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The recently proposed force-balance theory of resistivity is examined critically in the context of a
simple model. It is shown that this theory's basic formula, when evaluated correctly, yields in gen-
eral a vanishing resistivity. This renders this theory untenable.

I. INTRODUCTION

There has recently been renewed interest in the theory
of transport properties of solids, especially in the regime
of nonlinear response to an electric field. ' For the case
of linear response the theory of Kubo and others has
given the generally accepted standard formula for the
conductivity o.. The evaluation ' of this formula, how-
ever, presents considerable difficulty even in the case of
weak scattering due to the imperfections. This is due to
the fact that o. is of order A, , where A, denotes the
strength of the scattering interaction. Specifically, the
evaluation of o. requires the summation of an infinite
number of appropriate terms (or diagrams) and it results
in an integral equation for the steady-state distribution
function, similar to the semiclassical Boltzmann trans-
port equation' ' in the simplest cases. A different
method of evaluation, the method of kinetic equa-
tions, ,

leads more simply to identical integral equa-
tions.

Because of this difficulty, a number of different formu-
lations ' have been proposed which give explicit ex-
pression for the resistivity p=o. , rather than the con-
ductivity o.. These were expected to be easier to evaluate
for small A, , because p is of order A, and thus, it was
thought, it was necessary to evaluate only the first non-
vanishing term in the expansion of p in powers of I,. If
correct, these formulations would have been of extreme
practical usefulness. However, all of them have been
shown to be in error. If correctly evaluated, they
too require the summation of an infinite number of ap-
propriate terms even for smal1 A, . The physical results are
identical to those of the standard theory for o., as
they should be, since both formulations evaluate the same
physical quantity, i.e., the adiabatic conductivity o. or its
inverse p.

Recently a new formulation has been proposed, the
force-balance theory, ' for the linear and nonlinear
resistivity p. It is claimed to have a simple mathematical
structure for small A, , and many applications have been
reported to complicated systems that involve electron-
electron, electron-impurity, and electron-phonon scatter-
ing. This theory is not mathematically equivalent to the
standard theory in the case of linear response. It has
been stated that it represents the isothermal resistivity
(linear and nonlinear).

In order to examine critically this new theory, we con-
sider here for simplicity the case of independent electrons

and scattering only by fixed impurities. This case (includ-
ing electron-electron interaction) has been considered in
detail by the authors ' of this theory. We are going to
accept, for the sake of argument, all explicit and implicit
assumptions in the formulation of this theory, and we
shall concentrate only on the evaluation of the formula
for the resistivity that this theory produces. We shall
show that the correct evaluation of p according to this
theory requires the summation of an infinite number of
appropriate terms even for small A,. Furthermore, it will

be shown that such a calculation gives a resistivity (linear
and nonlinear) equal in general to zero for small A, . Final-

ly, it is shown that p=O even for arbitrary A, , in general.
On the basis of this result it is clear that any discussion of
the physical basis of this formulation, as it has been

presented so far, is unnecessary.
In the following section we present a succinct formula-

tion of this new theory for the simple system of indepen-
dent electrons with electron-impurity scattering, which
forms the basis of our considerations. The resulting for-
mula for p is evaluated "simply" up to order A, and it
constitutes the main result of this theory. In Sec. III
we examine the formula for p critically after rewriting it
in a more convenient form, and we evaluate it correctly
for small t(,. We find it to give p =0, in general. We point
out that the same argument gives p=O for all A, , in gen-
eral. We conclude with a brief discussion.

D. THE FORCE-BAI.ANCE EQUATION
FOR RESISTIVITY

We present here briefly the new theory of resistivi-
ty (linear and nonlinear) in the simplest case of a system
of X independent electrons in N,. random impurities
driven by a homogeneous electric field E.

