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Fermi-surface structure of potassium in the charge-density-wave state
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The neutron-diffraction determination of the charge-density-wave (CDW) wave vector Q in potas-
sium is used to calculate the detailed structure of the conduction-electron Fermi surface. A
Schrodinger equation having two periodic potentials, 2acos(Q r) from the CDW, and 2fjcos(Cx r)
from the lattice, is solved numerically. Minigaps in E(k), caused by perturbations having periodici-
ty (n+1)Q —nCs, n =1,2, . . . , lead to small cylindrical sections of Fermi surface. These cylinders
give rise to perpendicular-field cyclotron resonance and unexpected angle-resolved photoemission
peaks. Heterodyne gaps, having periodicity n(G —Q), are created in the equatorial region of the
Fermi "sphere. " Open-orbit magnetoresistance peaks observed by Coulter and Datars (in K and
Na) arise from the multiply connected Fermi-surface topology caused by the minigaps and hetero-
dyne gaps.

I. INTRODUCTION

It has long been held that the energy spectrum E(k) of
conduction electrons in alkali metals is nearly parabolic,
and that the Fermi surface is nearly spherical (and conse-
quently simply connected). However, there has been a
large accumulation of experimental data' which suggest a
nonspherical and multiply connected structure for the
Fermi surface. The microscopic theory of charge-
density-wave (CDW) instability explains the existence of
such Fermi-surface structure and provides successful ex-
planations of most of the anomalous data. '

In a CDW state, a sinusoidal modulation of electronic
charge density is sustained self-consistently through ex-
change and correlation interactions, and gives rise to a
sinusoidal potential incommensurate with the usual crys-
tal potential. As a result, the Fermi surface suffers a dis-
tortion, and is sliced into many pieces by extra energy
gaps. The modulated electron charge density is neutral-
ized by a sinusoidal deformation of the positive-ion back-
ground. This lattice deformation contributes extra
diffraction peaks in a neutron-scattering experiment.
These satellite reflections have been observed by Ciiebul-
towicz et al. (GOW), and the CDW wave vector Q was
determined accurately.

Subsequent work by Pintschovius er al. (PB) has sug-
gested that the satellites observed by GOW were instead
experimental artifacts caused by double scattering.
However, recent experiments by Werner et al. (WOG)
have shown that the satellites observed by GOW have the
same spacing near the (220) Bragg point as they have
near the (110) point. Double-scattering artifacts exhibit
spacings proportional to tanO&, where 0~ is the Bragg
angle, and would have to be 2.5 times further off the [110]
axis near the (220) Bragg point compared to their spacing
near the (110) point. The samples used by PB showed an
incremental increase in mosaic width on each cooldown.
Consequently they were severely plastically deformed,
and neutron scattering from dislocations exceeded by 2
orders of magnitude the total incoherent scattering ob-

II. PLANE-WAVE EXPANSION

To find the energy spectrum for conduction electrons
in a CDW state, one has to solve a Schrodinger equation
with two sinusoidal potentials, one arising from the crys-
tal structure and the other from the CDW instability:

T

V + V(r) O'=E%,2'
where

V(r) =2a cos(Q r)+2Pcos(G r) . (2)

Q is the CDW wave vector, Q=(0.995,0.975,0.015),
and G is the (110) reciprocal-lattice vector, with
G=(1, 1,0) in units of 2srla, where a is the lattice con-
stant of the bcc lattice. 2o.'is the CDW potential and is
about 0.87 eV (the CDW energy gap is about 0.62 eV), as
indicated by the threshold of the Mayer —El Naby optical
anomaly. 7

213 is the Brillouin-zone energy gap and is ap-
proximately 0.40 eV, as derived from an analysis of de
Haas —van Alphen data. We will neglect contributions
of the other five pseudopotentials, oriented 60 or 90
away from Ex„o, since the coupling through them in-
volves plane-wave states with energies too far removed to
contribute significantly.

We choose a coordinate system such that Cx =Gz and y
is parallel to G X Q,

served by GOW and WOG in their stress-free sample.
Consequently PB could not have observed CDW satel-
lites. The structure PB reported was indeed caused by
double scattering originating from the severe plastic
strain.

The purpose of this study is to calculate the detailed
structure of the Fermi surface of potassium based on the
neutron-diffraction measurement of the CDW wave vec-
tor Q. In Sec. II, effects of the CDW potential will be
discussed. In Sec. III, the approximate shape of the Fer-
mi surface is found. The results are summarized in Sec.
IV.
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Q=(Q o Q, »
G=(O, O, G) .

