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The force-balance method is used to calculate the isothermal resistivity to first order in the elec-
tric field. To lowest order in the impurity potential, the isothermal resistivity disagrees with the adi-
abatic results of the Kubo formula and the Boltzmann equation. However, an expansion of the iso-
thermal resistivity in powers of the impurity potential is divergent, with two sets of divergent terms.
The first set arises from the density matrix of the relative electron-phonon system. The second set
arises from the explicit dependence of the density matrix on the electric field, which was ignored by
force-balance calculations. These divergent contributions are calculated inductively, by applying a
recursion relation for the Green s functions. Using the A. t~ ~ limit of van Hove, I show that the
resummation of these divergent terms yields the same result for the resistivity as the adiabatic calcu-
lations, in direct analogy with the work of Argyres and Sigel, and Huberman and Chester.

I. INTRODUCTION

Recent work' has suggested that there are two ine-
quivalent methods for calculating the electrical resistivi-
ty. Calculations of the conductivity based on the Kubo
formula or the Boltzmann equation ' are supposedly val-
id only under adiabatic conditions, when the closed sys-
tem of electrons is driven out of equilibrium by the elec-
tric field. In the presence of a heat bath, which keeps the
electrons at a fixed temperature, an isothermal calcula-
tion of the resistivity is required. Isothermal conditions
are ensured by the force-balance (FB) method, '"
which couples the electrons to a heat bath of phonons.
Under steady-state conditions, the energy generated by
Joule heating of the electrons is transferred to this heat
bath. Calculations of the isothermal resistivity based on
the FB theory produce a di6'erent result than the adiabat-
ic calculations based on the Kubo formula or the
Boltzmann equation, even to linear order in the electric
field. ' In this paper, I show that the expansion of the
isothermal resistivity in powers of the impurity potential
is divergent. When the divergent terms in this expansion
are resummed with the limiting prescription of van
Hove, ' the isothermal resistivity is brought into agree-
ment with the adiabatic result.

The disagreement between the isothermal and adiabat-
ic resistivities is reminiscent of an earlier disagreement
between the Kubo formula and the resistivity formulas of
Rousseau' and of Kenkre and Dresden. ' The impurity
resistivity calculated by those authors agrees with the re-
sult of the FB method. In terms of the electron mass m,
the electron charge e, the scattering relaxation time ~,
and the number of electrons X, these calculations find
that
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The expectation value is defined by Eq. (38) as an average
over the electron energies.

For a degenerate distribution of electron energies at
zero temperature, 1/(r) = (1/r) and the two methods
produce the same result. For a nondegenerate distribu-
tion, however, I/(r) and (1/r) are different. In a
classical system, it is simple to show' that ( I/r) is
about three times larger than 1/(r) This diffe.rence be-
tween the isothermal and adiabatic resistivities can have
important physical consequences. For example, calcula-
tions of the electron temperature and the infrared ab-
sorption of metals depend on which model is assumed.

The appeal of the FB method, and of the formalisms
developed earlier by Rousseau' and others, ' ' ' is that
an exact result for the resistivity cari be expanded in
powers of the impurity potential. In order to evaluate
the Kubo formula for the conductivity to lowest order in
the impurity potential, an infinite number of Feynman di-
agrams must be summed. The original motivation '

behind the development of resistivity formulas was that
weak interactions might be treated perturbatively. These
e6'orts were encouraged when it was realized that the
lowest-order term in an expansion of the resistivity agrees
with the Kubo formula at T =0.

It was originally shown by Argyres and Sigel and by
Huberman and Chester' that the early theories of resis-
tivity do not permit a straightforward expansion in
powers of the scattering interaction. These authors
demonstrated that such an expansion is actually diver-

is the linearized resistivity to lowest order in the impurity
potential. This expression should be contrasted with the
result of the Kubo formula or the Boltzmann equation
for the conductivity
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gent. A formal prescription for resumming this divergent
series is therefore required. As first discussed by van
Hove, ' the evaluation of the steady-state resistivity to
lowest order in the impurity potential A,P requires that
the long time limit (t~ ~ ) precede the limit of weak
scattering (A, ~O). Using this limiting procedure to
resum the divergent series for the impurity resistivity,
Argyres and Sigel demonstrated that the theory of
Kenkre and Dresden' produces the same result as the
Kubo formula. Because the evaluation of the resistivity
to lowest order in A, also requires the summation of an
infinite number of terms, the resistivity formulas of
Rousseau and of Kenkre and Dresden offer no advan-
tages over the Kubo formula. Indeed, the presence of
divergences in these theories makes them unsuitable for
most applications.