The Hamiltonian of the system is

HT= g [H(p;, r;)—eE r;), (2.1)
i=1

where

2

H(p, r)=Ho+ V= + V(r)= + g u(r —r, )
2ppl 2'

(2.2)

and u(r —r, ) is the electron-impurity potential centered
at r, . The central point for this formalism is the intro-
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duction of the variables for the center of mass (c.m. ),
R,P, and for the relative electrons, r,', p,', namely

where

V(R)= V(r'+R) . (2.14a)

R=(1/N) g r, , P = g p; (2.3) Thus its density matrix p(t) satisfies the Liouville equa-
tion

r,
' =r, —R, p,

' =p; —(1/N)P, (2.4)

[8,I'tt ]=i 5 tt (2.5)

which satisfy canonical commutation relations (we take
A'= 1)

i p(t)=[H, +H„(t), p(t)] .
dt

(2.15)

Now it is assumed that the steady state is described by
the solution of (2.15) in the limit t~ ~ with the initial
condition

[&,pj'p]=i5 p(5,J
—1/N)=i5 P,, ,

while (P, R) commute with (p', , r,'). Thus

HT =H, +H, +H„. ,

where

(2.6)

(2.7)

—P( H —pX) —P( H —pN)
p(0) =e ' /Tre

while

R(t)=vt +Ra

(2.16)

(2.17)

p2
H, = —NeE.R,

2M

(p,')'
H, = g = g(H, )„„c„c

PV

H„= g V(r,'+R)= g [V(R)]„„c„c

(2.8)

(2.9)

(2.10)
XeE+D=O,

where

(2.18)

and H„. is turned on adiabatically. Here v is the constant
velocity of the c.m. in the steady state. It is determined
by the condition that the average of the total force (2.11)
in the steady state vanishes, i.e., by the force-balance
equation

P= i [P, Hz ]—=NeE+FT(R),
where

Fz.(R)= — g V(r,'+R)= g F(r,'+R)a

j

= g [F(R)] „ctc,

(2.1 1)

(2.12)

and

F(,)
BV(r')

Br' (2.13a)

is the operator for the force on a relative electron due to
the impurities, while

F(R)=F(r'+R) . (2.13b)

Here H, represents the motion of the c.m. as an e8'ective
particle of mass M=Nm driven by the field and H, de-
scribes the system of relative electrons taken as uncon-
strained fermions, with c„and c being the creation and
annihilation operators for the arbitrary one-electron
states ~p) and ~v), respectively. H„gives the coup.ling
between these two subsystems due to the electron-
impurity interaction. The operator for the total force on
the electrons is, according to (2.7)—(2.10),

D= lim TrIFz(R(t))p(t)j =D(v), (2.19)

with R(t) given by (2.17) in (2.12), (2.14), and (2.15). Tr
denotes the trace in the space of the many relative elec-
trons and it includes the ensemble average over the ran-
dom impurity centers Ir, j. From (2.18), v is determined
in terms of E and thus the electric resistivity (nonlinear)
in the simple case of an isotropic system is

Z D(u)
P

(Ne) u
(2.20}

D= g k"D„,
P1 =2

(2.21)

where all vector quantities are in the direction of E.
Thus, the quantity D, defined by (2.19) and

(2.14)—(2.17), is the basic formula of this theory, as it
determines through (2.20} the resistivity (linear and non-
linear).

Now, the simplicity in mathematical structure which is
the most important aspect of the present method, accord-
ing to the authors, arises from the expectation that the
evaluation of D, Eq. (2.19), for weak electron-impurity
interaction is simple. Specifically, if A, denotes the
strength of the impurity interaction V and

For the time development of the system it is assumed
that the c.m. , due to its enormous mass M =Nm, behaves
like a classical system and thus R(t) becomes a time-
dependent c number. It is then taken that the subsystem
of relative electrons evolves in time under the inhuence of
a t-dependent Hamiltonian

p(t) = g A,"p„(t),
n=0

it is taken that

Dz= lim TrIFz'(R(t))p, (t}j,
f —+ oo

(2.22)

(2.23)

H, +H„(t)= g [Ho+ V(R(t) )]„,

etc�„,

p, v
(2.14)

where



2984 P. N. ARGYRES 39

p, (t) =—I dt' e ' [H„(t'), p(0)]e
where

g (t) e
—iP R(t)f (t)eiP R(t) (3.7)

(2.24)

since FT is of order A, . It is clear that po(t)=p(0) and
Do=De =0.