(3a)

(3b)

R=ma&+" a2

where

(4)

a, = (
—Q, /Q„O, 1)= ( —67.6, 0, 1),

aq=((G —Q, )/Q„, 0, 1)=(1.03,0, 1) .

(5a)

(Sb)

The size of this unit cell is 68.6 times that of the primitive
bcc unit cell. The corresponding reciprocal-lattice vec-
tors are

The angle between Q and G is 0.85', and Q/G =0.985.
When Q is parallel to G, the potential V(r) does not have
a translational symmetry. An approximate energy spec-
trum was obtained for this case by Fragachan and
Overhauser.

The potential V(r) in Eq. (2) is periodic under a
translation through the vector R,

The angle between Q' and G is 44.2', and Q'/G =0.021.
The size of the new Brillouin zone is about 0.014 times
that of the bcc Brillouin zone. As a result, the
reciprocal-space structure is much more complicated,
especially near the Fermi surface.

According to Bloch's theorem, wave functions have
the following form:

where ui, (r+R)=uk(r) and k is quantized in accord
with the periodic boundary conditions,

'P(N, a, + r) =%(r),

%'(N2az+ r ) =V(r) . (8b)

N&a, and N2a2 are the sizes of the sample in the direc-
tions a, and a2, respectively. ui, (r) can be expanded in
terms of plane-wave states,

i(m b&+n b2) Iukr= a .„e
m', n'

b, =G —Q=Q',

b2=

(6a)

(6b)

= ~ a ei(™Q+nG)ra~„e
m, n

The Schrodinger equation can be put into matrix form:

(9)

Q2
( k+mQ +n G) 5 5„„+a(5 . &+5 .+&)5„„+P5 (5„„&+5„„+&)a .„.=E(k) a„. (10)

2m

By solving these matrix equations, one Ands the energy
spectrum and the wave functions. Each state ~k) is cou-
pled to ik+Q) through the CDW potential and to
ik+G) through the crystal potential. Since the matrix
Schrodinger equation cannot be solved exactly, we resort
to an approximate scheme presented in the next section.

III. APPROXIMATE SOLUTIONS

Since the potential given by Eq. (2) does not have any
geometrical symmetry other than inversion, the zone
structure determined by energy gaps, which in general
are curved surfaces, need not be the same as the Brillouin
zone structure. But they should not be drastically
different because the energy-gap surfaces pass through
the points (mQ+nG)/2. The zone structure determined
by energy gaps can be shown to be equivalent to the
Brillouin-zone structure obtained from cutting and re-
arranging zones determined by planes bisecting
reciprocal-lattice vectors. '

To find the Fermi surface, we consider a constant ener-

gy surface in the extended-Brillouin-zone scheme. Near
the Fermi surface, two distinct groups of zone boundaries
are important: (a) minigap zone boundaries
passing through K„/2= [(n + 1)Q—n G]/2, where
n =0, 1,2, . . . , and (b) heterodyne-gap zone boundaries
passing through H„/2=n (G —Q)/2, where

n = 1,2, . . . . Since the Fermi surface has inversion sym-

metry, we will consider only k Q ~ 0.

A. Near k.Q=—Q/2 (minigap region)

T&BI-E I. Sizes of CDW energy gaps.

Order of gap
Heterodyne gap

(meVi

16
14
12

8
3
0.6
0.06
0.01

Minigap
(meV)

90
67
51
34
15
4
0.6
0.06

Because of the small difFerences in magnitude and
direction of G and Q, heterodyne gaps near Q/2 are of
very high order. These gaps can be neglected since the
size of an energy gap decreases very rapidly as the order
of gap increases, as can be seen in Table I. The sizes of
the minigaps in Table I were calculated parallel to Q
starting from Q/2 using the approximation explained in
Sec. III B.

Approximate solutions of the matrix Schrodinger equa-
tion can be found by neglecting couplings between states
too far apart in energy. There are two distinct series of
minigaps. The minimum number of states needed to cal-
culate the energy spectrum in this region are as follows.

(i) Even-integer minigaps involving states separated by
K2 =(2m + l)Q —2mG, where m =0, 1,2, . . . .
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The zeroth minigap (CDW main gap):

The second. minigap: the above set and

lk —Q+G&, lk —2Q+G&,

Ik —2Q+2G) Ik —3Q+2Cx) .

