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Static electric polarizabilities and collective resonance frequencies of small metal clusters
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The static electric dipole polarizabilities and surface plasma resonance frequencies of small metal
clusters are calculated analytically. The resonance frequencies are evaluated self-consistently and
are shown to depend sensitively on the density distribution of the valence electrons. The latter is
described by the recently developed statistical approach to the electronic structure of metal clusters.
Electric polarizabilities are derived from the results for the resonance frequencies and general sum
rules. Very good agreement with experimental data is found.

I. INTRODUCTION

This paper is devoted to a calculation of static electric
polarizabilities and collective resonance frequencies of
small metal clusters. Both have long been subjects of ac-
tive interest (see, e.g., the reviews' ).

The problem of static electric polarizability of size-
quantized systems attracted attention when it was pre-
dicted that very small metal particles would exhibit an
orders-of-magnitude increase in polarizability compared
to the classical value for a conducting sphere (a=R
where R is the sphere radius). Subsequent experiments
showed that no such effect was present. Later, this was
explained ' by the fact that the strong screening of the
applied electric field by the conduction electrons had not
been accounted for. Subsequently, a number of calcula-
tions were carried out which predicted that the electron
screening will lead to the polarizability of metal particles
being smaller than the classical value. However, re-
cent experiments on small sodium and potassium clusters
containing up to 40 atoms per cluster' demonstrated
that their static electric polarizability is in fact 60—80%
higher than R, and only slowly converges to the bulk
value. (Here R is the radius of the positive background in
the cluster. )

In the past few years, numerical calculations utilizing
the density-functional method have been carried
out. " ' The predicted cluster polarizabilities are
enhanced compared to the classical value, but are still no-
ticeably lower than experiment (by about 20%%uo). This
discrepancy becomes more pronounced if one is interest-
ed in the deviation of the polarizability from its classical
value. (Recently there appeared a density-functional cal-
culation' incorporating certain corrections, which is in
much better agreement with experiment; however, the
authors point out that the approximations they use are
not consistent with each other. )

The magnitude of the static electric polarizability is
directly related to another response property of metal
clusters, namely, the dipole resonance in their optical
spectra. This connection follows from well-known sum
rules (see Sec. III).

The visible spectrum of small metal particles is dom-
inated by the well-known surface-plasma resonance of the

valence electrons. ' lt has been predicted' and experi-
mentally indicated' ' that the same is true for small
spherical clusters. For particles of radius much less than
the wavelength of incident light, the classical theory
predicts a resonance at the frequency co, =to /&3, where
co is the bulk-plasma frequency of the metal. Much
work has been devoted to the prediction of its location
and width in microscopic systems; both blue and red
shifts with respect to the classical position have been pre-
dicted (see the review and the recent numerical calcula-
tions' ' '). Experimentally, ' ' it is observed that the
resonance in isolated small spherical sodium clusters is
red-shifted. As mentioned above, there is a connection
between this shift and the fact that the electric polariza-
bility of clusters exceeds its classical value.

The response of the valence electrons to an external
electromagnetic field depends on the interplay between
the following size-dependent factors: size quantization,
electron screening, and the electron-cloud spillout outside
the boundary of the positive background charge. As a
consequence, such assumptions as the independent-
electron approximation, the infinite-barrier model, and
the approximation of a quasicontinuous distribution of
electronic states are not able to describe the response
properties accurately.

As is well known, the random-phase approximation
(RPA) has been highly successful in describing collective
excitations in solids and nuclei. In a series of interesting
papers, Lushnikov and Simonov (LS) applied this
method to metallic particles. However, their results for
the polarizability and the position of the plasma-
resonance peak do not agree with observations on small
clusters.

In this paper, we calculate cluster polarizabilities and
resonance frequencies by using the RPA and accurately
taking into account the density distribution of the
valence electrons, employing the recently developed
Thomas-Fermi statistical description of metal clusters
(Ref. 23, below referred to as I). The latter has already
been successful in treating such cluster properties as rela-
tive stabilities ("magic numbers"), ionization potentials,
and diamagnetism. The analytical evaluation presented
below leads to very good agreement with experimental
data.
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The contents of the paper are as follows. In Sec. II we
give a detailed derivation of the formula for the collective
resonance frequency. This result is used in Sec. III to cal-
culate the static electric polarizability.