From (2.23) and (2.24), Dz(v) is found to be, when l(M )
is taken as the plane-wave representation lk(T ),

i g (t) =[H', g (t)]=L'g (t). d
dt

(3.8)

and F=F(r)= —BV(r)/Br. From (3.3), (3.4), and (3.7)
we get for g (t)

D2(v)= lim ( —i)N; g qlu(q)l 2g f.(&k+q ) —fo(Ek )

c—+0 q k l E+ E'k+q ~k

g (0)=f()(H() ),
where, since dR/dt =v,

(3.9)

=2Xfo(Ei ) g IVkk (k'
k k'

(2.25) H'=Ho+v p+ V(r) =Ho+ V(r) (3.10)

where

2)r& I V„„,l'&5(sk

with ( ) denoting the impurity average,

c.k=c,k+v.k=k /2m+v k,

(2.26)

(2.27)

and correspondingly

L'=L()+L„L()X=[H(), X], L,X =[V, X] . (3.11)

(3.12)

In order to find the limit of g (t) for t ~ 00, it proves con-
venient ' ' to introduce the Laplace average

g(E)=E J e "g(t)dt
0

fo(e) is the Fermi-Dirac distribution function and u (q)
is the Fourier transform of the single impurity potential
u (r) of (2.2). This is the result of Refs. 36 and 38 where
the impurity scattering was considered in detail.

III. EVALUATION OF 0
We show here that the proposed expression (2.23) for

D2, and thus the resistivity up to order I, , is in error.
We prove that a correct evaluation of (2.19) yields D =0,
and thus zero resistivity, in general.

We first simplify the mathematical structure of this
theory, taking advantage of the fact that we are not con-
sidering electron-electron or electron-phonon interac-
tions. Thus from (2.12) we see that D of (2.19) can be
written in terms of the one-electron density operator

f(t)„=Tr[c„p(t)ct } (3.1)

with E a positive number. Now if lim, g(t) exists we
have ' ' for the steady state

lim g(t)= lim g(s) .
f ~ oo c~O

(3.13)

g(s)=iE(is —L') 'f()(H()) .

From (3.6), (3.13), and (3.14) we have

D= lim D(E),
c, ~O

where

D(s) = tr [FiE(i E L') 'fo(Ho—) } .

Or, since

(3.14)

(3.15)

(3.16)

From (3.12), (3.8), and (3.9) we find that g(c, ) is given by
the compact but convenient expression

(without the impurity average), namely

D = lim tr [F(r+R(t) )f(t) } .
is(iE —L') '=1+(is L') 'L',—

(3.2)
we have equivalently

(3.17)

Here tr is the trace over the one-electron free-particle
states lkcr ) with periodic boundary conditions and it in-
cludes the impurity average, while F(r), given by (2.13),
is the operator for the force on an electron due to the im-
purities and R(t) is given by (2.17). From (3.1), (2.15) and
(2.16) we have the Liouville equation for f (t):

(3.18)

F= — =iL&p,()V(r)
Br

(3.19)

we get

D(s) = tr [F(is L') 'L
if—o },

since tr [Ffo}=0 and L ofo =0. Furthermore, since

i f (t)=[Ho+ V(r+R(t)), f (t)],
dt

(3.3)
D(E) =i tr[(L,'p)(is —L') 'Li fo } . (3.20)

f (0)=f()(H() ) = [e ' + 1] (3 4) Finally, since tr[ AB }= tr[BA } and

F(r+R) =e'i' F(r)e (3.5)

and similarly for V(r+R), we have from (3.2)

where, as in (2.9), Ho =p /2m, and p, r now refer to the
relative electron. Since now

tr[ A (iE L') 'B }
= tr[—B(is+L') 'A },

we, have the convenient expression

D(E)= —i tr[foL)G(is)L(p},
where

(3.21)

(3.22)