The fourth minigap: the above sets and

lk —3Q+3G), lk —4Q+3Cx&,

lk —4Q+4G), lk —5Q+4G),

etc.
Equal numbers of states above and below (in energy)

compared to the states required in the minimum sets

0.8

0.6—

0.0—

-0.2—

040.6 0.8 I.O

kz ( II G~ip)

I

l.2 -l4

FIG. 1. Approximate shape of the Fermi surface in the mini-
gap region (k Q=Q/2) for E(k)=2.35 eV. k, and k„are in
units of kz. The dashed curve is that of a free-electron Fermi
sphere having the same energy.

etc.
(ii) Odd-integer minigaps involving states separated

by Kz +, =(2m+2)Q —(2m+1)Cx, where m =0, 1,
2 ~ ~ ~ ~

The first minigap:

lk), lk —Q), lk —Q+G), lk —2Q+G) .

The third minigap: the above set and

lk —2Q+2G&, Ik —3Q+2G&,

Ik —3Q+3G &, Ik —4Q+3G)

The fifth minigap: the above sets and

lk —4Q+4G&, lk —5Q+4G&,

Ik —5Q+5G&, Ik —6Q+5G),

were included. Dimensions of matrices diag onalized
were 30 X 30 near even-integer minigap surfaces and
28 X 28 near odd-integer minigap surfaces. The cross sec-
tion of the Fermi surface in the G-Q plane is shown in
Fig. 1. The energy spectrum is approximately cylindri-
cal. Note the small cylindrical sections near Q/2, which
cause the perpendicular-field cyclotron resonance" as
well as unexpected sharp peaks in recent angle-resolved
photoemission data. '

B. Near k.g ' =—Q' (heterodyne-gap region)

Near this equatorial region minigaps are of very high
order and can be neglected, since the size of an energy
gap decreases very rapidly as the order of the gap in-
creases, as can be seen in Table I. The sizes of the hetero-
dyne gaps in Table I were calculated parallel to Q ', start-
ing from the origin and with use of the approximation ex-
plained in Sec. III A.

Approximate solutions can be found by neglecting cou-
plings between states too far apart in energy. There are
two distinct series of heterodyne gaps. The minimum
number of states needed to calculate the energy spectrum
in this region are as follows.

(i) Odd-integer heterodyne gaps involving states
separated by H2 i=(2m —1)Q', where m =1,2, . . . .

The first heterodyne gap:

Ik+Q & Ik+Q

The third heterodyne gap: the above set and

lk+2Q —G) Ik+2Q —2Cx) Ik+Q —2G &,

lk+3Q —2G), Ik+3Q —3G), lk+2Q —3Cx) .

The fifth heterodyne gap: the above sets and

Ik+4Q 3G) Ik+4Q 4G) Ik+3Q 4G&,

lk+ 5Q —4'G) Ik+ 5Q —5G ) lk+4Q —5G ),
etc.

(ii) Even-integer heterodyne gaps involving states
separated by H2 =2mQ', where m =1,2, . . . .

The second heterodyne gap:

lk), lk+Q), lk+Q —Cx &, lk —G &,

Ik+2Q —G) Ik+2Q —2G) Ik+Q —2G) .

The fourth heterodyne gap: the above set and

lk+3Q —2Cx), lk+3Q —3G), lk+2Q —3Cx&,

lk+4Q —3G), lk+4Q —4G), lk+3Q —4G)

The sixth heterodyne gap: the above sets and

lk —5Q —4G), lk —5Q —5Cx), lk+4Q —5C' &,

lk+6Q —5G), lk+6Q —6G), lk+5Q —6G &,

etc.
Equal numbers of states above and below (in energy)

compared to the states required in the minimum sets
were included as before. Dimensions of matrices diago-
nalized were 31X31 near even-integer heterodyne-gap



1.0

ONG GYOO H~ANG AN 0VERHAUSER

I.2

39

0,8

&c 00

-0.6—

04
0.4 0.6 0.8 1.0

I

0.6 l.2

FIG. 2 pproximate sh
heterod ne

shape of the Ferm
yne gap region ik.Q '-=

ermi surface in the

dk, units of kz. The d
5 eV. k

i sp ere having the

's at of a free-
e same energy.

surfaces and 28 X 28 near
surfaces.

near odd-inte er h

Ex-
c ion o" the Fer

h
' Fin ig. 2. The en

e

t 1 e ric about ' in
is ap-

f h Fe ermi surface

ma
r i s. Open-orbit motio

d b d
transm'

s in cond uction-electron
e spin-

ission experiments '
spin-resonance

The
IV. CONCLUSIONS

e Fermi surface of potassiup
u ipy connected b s og

pwo sinusoidal ': e r

sha e erica y, is

gy

on the Fe
e cylindrical sectionons near the main

e diame-

Fermi energy and their
C hh

e ote
e contributions of other pseudo o

'

y n t b
1 td dth t 1

s y two families of
dht d

bt' h iodi
'

h =0, 12 presence of cylindrical sec-

—1.2- l, 2

FIG. 3. A r
E(k)=2 35 V k d

pproximate sha e

1 n ermi sphere havin
curve

e avsng the same energergy.