II. RESONANCE FREQUENCY

A. Cluster in an external field

Consider a cluster in an external potential
u (r )exp( icot ). The effective field inside the particle,
V(r,

to)exp(isn't

), differs from the external field because of
screening by the conduction electrons and satisfies the
following integral equation:

1
V(r, co)=u(r)+e I II(r, ,r, co)V(r, 0i)d r, d r

r —r,

where II(r, ri, co) is the irreducible polarization operator
of the electron gas. In the RPA, this operator is given
by24 25 (g 1 )

71' ng
IIO(r rl 0i) = X42.(r )4'2. (r )

Eg Eg~ CO

where ez and P& are the single-electron energies and wave
functions, respectively, and n& are the occupation num-
bers.

Self-supporting oscillations of the electron system cor-
respond to nontrivial solutions of Eq. (1) with no external
field present [u(r) =0]. Combining (1) and (2) then gives

V"(r,co„)=e Id r,
1

X g $2.(r, ){{2. (r, ) V2.2.
A, A' ~r

(3)

the frequency co, for which such a nontrivial solution ex-
ists is in fact the resonance frequency. It turns out (see
below) that the result depends only on the density distri-
bution of the valence electrons.

Note that V&&. is markedly different from zero only if A,

and A,
' are neighboring single-electron levels. This can be

shown by semiclassical arguments. In a more qualita-
tive way, one can reason as follows. We are looking for
the eigenfield V" of dipole oscillations of the electron sys-
tem. In the macroscopic case, the electric field inside a
polarized particle is uniform, and the electric potential
is linear in the coordinates. We expect that the function-
al form of V" will be similar. On the other hand, the
single-electron potential is harmonic-oscillator-like in
shape (see, e.g. , Fig. 1, I, and Ref. 1), and it is known
that in such a potential only neighboring levels give non-
vanishing matrix elements of a linear function of the
coordinates. The conclusion is that the major contribu-
tion to the right-hand side of Eq. (3) will come from
states with

~ ez —Ez ~

—b„ the singl'e-particle level spacing.

It is known that even in clusters with as little as eight
atoms, this spacing is small: 6-0. 1 —0.3 eV, whereas the
resonance frequency is co, ~2 eV. This allows us to ex-
pand the right-hand side of Eq. (3) in powers of
(e&—e&, )/co„. The zeroth-order term can be shown to
vanish. The first-order term, after some manipulation,
can be brought into the following form:

mn(r)e
P1 COq

d ri V"(ri)Vi Vin(ri ), (4)
Pl CO„ r —r,

where n(r) is the number density of valence electrons in
the particle and I is the electron mass (from now on, we
do not explicitly indicate the frequency dependence of
VP)

I.S solved this equation only for the case
n (r) = n 6(R —r ) and obtained the classical surface-
plasmon frequency, m, =~, . However, as stressed in the
Introduction, the spillout of the electron cloud outside
the edge of the positive background is an essential feature
which must not be neglected. (The strong effect on the
diffuseness of the electron-density profile on the red shift
of the absorption line was indicated by calculations em-
ploying the hydrodynamic model, and by the recent
density-functional calculations of the resonance absorp-
tion. ' ' ')

B. Solution of the integral equation

We now solve Eq. (4), taking into account the realistic
shape of the charge distribution. We consider spherical
clusters (i.e., the "magic-number" ones with spherical
closed shells' ). The valence-electron density distribution
is then a function of the radial coordinate only:
n (r) =n (r). The positive ion background of the cluster is
treated as a uniform sphere of radius R =a0r, N, '~ (a0 is
the Bohr radius, r, is the bulk Wigner-Seitz density pa-
rameter, and N, is the number of atoms in the cluster).