D= lim tr[Fg(t)} (3.6) G(is) =(iE+L') (3.22a)
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From this we can generate easily an expansion of D(s)
in powers of A, , i.e.,

correct way is

Dz, = limk o lim [A, D(e)] .
c,~O

(3.33)

D(s) = g A,"D„(s),
n =2

since

(3.23)
This is equivalent to the "A, t limit" technique of van
Hove which gives

G (i E)=(iE+L0+L, )

where

= g ( —1)"[Go(iE)L,]"Go(ie),
n=0

(3.24)

Go(iE) =(i E+Lo)

Thus we have

(3.25)

Dz(E) = i t—r tfOL, Go(ie)L, p j . (3.26)

If we now take, with the authors of the force-balance
theory, as in (2.23),

D2= lim D2(s),
a~0+

we obtain from (3.26) simply

D2=2+ fO(Ek) g Wkk (k —k)
k k'

(3.27)

(3.28)

(3.29)

and thus such terms diverge as c.~O+. By contrast we
note that for the nondiagonal part Xnd of X,

which is identical, of course, to (2.25).
But we now prove that such a procedure is erroneous.

The error lies in the fact that expansion (3.23) of D(E) in
powers of A, is invalid in the limit c,~O+, since there are
terms of order X" (n ~3) that diverge as E~O+. These
divergent terms appear whenever, in expansion (3.24),
Go(i c)opera, tes on the part Xd of any operator X that is
diagonal in the plane-wave representation ~k ), which di-
agonalizes Ho =Ho+v p. For then

1
[Go(iE)Xd]„„,= . Xkk5„„, ,

lE,

D2, = lim lim [A, D(s)] .
A, ~O, c~O
(A, /a&0)

(3.34)

Go(iE)h= 1

lE,
(3.36)

whereas Go(is)b, ' yields regular terms according to
(3.30). Thus it is convenient not to use expansion (3.24) of
G(iE) in powers of L„but rather to expand G(is) in
powers of AI, We have

The physical basis of this limiting procedure has been dis-
cussed by van Hove, Argyres and Sigel ', and Huber-
man and Chester, and it amounts to the technique of
Argyres and Sigel we mentioned above. It is impor-
tant to point out that it is this procedure that has been
used ' in the evaluation of the Kubo formula for the
linear conductivity for this system. We now extend the
technique of Argyres and Sigel ' to obtain the correct
evaluation of D. In the Appendix we show that the same
technique yields the standard result for the evaluation of
the Kubo formula for cr. In fact, it does so much more
simply than the earlier derivations, ' which are quite
lengthy.

The isolation of the divergent terms of D(E) is greatly
facilitated with the introduction of the operator 6 that
projects the diagonal part Xd of X, i.e.,

I

(~)kk =Xkk~kk . (3.35)

The projection operator for the nondiagonal part of X is
then 5'= 1 —b, with the obvious properties
6' =6', hh' =5'5 =0. The divergent terms now arise
whenever Go(is) operates on a diagonal operator, since,
as we saw in (3.29),

[Go(i E)X„d ]kk (i e ok+ E—k. )
'—Xkk. (k'Ak) (3.30) G(is) =(ie+Lo+b, 'L, +hL, )

presents no divergence as c,~O+, since when the thermo-
dynamic limit is taken first (in order to avoid the Poin-
care cycle) this becomes where

( —1)"[G'(ie)EL,b, ']"G'(is),
n=0

(3.37)

[GO( l e )X~d ]kk :—[(c'k —
Ek )~ '+i m5(ek —s'k. )]X„„,

as c,~O+ (k'+k) . (3.31)

G'(i s) =(i s+Lo+ b, 'L, )

=Go(i s) Go(is)b, 'L—, Go(i E)+ (3.38)

Thus the procedure of keeping only the term of the
lowest order in A, in the expansion of D(s) in order to ob-
tain the corresponding term of D in the limit E~O is in-
valid. Instead, we must sum the infinite subset of terms
in the expansion of D(s) that are of the form
(A/is)"(n ~, 1). These are the dominant terms for
sufticiently small A, . In other words, evaluating D2 as