The FB method was likewise motivated by the desire
for an exact result for the resistivity. This formalism
separates the electron positions and mornenta into
center-of-mass variables R and P, which are treated clas-
sically, and relative variables, which are second quantized
in the usual way. When the expectation value of P is
zero, the electric force acting on the center of mass of the
electrons is balanced by the frictional forces provided by
the phonons and impurities. The phonon and impurity
resistivities can then be obtained from a force-balance re-
lation. To lowest order in A. , the impurity resistivity is
given by p; =m ( l/r) /Ne, in disagreement with linear
response theory.

In an attempt to explain this discrepancy, Horing
et al. ' claim that the FB result for p, is correct under iso-
therrnal conditions, such as in the presence of a phonon
heat bath. Indeed, these authors suggest that the work of
Kenkre and Dresden can be rehabilitated under such
conditions, when the objections of Argyres and Sigel are
no longer supposed to apply. Horing et al. argue that
linear response theory is correct only under adiabatic
conditions, when the electric field drives the electron sys-
tem out of equilibrium.

In this paper, I use the limiting prescription of van
Hove to resurn the divergent contributions to the FB
resistivity, in analogy with the work of Argyres and Sigel
and of Huberman and Chester. There are two classes of
divergent contributions to the FB resistivity. The first
class of divergent terms arises from the density matrix of
the relative electron-phonon system. The second class
arises from the explicit dependence of the density matrix
on the electric field. Because the center-of-mass variables
R and P were treated classically by the FB method, this
explicit dependence was ignored.

To obtain the full density matrix, all variables must be
treated quantum mechanically. Expanded in powers of
the impurity interaction, the density matrix then involves
commutators of the operator R, (t) at different times. .

Only after these commutators are evaluated can the ther-
modynamic limit N~~ be used to set terms of order
A/N to zero. Both sets of divergent contributions are
unaffected by this limit.

The divergent terms in the FB resistivity are identical
to the divergent terms found by Huberman and Chester
in the theory of Rousseau. In the A, t —+ ~ limit, the FB

resistivity reduces to the adiabatic result. If the depen-
dence of the density matrix on the electric field is neglect-
ed, the resurnrned resistivity vanishes in this limit.

Of course, the equivalence of the isothermal and adia-
batic resistivities could have been anticipated. To first
order in the electric field, the electron energy is not
affected by Joule heating and the presence of a phonon
heat bath is irrelevant. This work demonstrates that iso-
thermal and adiabatic calculations must produce the
same result for the linearized resistivity.

This paper is divided into three main sections. In Sec.
I the FB formalism is reviewed and the density matrix is
derived. In Sec. II the impurity resistivity is expanded in
powers of A, , to lowest order in the electric field and in the
electron-phonon interaction. In Sec. III, I evaluate the
divergent contributions to p;, using a recursion relation
for the Green's functions. These divergent terms are then
resummed using the limiting prescription of van Hove.
Appendixes A, B, and C provide details of the inductive
method used to calculate the divergent contributions to
p;. A summary of the arguments presented here is given
in the preceding paper.

The existence of divergences in the isothermal resistivi-
ty means that, like its predecessors, the FB formalism
offers no advantages over the Kubo formula. In both
cases an infinite number of terms must be considered to
obtain the limit of weak interactions. Because of these
divergences, the FB theory is not useful for studying non-
linear effects in strong electric fields.

II. FORCE-BALANCE THEORY

p2
H, = —NeE-R, (4)

~e X EkCkeCka
k, o.

vh
= & ~qrbqr qr

qr

H„=A, g P(q)e p
q, a

H, ~h= QM(q, y)(b +qbt r )e'q pq .

Here bqr (ck ) and bzr (ck ) are creation and destruc-
tion operators for phonons (electrons), Qqr (ek= k /2m)
is the phonon (electron) energy, M(q, y ) is the phonon in-
teraction matrix element, and

Pq= ~ Ck+-q oCkcr
k, a

is the electron density operator. The subscripts a and y

The starting point of the FB theory is the separation
of the electron positions and rnomenta into center-of-
rnass and relative variables. The Harniltonian for a sys-
tern of electrons, phonons, and impurities can be written

H =H~ +H~ +H ph +He). +H~ -ph

where



R. S. FISHMAN 39

in the creation and destruction operators are electron-
spin and phonon-branch indices, respectively. Of course,
M =Nm is the total mass of the electrons and R are the
positions of the N, impurities. In analogy with Huber-
man and Chester, ' the dimensionless parameter A, is
used to keep count of powers in the impurity potential
((}(q). The center-of-mass momentum P and position R
obey the commutation relation

are the phonon and impurity resistivities. The density
matrix p(t) is discussed below. An average over impurity
positions R is implied in Eqs. (14) and (15) for the resis-
tivities.