The results of the Thomas-Fermi statistical approach
to the electronic structure of metal clusters developed in I
will be used for the valence-electron number density. In
contrast to the familiar atomic case which requires a nu-
merical solution of the Thomas-Fermi differential equa-
tion, it turns out that the presence of the extended posi-
tive cluster background (instead of the central point
charge in an atom) allows one to linearize the equation
and to obtain an accurate solution analytically. Figure 1

illustrates results of the calculation carried out in I; it
shows valence-electron densities and single-electron po-
tentials found for some Na clusters.

To solve Eq. (4), we look for the dipole eigenfield in the
form V(ri)= f(r, )cosgi [we have chosen r to lie along
the z, axis in Eq. (4)]. Expanding 1/~r —r, ~

in Legendre
polynomials and integrating over the angles, we arrive at
the following equation:
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FIG. 1. Density distribution of the valence electrons and
single-electron potentials in (a) Na20 and (b) Na», as given by
the Thomas-Fermi statistical method (Ref. 23). The electron
density g(r) =n (r)/p+ and the radial distance are expressed in
units of the density and radius of the positive background
(denoted by the dotted line). The amount of the electron spill-
out outside the background boundary determines the collective
resonance frequency and the static electric polarizability of a
cluster.

In deriving Eqs. (7) and (8), we have set g (0)=1, i.e.,
n(0)=p+. This is well justified, because even for a clus-
ter as small as Na8 the electron density at the center
differs by less than 1% from the positive background den-
sity (see I), and this difference decreases with increasing
cluster size.

We also have employed the following normalization
condition: from the definition of g(r), it is easily shown
that

3f g(r)r dr=R
0

(10)

CO

2 =3g(R )+ 1 —
t [3g(R ) —1] +24q(1 —3q ) I

'i

Integrating by parts, and again carrying out an expan-
sion about the point r =R, we obtain

f g(r)dr =R (1 1)
0

Equations (7) and (8) are easily solved for the ratio of
the resonance frequency to the classical surface-plasmon
frequency:

2

3g(r )— f(r) . (5) (12)

We have written n (r)=p+g(r), where p+ is the num-
ber density of the uniform positive background and g (r)
is the dimensionless electron-cloud-shape factor; we also
used the fact that (4'+ e /3m )

' is the classical
surface-plasmon frequency, co, .

Differentiating Eq. (5) with respect to r, we obtain
another equation:

2 r OO

drir ig'(ri )f(ri )+2f dr, g'(r, )f(ri )
r r ri

3g(r ) f'(r) . (6)—

2

f(R) =3Rgf'(R) (7)

These two equations can now be used to find co„. No-
tice that the function g' is strongly peaked in the neigh-
borhood of r, =R: the density of the electron cloud is
close to p+ for r& (R, and decreases rapidly for r& )R,
see I and Fig. 1. This allows us to expand the integrands
about this point and keep only the linear terms in r&

—R.
It is also convenient to set r=R. Carrying out the in-
tegration, we find that Eqs. (5) and (6) simplify consider-
ably. They become, respectively,

We see that the shift of the resonance frequency with
respect to its classical value is completely determined by
the density profile of the valence electrons, g (r). This is a
general result, independent of the precise form of g (r).

If we use the step-function profile, corresponding to
the large-particle limit, then q =0 and we recover the
macroscopic result cu„=co, . To obtain more realistic re-
sults it is therefore essential to take into account the
spill-out of the electron cloud outside the boundary of the
positive background charge.

Figure 1 shows the distribution of electron density in
clusters according to the statistical method I. In the re-
gion r )R, the function g (r) is given by

' —3/2 —6
30 rg(r)= r——D

R
(13)

where

12
1/3

1/2~ 1/3
s e

(14)
D =1—6. 1/k —1.2/k +O(1/k ),

and X, is the number of valence electrons in the cluster
(for details see I). Note that since g(r) decreases rapidly,
the dominant contribution to q, Eq. (9), comes from the
region close to the edge of the positive background. The
details of the behavior of the spillout tail at very large r,
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where the Thomas-Fermi equation is formally inapplic-
able and the function g (r) probably decreases even faster
than given by Eq. (13), are therefore insignificant for our
present purposes.

For a given material and cluster size, Eqs. (12), (9), and
(13) completely determine the resonance frequency.

