]planes. The lowest free energy is
for (3y) equal to an odd multiple of m", there are three
equienergetic variants. Letting I Pl =g then

2 2 4
F=A —B +C

2 3 4

as in Eq. (1). The consequences physically are as dis-
cussed in the previous section. With suitable choice of

bcc

-O.2 O.O 0.5

FICi. 3. The "frozen-phonon" zero-temperature energy of the

3 ( 1 1 1 ) mode vs amplitude (Ref. 3 1) in Zr. The mode is har-

monically meta, stable but unstable with respect to the ~ phase
for large amplitude displacements.
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6 (ABQ) (0+i E) (E,/I)— (10)

exhibiting response when the probe frequency 0 is at res-

case, which makes the development of the theory
straightforward, is that co, (0))0. By contrast, in soft-
mode models the bare quadratic potentials yield negative
co, (0), i.e., an imaginary frequency; the stability of the
high-temperature lattice form is entirely dependent on
anharmonicity.

In the present discussion the objective for microscopic
theory is to determine how a Landau-type free energy of
the form Eq. (1) may be obtained. The derivation must
go far beyond the harmonic approximation for atomic
motion in order to properly include the anharmonic con-
tributions to the free energy. At present the only sys-
tematic method for doing this, because anharmonic in-
teractions mix any harmonic lattice vibration with many
others, is the "many-body" formalism developed by
Maradudin and Fein, and Cowley. All of the many-
body methods develop the theory in a perturbation series;
it is most convenient and systematic, however, to use the
method of thermodynamic Green's functions because, in
addition to thermodynamic properties, correlation func-
tions and scattering cross sections for neutrons can be
computed within the same formalism, thus allowing cross
checking between parameters in the free energy and other
experimental data.

There is a conceptual similarity between a displacive
transitions of the type being discussed, sometimes re-
ferred to as "ferroelastic, "and "ferroelectric" transitions.
Three types of displacements are involved: thermal pho-
nons, elastic strain, and one or more lattice distortive
modes (e.g., polarization, in the case of ferroelectrics).
We have transcribed the principles of the microscopic
analysis of ferroelectrics to the present case.

Before proceeding to the details of the microscopic
theory we note in briefest terms the main physical
motivating elements of the method of thermodynamic
Green's functions, as treated by perturbation theory. The
microscopics of physical systems may be studied by (a)
measuring average properties, i.e., energy, thermodynam-
ic parameters, and elastic properties, and (b) by scattering
experiments. Typically, then, one chooses some operator
B (0) which couples to a microscopic excitation at t =0
and then observes some property A (t) at a later time t
At finite temperature, experimentally, the experiment
samples a thermal distribution of configurations of the
system under study, so that a thermally averaged correla-
tion function ( A (t)B (0) ) r would contain useful infor-
mation. The development of the formalism for the
response function (cf. Sec. 2.2, Cowley ) focuses on a re-
tarded Green's function

6 ( AB, t) =6(t)(pi[A (t)B(0)]i/)
where 8( t) = 1, t )0; and zero, t (0. The Fourier trans-
form (2m. )

' Jdt G (A, B, t) exp(iQt) exhibits typical res-

onant behavior at the excitation frequencies of the sys-
tem. If, for a Hamiltonian M, the exact states

~
v) and ex-

citation energies E are known then

onance with any of the excitation energies of the system;
in Eq. (10) e is a positive infinitesimal quantity which en-
sures a retarded response.

The real problem, however, is that the proper states
are usually not known. Specifically, if H =Hp+ H„
where Hp is a harmonic phonon term whose states can be
found, then H, is a general anharmonic perturbation
which mixes many of the states of Hp The formal
many-body methods were applied by Cowley in detail up
to third- and fourth-order anharmonic terms in atomic
displacements. The formalities of the expansion are dis-
cussed in Sec. 2.3 of Ref. 34; also in Sec. 4 of Ref. 34 it is
shown that a very similar perturbation series can be used
to compute the equilibrium free energy, thus providing a
microscopic basis for relating response and thermo-
dynamic parameters.