Dz= lim lim [A, D(s)],
q~O+ A, ~O

G'(iE)b = . [b+G'(iE)b. 'L, b]=1
lE

from which it follows that

(3.39)

and we made use of the fact AI. &6=0. We note that
G'(i )be,

' has no divergent terms, whereas G'(i )be, does
have divergent terms with a single (1/is) factor. By a
simple rearrangement we can exhibit them by writing

as it was done in (3.26) and (3.27), is incorrect. The b 'G'(i s )b, = . b 'G'(i s)b, 'L, 6 .1

lE
(3.40)
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Finally, from (3.37) and (3.40) we have
n

b.'6 (ie)b, '= g . [b, '6'(is)b, 'L, bL, b, ']"
0 lE,

X b, '6'(iE)b, ', (3.41)

[te+ &S,(e) &]Q(s)=e&S,(E) &p, (3.50)

g W„„,(Qk, —Qk )= lim e g Wk„,(k' —k) =0,
k' k'

or, equivalently, Qk is given by the integral equation

where all divergences are exhibited since 6'(iE)b, ' has no
divergent terms. We now note that the quantity of in-
terest, D(s) of (3.22), when the trace is evaluated in the

~
k & representation, is

(3.50a)

with Wkk, given by (2.26). Equation (3.50a) yields, in

general, Qk=0 and thus (3.48). By contrast, the in-
correct procedure (3.32) yields from (3.47)

(3.42)

n

D(e) = i t—r IfpbL, b, '6(ie)h'L, pI,
since trI fpX I

= trI fpbXI and bL, p =0. Using (3.41) in
(3.42) and rearranging the series, we have

D2= i —lim trI fp&S2(e) &pJ
c—+0

=2+ fp(s„) g W„„,(k' —k)
k k'

(3.51)

D(e)= i tr—fp g
n=0

where

[S(e)]"+'p (3.43)

D(e)= intr —fp , g
n=0

—A,
2

"
[S2(s )]"+ 'p, (3.45)

where

S~(s)=bLib'Gp(ie)h'L, b. =EL, Gp(ie)L, b, . (3.46)

All other terms vanish in the limiting procedure of (3.34).
We recall now that the trace in (3.45) includes the ensem-
ble average over the impurity centers, which we now
denote explicitly by & &. Because of the randomness of
their distribution we Gnd that in the thermodynamic
limit &S2 & =&S2&", and thus upon suinmation of the
series

A,
2

D(e)=— intr f—p 1, + . &S2(e) &

lE

(3.47)

According to the correct limiting procedure (3.33) or
(3.34) for D2„we thus find from (3.47) that, since
&S2(0+) & exists,

D2, =0 .

More explicitly, we have from (3.47)

D2, = lim tr[fpQ(s)]=2 g fp(Kk )Qk
c~p k

(3.48)

(3.49)

where Ql, = lim +& k ~Q(E) ~k & and the diagonal opera-

tor Q(s) is determined by

S(s)=bL, E'6'(ie)b'L, b, =bL, G'(ie)L, b, , (3.44)

since b,Li5=0. In (3.43) all divergent terms are shown
explicitly, since S(e) produces no divergencies as a~0+.

For the evaluation of D to the lowest order of A, we
need all divergent terms of D(s) of the form (k /ie)", as
we explained earlier. These are obtained from (3.43) and
(3.44) by introducing A, and putting G'(iE) =-Gp(ie) [from
(3.38)] in S(s), the neglected terms of (3.38) generating
contributions of the form (A, lie)", (P. lie)", etc. We
thus obtain

which is, of course, identical to the earlier expressions
(3.28) and (2.25).

A similar argument shows, in fact, that D=O to all or-
der in A, . In the expression (3.43) for D(s), which shows
explicitly all divergent terms for @~0+,we note that we
have, in the thermodynamic limit for the impurity aver-
age, &

S"
&
=

& S &
". Therefore, from (3.15)

D= lim ( i)tr—fp 1+ . &S(c,)&
1

g~p EC
&S(s) &p

(3.52)

Since now & S(0+ ) &, given by (3.44), exists, we have as in
the previous paragraph that

D=O . (3.53)

Thus, the force-balance theory predicts, in gen-
eral, zero direct-current resistivity (linear and nonlinear},
at least for the system of independent electrons in ran-
dom impurities of arbitrary strength.