The other central relation of the FS theory, the
energy-balance equation, is obtained in the steady-state
limit (t~ tx) ) from the condition that the electron energy
is constant:

[R, , P ]=i6, (10) lim Tr{p(t)H, I =0 .
d
dt

(16)

with A= 1. For convenience, the Coulomb interactions
between the electrons have been ignored. Notice that the
electric field acts on the relative electron-phonon system
through the exponential factors e' in H„and H,

Before time t =0, it is assumed that the electron-
impurity and electron-phonon interactions are absent, so
that the electrons and phonons are decoupled from the
center of mass and from each other. The electric field is
also assumed to be turned off for t & 0, so that the center
of mass is moving with some constant momentum
P0=Mu&x. The electrons and phonons are separately
considered to be in states of thermal equilibrium, with
electron temperature T, and phonon temperature T not
necessarily equal.

At time t =0, the interactions of the electrons with the
impurities and phonons are switched on to their full
values P(q) and M(q, y ). The frictional forces associated
with these interactions will then begin to act on the
center of mass of the electrons. Of course, these friction-
al forces will reach their steady-state values only after
some characteristic times, determined by the strength of
the electron-phonon and electron-impurity interactions.
The electric field E(t)=E(t)x is chosen to exactly bal-
ance these forces, so that the center-of-mass momentum
P0 remains constant.

An expression for the resistivity can be obtained from
the force-balance equation

This implies that the energy supplied per unit time by the
electric field JE (t) is absorbed by the phonon heat bath.
Therefore, Eq. (16) is equivalent to the relation

Nev& lim E(t)= lim Tr{p(t)H&hI
d

f~oo dt
(17)

dp i [H, +—Hh+Hp, p] i [HI—+H~, p], (18)
dt

These equations indicate that the electron-phonon in-
teraction is responsible for keeping the electron energy
constant. Because the electron-impurity scattering is
elastic, the impurities cannot absorb the Joule heat gen-
erated by the electric field.

In the steady-state limit, Eq. (11) can be used with Eq.
(16) to solve for the drift velocity Uz and the electron tem-
perature T, in terms of the electric field, the electron in-
teractions, and the phonon temperature T. It can be
shown that the difference between T, and T is due to the
nonlinear effects of Joule heating. To linear order in the
electric field, then, the electron and phonon temperatures
are equal. Also to this order, the drift velocity v& is pro-
portional to the steady-state limit of E (t).

To calculate the density matrix p(t), all variables must
be treated as quantum mechanical. Then p(t) obeys the
Liouville equation

—Tr{p(t)P] =i Tr{p(t)[H, P]I =0,d
dt

which states that the total force acting on the center of
mass is zero. The commutator

i [H, P]= NeE —i QM(q, y)qe'q (b +b )p
qr

where

p2
H

2M

H~ =E(t )H~ = NeE (t)X, —

I '
-ph

(20)

(21)

i AgP(—q)qe, p (12) If the interaction representation for any operator A (t) is
defined by

is evaluated in the Schrodinger representation. Since the
current of the electrons is J =Neu&, the total resistivity is

t'(H, +H h+Hp )t —t (H, +H h+Hp)t (22)

pr(t) =p),„(t)+p;(t)= E(t)
Neu&

where

(13)
then Eq. (18) has the formal solution

P(t) =p, —i I dt'[H, (t')+H~(t'), P(t')],
0

(23)

which can be expanded in powers of the electron interac-
tions and the electric field.

At time t =0 the center-of-mass system is prepared in
an eigenstate of momentum with eigenvalue Pp and the
relative electron-phonon system is prepared in a state of
thermal equilibrium with temperatures T, and T. There-
fore, the density matrix at t =0 is

p „(t)= g M(q, y)q
Neu~qy

XTr{p(t)e'q' (b +b )p I, (14)

p;(t)= gP(q)q e Tr{p(t)e'" pqINeu&q
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p(t =0)=p()= —e ' 'e '" lP()) (P() (24)

r

p„(t)=Sexp —i f dt'&t(t') po,
0

(25)

where the partition function Z is defined so that
Tr(po)=1. All traces are evaluated by summing both
over eigenstates

l
P ) of the center-of-mass system and

over eigenstates of H, and Hph.
To calculate the linearized resistivities, the density ma-

trix must be expanded to first order in the electric field.
The zero-order term p„(t), which obeys Eq. (23) with
HF(t) =0, can be written

where

&t(t, ) A (tz ) = [Ht(t, ), A (tz )] (26)

and S is the time-ordering operator. To first order in the
electric field, the electron temperature T, can be set equal
to T in Eq. (24) for po. Using Eq. (23), the full density
matrix p(t) is then expanded in powers of the electron in-
teractions:

oo
2 n —1p(t)=p„(t)+ g ( i)"— f dtz f dt3 . f dt„[Bt(tz), [DI(t3), . [Hz(t„),p„(t„)].. . ]],