To develop the complete microscopic theory, say, for
the [111]distortions of Zr, in the framework of anhar-
monic perturbation theory, the normal phonon modes
and static elastic strains need to be included, as well as
static distortions in the —,(111)mode. The general distor-
tions of the lattice then fall into the following three
classes.

(1) The large majority of displacements are nearly har-
monic; at finite temperature these yield the usual thermal
fiuctuations. We denote them as Ia, 8'

~ I, the set of har-
monic phonons. (2) But a few important phonons can
freeze out to produce static distortions described by order
parameters like g, in the Landau expansions above.
Denote these as If, J. (3) Elastic strains may produce
distortions. Denote these as Ie ]. (4) Then denote the
ensemble of all contributions to displacements
h«)I=f[I~, ~', l t@.I Ie.pI].

The potential for atomic motions is taken to be a
power series of nth order terms in displacements
V V2 + V3 + V4 + .

~ The following steps are then to
be taken.

(i) Determine the normal modes of V2 and a bare har-
monic phonon basis set; in the case of Zr, expanding
about the I3-cubic lattice would yield phonons with

co~ & 0, i.e., co~ leal.
(ii) Determine the finite-temperature time-ordered

Green's function for the anharmonic lattice. With
translational symmetry, the phonon transform of the dis-
placements can be used as variables, denoted for brevity
A (q, j, t), wave number q, branch j, and time dependent.
Symbolically,

A (qj, t) =
2Nm co

' 1/2

[aq~j(t)+a (t)]

Ph'g I[co (qj) —0 ]5, 'G(qj'j", Q)J =5 2'(qj), .(12)

+A (I1t, ])+A (Ie pI) .

(iii) When the Careen's function

6(q j j';t)=(TA (q j, t)A(q j', 0)~)

for the purely harmonic phonons only is evaluated its
Fourier transform satisfies the equation [P=(k~ T) ']
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where co(qj) is the harmonic frequency for the jth
branch. It is apparent, as expected, that in the harmonic
approximation 5-' does not mix branches, so

PfiG(q, j j;O)=2'(q, j)[co (q, j)—0 ]

F=F, (phonons, T)+F2({g,j, T)+F3({e&j, T)

+F.({P.j {e.i j»
+F5( {P, j, {e & j,phonons, T) . (15)

and the response is resonant at all A=+co(q, j). This
simple physical result is as expected.

(iv) What about the phonon response of an anharmonic
system? For most of the phonons, which are only slightly
perturbed, it is possible and experimentally useful to
modify the above by a self-energy correction. Approxi-
mateky, a. quasiharmonic representation is then of the
form

G (qj,j ', 0, ) =5J,'2'(qj ) {[co (q,j ) 0]+—2co(qj )D j

(13)

where D =5+i I is an anharmonic "self-energy" correc-
tion which shifts the harmonic resonances via 6, and in-
troduces decay into other phonons via I . In general, in
the present case,

D=D(qj j;0;T;{g,j;{e&j), (14)

where it is seen that both static modulations {g,j and
static elastic strains {e & j can contribute to changes in
the phonon spectrum. Inelastic neutron scattering exper-
iments give specific information ' about the shifts and
lifetimes; in this case AQ is equal to the neutron scatter-
ing energy change. From such data information about
V3 and V4 can be inferred. Such an analysis provided a
formal basis for the soft-mode model. At a reasonably
high temperature one may expect the anharmonic correc-
tion 6 to be proportion to T, in which case for the special
mode, designated by q, , the quasiharmonic frequency
becomes [co (q, )+aT]. If the mode q, z

is harmonically
unstable at zero temperature, i.e., co (q, . ) is negative,
then the quasiharmonic frequency satisfies

8'(q, , ) =a( T —To),

where aTO= ~co (q, i)~. However if the reference lattice
is harmonically stable or metastable at T =0, i.e.,
co (q, . ) )0, then

co (q, ) =a(T+ To) .

In the former case anharmonicity stabilizes the high-
temperature lattice; in the latter case anharmonicity may
destabi lize the lattice.

(v) As noted above, the same formalism can be used to
compute the finite-temperature free energy, if a "zero-
temperature" harmonic phonon set is used as a starting
basis, viz. , for Ho. The procedure is summarized in
Cowley's paper on ferroelectrics. It is readily seen that
if the atomic displacements, in general, are functions of
phonons 2 (q, j), modulations {p,j, and strains {e &j,
when V3 and V4 are evaluated there will be all sorts of
mixed terms. These can be collected systematically.