-0.6 0.0
~z & ll Gimp )

ACKNOWLEDGMENTS

T is work was su orts supported by the Mate
'

a ory Program of the Nati
atenals Research

e ational Science Foundation

tions near IkI-=/2 is responsible fo th
H od

b t'o ith
The occurrence of o en

1

toresistance pe k
gaps eads to

ea s observed b
t e open-orbit magne-

CDW-domain at
y Coulter and Dat

patterns (arising from
atars.

11 i 1 d' '
H

n irections of la
li i th ob

od tio-1 toc ron spin resonance'
o t e

s in transmissio
e

p

I an

'ze as a final remark tha
d h il ofh Fe ermi surfa

a e

g

the CDW potential 2a w'
are highly nonlocal ' ''

of k. Su h o 1o 1 ff' h b
a will be a (possibl

dh Tere. hey were es
e exer-

of the fraction 1 ha c arge modulati
e estimated in a cal 1cu ation

the result was a 40%%u

u ation of the CDW'

cha
a % reduction in

and
e predicted CDW

~

p atifthekd

h ere th
were included in th

h
e calcula

'

ps an heterod
oK more rapidl with increa i go

e
e sequence

~A. er, in Highlights o Coverhauser of

Ferm " e nternationa1 Scho s
LXXX

h olland, Amsterdam, 1985) A W.) ~

Overhauser, Adv. Phv. Phys. 27, 343 (1978).
. Overhauser, Phys. Rev

3T. M. ' ', Ov

ys. Rev. 128, 1437 (1962)' 1167, 691

~ M. Giebultowicz, A. W. Ov. Overhauser, and S. A . Werner,



39 FERMI-SURFACE STRUCTURE OF POTASSIUM IN THE. . . 3041

Phys. Rev. Lett. 56, 1485 (1986); S. A. Werner, T. M. Giebul-
towicz, and A. W. Overhauser, Phys. Scr. Tj.9, 266 (1987).

4L. Pintschovius, O. Blaschko, G. Krexner, M. de Podesta, and
R. Currat, Phys. Rev. B 35, 9330 (1987); O. Blaschko, M. de
Podesta, and L. Pintschovius, ibid. 37, 4258 (1988).

5T. M. Giebultowicz, A. W. Overhauser, and S. A. Werner,
Phys. Rev. Lett. 56, 2228 (1986); S. A. Werner and M. Arif,
Acta Crystallogr. Sect. A 44, 383 (1988).

S. A. Werner, A. W. Overhauser, and T. M. Giebultowicz (un-
published).

7H. Mayer and M. H. El Naby, Z. Phys. 174, 269 (1963); A. W.
Overhauser, Phys. Rev. Lett. 13, 190 (1964).

8N. Ashcroft, Phys. Rev. 140, A935 (1965).
F. E. Fragachan and A. W. Overhauser, Phys. Rev. B 29, 2912

(1984).
toF. Seitz, The Modern Theory of Solids (McCxraw-Hill, New

York, 1940), Sec. 61.
G. Lacueva and A. W. Overhauser, Phys. Rev. B 33, 3765
(1986).
E. Jensen and E. W. Plummer, Phys. Rev. Lett. 55, 1912
(1985);A. W. Overhauser, ibid. 55, 1916 (1985).
P. G. Coulter and W. R. Datars, Phys. Rev. Lett. 45, 1021
(1980); Solid State Commun. 43, 715 (1982); Can. J. Phys. 63,
159 (1985).

Y. G. Hwang and A. W. Overhauser, Phys. Rev. B 38, 9011
(1988).

A. W. Overhauser and A. M. de Graaf, Phys. Rev. 168, 763
(1968).

A. W. Overhauser, Phys. Rev. B 2, 874 (1970).
K. J. Du8'and A. W. Overhauser, Phys. Rev. B 5, 2779 (1972).

8G. F. Giuliani and A. W. Overhauser, Phys. Rev. B 22, 3639
(1980).