1f =2 0 0 0
(27)

[P,(t, ), R, (tz)]=i5,, (t, t, ), — (28)

the additional terms in the density matrix affect the eval-
uation of the resistivities in Eqs. (14) and (15). To fourth
and higher order in the electron-impurity interactions,
these new terms in P(t) are responsible for a second class
of divergent contributions to the impurity resistivity, as
shown below.

so that p(t =0)=p„(t =0)=po.
If the center-of-mass variables were treated classically,

the commutator of AF(t) with p„(t) would vanish. By
mixing classical and quantum-mechanical treatments of
the electron variables, the FB method has previously
neglected the explicit dependence of the density matrix
on the electric field. Because the center-of-mass coordi-
nates do not commute at different times,

III. IMPURITY RESISTIVITY

To calculate the impurity resistivity, it is convenient to
ignore the contribution of thy electron-phonon interac-
tions to p;(t). The result is the lowest-order term in an
expansion of p;(t) in powers of M(q, y). This lowest-
order result becomes exact when the electron-phonon in-
teraction becomes negligible compared to the electron-
impurity interaction. Qf course, to second order in the
electric field, the electron-phonon interaction plays the
crucial role of maintaining isothermal conditions in the
electron system.

To lowest order in M (q, y ), the impurity resistivity can
be expanded in powers of the electron-impurity interac-
tion. Using Eq. (13), I find that p, (t) is given by

00
2p;(t)=, , g p(q)q e Tr[p„(t)e'q "'"p (t) j+Xe'u„g i" 'f dt, f dt, . f dt„p;(t„)

N e Ud qa 1l =2 0 0 0

(29)XTrjp„(t„)[HJ(t„),[H„(t„,), . [H„(tz),e""'"p,(t)] . . ])j

where the contribution of H, h to p„(t) should be ignored. Notice that the second set of terms, which arises from the
noncommutivity of the center-of-mass coordinates, itself involves the resistivity p;(t) at previous times. These addition-
al terms in Eq. (29) begin to affect the result for p; (t) at fourth order in k.

The commutator of H~(t) with the exponential factors in Eq. (29) can be evaluated with the relation

iq .R(t ) iq] R(t& ) iq .R(t„) iql. R(t) )
[X(t„+)),e e ' ' ]= jt„+,(q)„+ +q„, ) —(q, t, + +q„„t„)je " . . e

M

Notice that Eq. (29) also involves commutators of the form
r

iq) R(t ) )iq& R(t&) . i[qi.R(ti )+q& R(t2)] . 1

(30)

(31)

which introduce phase factors into the time integrals of p;(t). Because the thermodynamic limit M =Km ~~ is taken
before the steady-state limit t ~~, these phase factors can be neglected. So, after the evaluation of the commutators
involving X(t), the coordinates R(t) can be treated classically.

To second order in the electron-impurity interaction, then, the impurity resistivity is given by

2 iql. tR(t) —R ] iq2 [R(t2)—R ] —H /Tp;(t)= —
z g g P(q()P(qz)q)„ f dtz e ' e ' Tr, [e ' [p (tz), p (t)]ji)i e ud q q ~ 0 Ze

(32)
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where R(t2) —R(t& ) =Ud(tz r&
—)x and

Z, =Tr, exp( H—, /T) (33)

is the partition function for the noninteracting electron
system, defined as a trace over the eigenstates of H, . The
average over impurities in Eq. (32) is easily evaluated:

IV. RESUMMATION OF DIVERGENT TERMS

To obtain the correct steady-state limit of the resistivi-
ty, it is convenient to introduce the Laplace transform

p;(5)=5f dt p;(t)e (41)

so that

a&, a2

Ra —I qZ. Ra
lim p;(t)= lim p,.(5) .t~ oo 5 0+

(42)

(34)

Thus, in the limit t ~ ~, p; (t) can be rewritten

lim p;(t)= '
& ~P(q)~ q„ f dt e " "II"'(q;t),

NeUd q
0

(35)

where

111"'(q;~,—t, )= ie(~, —~, )
e

As shown below, an expansion of p;(5) in powers of A,

contains contributions that diverge as 5~0+. The first
such divergent contribution occurs to fourth order in X.