The form of Fwill then be

If {g, j =0 and {e & j =0, then F, is the free energy of
phonons, only. The term F2 yields the finite-temperature
(phonon-renormalization) free energy for modulations

of an unstrained crystal; up to fourth order the
functional form can be related directly to terms in the
Green's function, as for the ferroelectric case. F3 deter-
mines finite-temperature elastic constants. F4 couples
modulation order parameters and elastic strain, generally
important, but not included in the previous pedagogical
discussion. F& couples phonons, elastic strain„and order
parameter, relating to such effects as thermal expansion,
shift of phonon frequencies when static order parameters
develop, and other mixed effects.

Thus, there is a systematic formalism relating micro-
scopic (e.g., zero-temperature) computations of electronic
and lattice-distortive energies to Landau forms of the
finite-temperature free energy, within the framework of
finite-temperature many-body perturbation theory.

This may seem mostly to be an issue of principle.
However, there is one important question: In fact,
should the coefficient of g l2 in the static F2 [i.e., Eq. (1)]
be the quasiharmonic frequency observed in dynamical
experiments? The Green's function formalism provides
an answer, as follows.

%'e are discussing transitions beginning from a high-
temperature phase where (g, ) and (e &), i.e., static dis-
tortions, are zero. For small deviations from this condi-
tion the dominant form in F ( {g, j ) is the quadratic, for
which the coefficient was taken to be co, (T). The neces-
sary link between the microscopic theory and the free-
energy function equation (1) now is to determine how
(whether) co, (T) is related to other measurable quantities
determined by V2, V3, and V4. The result (see Ref. 32, p.
680) is the following: the quasiharmonic frequency,
which is determined by neutron scattering if the damping
I is small, is co, (neutron) =co, (0)+ 2', (0)4(q„T,& ),
where co, (0) is the bare harmonic frequency and (iriQ) is
the neutron energy loss (gain). But the free-energy
coefficient co, (T) is the same except Q=O (static) In.
many cases the dependence of 6 on 0 is weak, so the
neutron result is a good approximation to the free-energy
coefficient. At high temperature co, ( T) =co, (0)+cT
comes out of the theory directly, for either neutron
scattering or the free energy.

Of course, it is also possible by this approach to deter-
mine the higher-order anharmonic terms in the free ener-
gy, and strain-order parameter coupling terms. However,
as long as the issues of principle are settled, this is prob-
ably better done directly from experiment.

V. DISCUSSION

The main purpose of this paper has been to discuss
why first-order displacive transitions are so different con-
ceptually from soft-mode second-order transitions.

First, a phenomenological-model free energy like
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3 4F=—g —B +C~ -+
2 3 4

can describe transitions in which there is only small pho-
n on softening, and in which precursor structures,
"heterophase fluctuations" and "central peaks, " are in-
trinsic features.

Our second objective was to show how, in principle,
this static and apparently phenomenological free energy
can be related by many-body phonon perturbation theory
to first principles microscopic computations. In particu-
lar, we expect 3 to have the form coq (0)+RT, where

qa

both terms are positive, unlike A =r ( T —To).
For illustration, we noted some of the features of the co

phase transition in Zr alloys, and that recent calcula-
tions ' of electronic structure extended to finite (static)
displacements in the Zr q= —', (1,1, 1) longitudinal-phonon
mode produced just the kind of double-minimum anhar-
monic potential (for zero temperature) which would lead
to the model proposed.

There are in general, many further aspects of mod-
els, ' ' depending on application; multicomponent or-

der parameters are probably needed in most cases; cou-
pling to strain fields is always present to a degree; symme-
try restrictions (i.e., group theory) must always be incor-
porated into determining the form of I'. For transverse
modes in a P-cubic structure F cannot contain cubic
terms, but must be written in terms of g, q, and g .
Each case must be examined on its own. Finally we note
that the complete description of nearly second-order
transitions, such as the martensitic transformations in the
superconducting A -15 compounds, is a provocative prob-
lem yet to be addressed.
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