C. Resonance frequencies of selected clusters

In Table I we present calculated resonance frequencies
of some spherical Na and K clusters. Recent experi-
ments' have shown that for Na8 the ratio of the reso-
nance frequency to its classical value is 0.75+0.02; the
theory is in excellent agreement with these data.

III. STATIC ELECTRIC POLARIZABILITY

The static electric polarizability of a particle can in
principle be calculated from Eq. (1) with co=0 and u(r)
representing a uniform electric field. LS carried out such
a calculation under the assumption that one can use the
following quasicontinuum approximation:

dnn, ni, =— (E,—E,, ) .
CF

This calculation led, as mentioned in the Introduction,
to the conclusion that the static polarizability is de-
creased compared to its classical value. Evidently, for
small clusters such an expansion is not valid.

Unfortunately, a direct evaluation of II(r, r„co=0) is
very difFicult. It turns out, however, that an alternative
approach, based on well-known sum rules (see, e.g., Refs.
29 and 30) can be used to calculate the static electric po-
larizability of a cluster, if the collective resonance fre-
quency is known.

N, e
(Xp (17)

If we substitute the classical metal-sphere surface-
plasmon frequency, co„ into this equation, we obtain
ep=R . The fact that the polarizability is greater than
its classical value is seen to be related to the red shift in
the position of the resonance. '

B. Polarizability of selected clusters

We can rewrite Eq. (17) as follows:

Cap

R

'2
sos

CO
L

where the summation is over all the quantum states ~n )
of the valence-electron cloud in the cluster.

According to the well-known Thomas-Reiche-Kuhn
sum rule for oscillator strengths, the first sum is
W& =N, /2m, where N, is the number of valence elec-
trons. The second sum is W, =ap/2e, where np is the
static polarizability of the system (this is easily seen by
writing down the perturbation-theory expression for the
energy shift of the system in an applied constant electric
field). Therefore we have W, /W, =N, e /mao.

As described in the Introduction, the collective reso-
nance dominates the cluster spectra. Therefore the major
contribution to the sums (16) comes from the neighbor-
hood of this resonance frequency, co„, and the ratio of the
sums is simply W&/W

&
=m„. This leads to the follow-

ing well-known relation between ap and co„:

A. Sum rules

Consider the following sums:

(16)

and use Eq. (12) to calculate the static polarizability.
Table I presents the results of the calculation for

several small sodium and potassium clusters together
with the available experimental data, ' very good agree-
ment is found.

IV. CONCLUSION

Cluster

Na8

Nacho

Na40
Na~8

Na92

0.74
0.79
0.81
0.83
0.84

n/R

1.81
1.62
1.51
1.46
1.40

Expt.

1.77+0.03
1.68+0.10
1.61+0.03

K8
Kqo

K4O

K58
K92

0.76
0.80
0.83
0.84
0.86

1.74
1.57
1.46
1.42
1.36

1.79+0.09
1.66+0.13

TABLE I. Calculated resonance frequencies [Eq. (12}] and
static electric polarizabilities [Eq. (18)] of small spherical Na
(r, =3.96) and K (r, =4.87) clusters, expressed in terms of their
respective macroscopic values (experimental data from Ref. 10).

We have calculated analytically the surface-plasma-
resonance frequencies and static electric polarizabilities
of small metal clusters. It was demonstrated that in con-
sidering cluster-response properties it is essential to take
into consideration electron screening, size quantization,
and the correct density distribution of the valence elec-
trons.

The random-phase approximation was used to calcu-
late the resonance frequency. The latter is red shifted
with respect to its classical value, and is determined by
the amount of the electron-cloud spill-out outside the
boundary of the positive background. The recently
developed statistical Thomas-Fermi description of met-
al clusters was used for the density profile of the valence
electrons.

From our results for the resonance frequency, and gen-
eral sum rules, the static electric polarizability was deter-
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mined. The theory is in very good agreement with exper-
imental data.

This approach can be extended to the case of non-
spherical clusters, and to a calculation of the lifetime of
the collective resonance. However, the latter problem re-
quires a knowledge of the widths of the discrete single-
electron levels.
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