These divergent contributions can be treated by using
the limiting procedure of van Hove. ' This procedure is
motivated by the observation that the relaxation time
r(p) is of order A, . Hence, the steady-state limit of the
resistivity is reached only after a time t that is long com-
pared to k, so that I, t~ ~. In terms of the Laplace
transform p;(5), the weak scattering limit is attained by
first taking the limit of A, ~O and 5~0+ but A, /5&0 and
then the limit A, /6~~:

—H /TxTr, Ie '
[p q(t 2),p q(t, )]J . (36)

(A. /5~0)
p,

' '= lim lim [A. p,.(5)] .
A, /5~ oo A, ~0,5~0+

(43)

Using the result of Appendix A for the density-density
correlation function II"'(q;t), Eq. (35) can be evaluated
to lowest order in vd..

This limiting prescription can also be written

p,''= lim lim [A, p, (5)],
A~O 5 0+

(44)
mpIO'=X ' lim p, (t)=

where, for any quantity A (p),

(A )=———g A(p)
21 df p
3X de m

is defined in terms of the Fermi function

f (&p)=
$+e P

(37)

(38)

(39)

with the long time limit (5~0+ ) taken before the limit of
weak interaction. The naive result of the FB theory,
given by Eq. (37), was evaluated with these limits re-
versed.

In the first limit (I,—+0, 5~0+; A, /5&0), only the
divergent contributions proportional to (A, /5)" survive.
Terms of order A, (A, /5)"(m )0) are neglected. The
dominant divergent contributions are obtained by pairing
the internal momentum q; in Eq. (29) for the resistivity.

To demonstrate this, rewrite Eq. (29) as the sum over
components

Finally, the inverse relaxation time for an electron of
momentum p is given by p;(&)= g g„(&),

n=1
(45)

mX;p fdfI ~P[2p sin(P/2)]~ (1—cosP) .
r(p) (2~)'

(40) where

Equation (37) is the result of the FB method when the
steady-state t~ ~ limit is taken after the limit of small

Notice that this result disagrees with linear response
theory. and, for n ~2,

(46)

g~(~)=, , gP(q)q e Trtp„(t)p (t)J

n —1

g„(t)= i "Agg(q)—q„e . f dt2 f dt3 f dt„p;(t„)
q, a

XTrIp„(r„)[X(t„),[8„(r„,), . [H„(r, ), e"'"'"p,( )] ]]j .

-5(t2„&—t&„)

x [p, (r,„),[p, (r,„,), [p, (t, ), p, (t)] ]] .

The Laplace transform of these components contains integrals of the form
OO

—5(t —t2) —5(t~ —t3 )A'" f d (r r2 ) f d—(r& r& ) . . . f 1 (r&„ —
& r&„ )e ' e ' ' . . e—

0 0 0

(47)

(48)
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The divergent contributions that survive in the first limit contain momenta that are paired with q2 = —q2, for
m =1,2, . . . , n .A recursion relation for the commutator in Eq. (48) with paired momenta is derived in Appendix A,
where it is shown that this commutator does not depend on the variables t2 —t2 + &

for m = 1,2, . . . , n —1. Integra-
tion over these variables generates the factor 1/5", so Eq. (48) would then be proportional to (A, /5)". It is straightfor-
ward to show that commutators with any unpaired momenta will reduce this divergent contribution by at least one fac-
tor of 6.

Note that if the phase factors generated by commutators of the form of Eq. (31) had been kept up to this point, they
would contribute additively to the Laplace parameters 5. Since the thermodynamic limit X~~ is taken before the
long time limit 5~0, these factors do not affect the evaluation of the divergent terms.

Now consider the divergent contributions of the first component g, (5). After expanding the density matrix p„(t), the
divergent term of order k (A, /5) can be written

.~m +1
(2m +21(5)— ' g2m +2

pf 2e 2U
d

x g lp(q, ) I'. ~g lp(q +, ) I'q, „
qm+1

x f "dT J "dT . . f"dT ~1 d 2 q2 d 4. . . q +1, d 2 +2
0 0 0

—5T2 —5T3 5T2m +2Xe e . e

(m+~)XII (q1, q2, . . . , q +1,'T2, T3 T2 +2),
where II (q;; T; ) is a generalization of the density-density correlation function defined in Eq. (36):

II'"'(q;; T; ) = i " '0( T2 )0( T3 ) . 0( T2„)
1 —0 /T

Z
Tr Ie ~P (t ) tP—(t2 —1) tP (t2) P (—tl)l

e

where T, =t,—t,. for i =2, 3, . . . , 2n. In Appendix B, I show that to lowest order in Ud,

(49)

(50)

(51)

for m ~ 0. Notice that the lowest-order m =0 term agrees with the result of Eq. (37).
The divergent contributions to g„»(5) that survive the first limit can be found in a similar way. For each component

g„(5),p„(t) can be expanded in powers of A, . In Appendix C it is shown that only the lowest-order term in this expan-
sion remains nonzero after the first limit. In order to pair all the internal momenta, only odd terms g2„+,(5) are con-
sidered:

+n
g2„+1(5)= A

" '
5

qn

l@(q ) I' lp(q. ) I'q,

x f "d7,f "d7, f "d7,„„
oo —5T —5T —5T —5t

X dt e 2e 3. . . e 2n+1e 2n+1
2n +1

Xp,. (t2„+1)(q1„72+q2 7 4+ ~ ~ ~ +q„72„)
(n)X II (q1, q2, . . . , q„;T2, T3, . . . „T2„) (&2)

$2n
'n

g2„~&(g(=( ()" p;(g)( )7
(53)

for n 1. This term is evaluated in Appendix B, with the
result

(A, /5~0)
lim [A, p;(5)]=
05 0+

n=1
which involves the Laplace transform of the resistivity.

Summing Eqs. (51) and (53) over the divergent contri-
butions yields the result

(54)

which is exactly the same relation obtained by Huberman
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(0)—
Ne'(r &

' (56)

in agreement with the Kubo formula for the conductivi-
ty. Notice that if the additional contributions to the den-
sity matrix had been left out, the resistivity would have
vanished in this limit.

V. CONCLUSION

This work has shown that the FB resistivity contains
two sets of divergent terms, which are the same as those
found by Huberman and Chester. ' The first set of diver-

gent terms arises from the density matrix of the relative
electron-phonon system. The second set arises from the
explicit dependence of the density matrix on the electric
field, which was previously ignored by FB calculations.
Upon resumming these divergent terms with the
prescription of van Hove, ' the FB result is brought into
agreement with the Kubo formula. When the second set
of divergent terms is ignored, the FB resistivity is formal-

ly equivalent to the result of Rousseau, ' who also
neglected the explicit dependence of the density matrix
on the electric field.

It is worth emphasizing that, without the extra terms
in the density matrix, the resummed result for the FB
resistivity would vanish. When this new set of terms is
included, by treating all variables as quantum mechani-
cal, the resummed expression agrees with the Kubo for-
mula. Thus, the FB theory is formally equivalent to
linear response theory only when the full density matrix
is used.

The discrepancy between the lowest-order FB resistivi-
ty and the Kubo formula cannot be explained by the
presence of a heat bath. To first order in the electric
field, the effects of Joule heating can be neglected and the
existence of a heat bath is irrelevant. To this order, the
electron-phonon interaction merely provides an addition-
al frictional force that acts on the center of mass of the
electrons. Isothermal and adiabatic calculations of the
resistivity must then produce the same result.

Like its predecessors, the theories of Rousseau' and of
Kenkre and Dresden, ' the FB theory is formally exact.
This work has shown that, when the full density matrix is

used, the FB method is consistent with linear response
theory for the conductivity, as are the formalisms of
Rousseau and of Kenkre and Dresden. Unfortunately,
like its predecessors, the FB method contains an infinite
number of divergent terms that must be resummed to ob-

and Chester' in their analysis of the theory of
Rousseau. ' The numerator arises from g&(6) and the
divergent terms in the denominator from g„»(6). If the
center-of-mass position were treated classically, these
divergent terms in the denominator would be absent.
Equation (54) can now be formally resummed:

1 1

(X /5 0)
())j m ~ (+1, /(&))

( (Pi
1

I+A, /(5r)

Finally, upon performing the limit A, /6~ ~, I find that

tain the limit of weak scattering. The presence of diver-
gences in all these formalisms severely limits their appli-
cations and eliminates their advantages over the Kubo
formula.

This paper has been concerned with the evaluation of
the zero-frequency resistivity in the presence of a con-
stant electric field. When an oscillating electric field with
frequency ~ is applied, the drift velocity and the steady-
state resistivity become time dependent. In their study of
the work of Kenkre and Dresden, Argyres and Sigel con-
cluded that the expansion of the frequency-dependent
resistivity in powers of k is convergent if co(r) ))1. In
this high-frequency regime, the lowest-order term in an
expansion of the resistivity does agree with the Kubo for-
mula. For frequencies that satisfy the condition
co(r) ))1, the FB method can also be used to obtain a
convergent expansion of the resistivity. Provided that
the full density matrix is used, this expansion should also
agree with the Kubo formula. However, to evaluate the
resistivity for arbitrary co(r) requires the summation
over an infinite number of terms of the form
A, "/(co+i5)". For co(r) ~ 1, this expansion diverges.

The calculations of this paper have been performed to
lowest order in the electric field and in the electron-
phonon coupling M(q, y). To higher order in the electric
field, the effects of Joule heating must be considered and
the cross terms b'etween the electron-impurity and
electron-phonon interactions may become important.
Other authors have shown that the effects of Joule heat-
ing can be consistently incorporated into a calculation of
the conductivity based on the Kubo formula. Calcula-
tions of such nonlinear effects with the FB theory will be
frustrated by the presence of divergences even to lowest
order in M(q, y). It would be surprising if higher-order
terms in an expansion of p;(5) in powers of M(q, y) were
not also divergent.

The FB method has recently been recast into the
form of a quantum Langevin equation for the center-of-
mass position R;(t) Though th. is reformulation does not
use a density matrix, the same Aaws of the original
method are retained: the noncommutivity of the center-
of-mass operators is ignored and the divergence of the
resistivity is not addressed. The result for the zero-
frequency resistivity is again in disagreement with linear
response theory.

Some FB calculations' ' have reported that Auctua-
tions in the center-of-mass position affect the impurity
resistivity. Since this effect occurs to second order in k, it
is unrelated to the divergences in the higher-order contri-
butions to the FB resistivity, which first occur at fourth
order in k. The predicted change in the resistivity is pro-
portional to I/N. The present work did not find such a
lowest-order change because the thermodynamic limit
X~~ preceeded the steady-state limit 5~0+.

It is unlikely that the present work will end the search
for a nondivergent theory of the resistivity, nor is it so in-

tended. However, the future designers of resistivity for-
mulas would be well advised to heed the lessons of Ar-
gyres and Sigel and of Huberman and Chester: the first
test for any theory of the resistivity is that it agrees with
the Kubo formula to lowest order in the electric field.
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Note added in proof A. fter this work was submitted for
publication, I received results from Argyres, who uses
projection techniques to show that the FB resistivity is
divergent. With the uncorrected density matrix p„(t),
Argyres proves that the FB resistivity resums to zero, in
agreement with this work. I have also recently become
aware of papers by Peeters and Devreese ' and by Cox
et al. , who treat related problems.
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In this Appendix, I develop a recursion relation for the
correlation function II' '(q, ; T, )d. efined by Eq. (50).
From the definition of the electron density operator p, it
can be readily shown that
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It is also easily shown that for any function Fk,

(A2)

(A3)

P (t2), P (t, ), g Ak Fk
k, o.

ice)~
q T2= Q Akq e

' ' (Fk —Fk q +Fk q+q Fk+q )—.
k, o.

(A4)

Therefore, if the correlation function is written

l Cc)k

II' '(q&, q2, . . . , q; Tz, T3, . . . , Tz ) =2i ( —1) O(T2)8(T3) . 8(T2 ) g [f(ek+q ) f (ek)]e —' Gk™,
k

(A5)
then for m ~1,

T2m fcok 12 l &k+ T2m lc k+ T2G(m+1) G(m) ' m G(m) ' qm +g(m) q +)' q G(m) (A6)

and Gk" = 1. Note that Gk ' is a function of I q„q2, . . . , q I and I T2, T4, . . . , T2 2 I. Equations (A5) and (A6) per-
mit an inductive calculation of the divergent contributions to the resistivity. Two symmetry relations that facilitate this
calculation are

(n) (n)Gk, = —Gk (q&, q2, , q. ~,
—q„),

G'"„'=G',"'( —q„—q„. . . ,
—q„), n ~1

which follow from Eq. (A6).

APPENDIX 8

(A7)

(A8)

In this Appendix the dominant divergent contributions to g, (5) and gz„+,(5) (n 1) are evaluated inductively. Con-
sider first the contributions to g', + '(5). Using the recursion relation of Eqs. (A5) and (A6), Eq. (49) can be written,
form )1,

2~. m + ~ g2m +2
g{2m+2)(5)—( 1)m+1

2e2 Qm
- qm+i

lp(q~)l' lp(q ~~)l'q&. q +&,.
Xg 5(E+ —E) dT dT . dT e 'e . . e ' G'+qm+1 k 2 4

k k 0

8~2Nm +1 2m +2
1)m+1

~2e 2 gm

l4(q +i)l'qi. q +i,.
qm+I

X p 5(Ek+q —ek)5(ek+q —ek) f dT2 f dT4 . f dT2 2e 'e ' . e ' 'Gk ' .
k k

qm+ & q 2 4
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Now note that

X IP(q +»I'q( q +)5(Ek+q
qm +1

where r(k) is defined by Eq. (40). So, for m )2,

4~+m g2m +2
(2m +2) (5) ( 1 )m

+2e 2 $m

x g lp(q, )l' ~ . ~ Iy(q )I'

d 1X g 5(Ek+q ek)dsk»& 'T k

=( —1)
2 $m

X dT2 dT4 dT2 2 e

X[k q, —(k+q ) q, ]
4~+m g2m +2

X e

k T2 2 l Nk T2

2
d 1X g 5(ek+ —sk}
dEk 'qm —i

X f dT2 f dT4 . f dT2 4e

By iterating this procedure, it is apparent that

4~+2 g2m +2
g(2m+2)(5) —

( 1 }m
~2e 2 gm

x g ly(q )I'l@(q )I'

—5T2 —5T4 —
6T2??t 4~(m )), (B3)

d 1X X d 5(Ek+q, —Ek)
dEk 2 7 k

m+1

=( —1)
$m +e2

m —1 —QT k q 2 k&q 2f dT2e '(e ' ' +e ' ' )[k q, —(k+q2). q, ]
0

as stated in Eq. (51). This result is also valid for m = 1 and 2, as can be shown explicitly.
The calculation of the divergent contributions to g2„+,(5) (n 1) proceeds in a similar fashion. It is simple to show

that only the term involving q„„T2„survives in Eq. (52). Using the relation

oo '~k, q Tzn
( ) df (n)dT2 T2 e X [f(sk+q„) f ( k)e] e Gk =~& X d 5(&k+q„—Ek}Gk"n n

~
n

0 k dc, k

Eq. (52} can be rewritten

~n g2n
g2~+((5) = 2)r( —1)" p, (5)

M

(B5)

x g I p(q, ) I' . .
I(t (q„)I'q, „q„,

qn

X g 5(ek+q —Ek) f dT2 f dT4 . f dT2n —2 e 'e . e '" 'Gk"' .
dFk " 0 0 0

Comparison of this result with Eq. (Bl) for g() '(5) reveals that

(B6)
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/2n
g2„+i(&)=( &)"+ „p;(5) )

(87)

as stated in Eq. (53).

AFFKNDIX C

In this Appendix, I show that higher-order terms in an expansion of p„(t) in Eq. (47) for g„&2(t) are suppressed by
powers of 5 compared with the dominant contributions. Consider, for example, the 2mth-order term in the expansion
of p„(t) O.nly even powers are used so that the internal momenta of the correlation function can be paired. The contri-
bution of this term is

g2n+), 2m(5) ~ 5'"+
qn+m

lb(q. +

X dt dt 2 3. . . 2(n + m)+1 2(n +m)+1
1 2 2(n+m)+1 e

Xp, (r2„+, )(q,.T2+ q,„T4+ . +q„„T,„)8(T2„+,)0( T2„+2 )

~ ~(n+m)(
(ql&q2& ' ' '

& ln+mi x 2& T3& ' '
& 2n& 2n 2n+2& T2n+3& 2n+4& ' ' ' & 2(n+m)+I )

To lowest order in 6,

(Cl)

2n+1 2n+25 dr2„+, p, (t2„+, )e " " 8(t2„+, t2„+2—)=p;(5)
0

(C2)

It can be shown that higher-order terms in 5, proportional to (5t2„+2)p,.(5), will also suppress the divergent contribu-
tions from g„&2(5). Shifting indices and considering only the lowest-order term in 5, I find that

g2(n +m)
g2„+, 2 (5) P;(5)N;"+

x & lp(q, )l' . . p(q„+ )I'ql„
qn+m

00 oo Qo —5T —5T —5T
X dT dT - . dT2 4 2(n +m) 2e 4. . . e 2(n+m)

X(qlx T2+q2x T4+ ' ' +qnx T2n )

l tLJk

X g [f(Ei )
—f (E), )]Gk"+ 'e

k

But, after performing the time integral, it can be shown that

T l&k T2(It + )

X l&(q. + )l'X f "T2(.+ )
e """e "+

l f(&)+q„.) —f(&l)]Gk"+ '~5.
qn+m

(C4)

Therefore, g2„+, 2 (5) (m )0) is suppressed by at least one factor of 5 compared to (A, /5)" + . In the first limit
(A, ~O, 5—&0;A. /5&0), this term will vanish. Therefore, only the lowest-order term in the expansion of p„(t) needs to
be considered.
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