IV. DISCUSSION

It has been argued that this force-balance theory
gives the isotherma/ resistivity (linear and nonlinear), in
contrast to the other expressions ' for the adiabatic
resistivity (linear), which have been shown to be er-
roneous. As a result, it has been stated that a critical
analysis like the one presented above cannot in fact be
applicable to the force-balance theory. We have not dis-
cussed the question whether this theory gives the
isothermal rather than the adiabatic resistivity. Our
point of view has been that whatever the physical mean-
ing of the expression for D [Eq. (2.19}]is according to
this theory, the method of eualuation of this quantity is in
error. A correct evaluation of D—at least for the case of
independent electrons in random impurities —yields in
general a vanishing result for the resistivity. Thus a dis-
cussion of the physical meaning of p as given by Eq.
(2.20) becomes superfluous. We conclude that the force-
balance theory, as it has been presented so far, is unten-
able.

Finally, we present an argument which without de-
tailed calculations indicates that D=O. From (3.6) we
see that D= tr FIg(taboo }I is the average value of the
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force F of the impurities on an electron for a steady state
produced by the Hamiltonian H', Eq. (3.10), starting
from the initial condition (3.9). Now we note that equa-
tion (3.8) for g (t) can be written equivalently as (A4)

is the total momentum and pT(t) is the statistical density
operator determined by

. d
i pT(t)=[Hr pT(t)]dt

i g(t)=. d
dt

+V( ), g(t)

If we now carry a gauge transformation

gl( t)elmvrg( t)e llnvr

(4.1)

(4.2)

(A5)(0)—e P(H—PN) y
—Tr —P(H P)v—)

PT

Here H= Q„,H„„c„c,N= g„c„c„,and Tr includes
the impurity average.

This reduces immediately to a one-electron system,
since from (A2) and (A3) we get

we find that

i g'(t)= + V(r), g'(t) =[H, g'(t)]
dt 2m

(4.3)

«[pfT(t) j

where fr(t) is the one-electron density matrix,

[fT(t)]„.= Tr t c„pr(t)c', j,

(A6)

(A7)
g'(0) =f()[(p—mv) /2m]

while

D = tr [Fg '( t ~ 0() )j,

(4.4)

(4.5)

and tr is the trace in the space of one-electron operator
and includes the impurity average. From (Al), (A4), and
(A5) it is easily seen that

since F=F(r). But, according to (4.3) and (4.4),
g'(t~a() ) is the equilibrium value of the one-electron
density operator for the independent electrons with total
one-electron Hamiltonian H =HO+ V starting from the
displaced unperturbed equilibrium distribution (4.4).
Since we expect such a system to reach an equilibrium
state as t~~, ' g'(t —+~) must be a function of
H =Ho+ V. But, in view of the fact that

i f&(t)=[H —eE r, fT(t)],
dt T

fT(0)=fo(H) =(e~' "'+1)

For the linear response we get from (A8),

fT(t)=f,(H)+f (t),
where

(A8)

(A9)

(A10)

F=i [V, p]=i [H, p], (4.6) i f (t)=Lf (t)+C =(L()+L, )f (t)+C,. d
dt

(Al 1)

we immediately get D= —tr[[H, g'(t~ao )]pj =0. Al-
though clearly this is not a rigorous argument as present-
ed here, it provides an understanding of the result D=O
on more physical grounds.

Note added in proof. This argument can be genezalized
to apply to the more complicated system of electrons and
phonons with electron-electron, electron-impurity and
electron-phonon interactions.

f (0)=0,
C = —eE.[r, fo(H)] .

(A12)

(A13)

In (A 1 1) we have introduced LX = [H,X],
LOX = [HO, X], and L )X = [V,X]. The ohmic current
density for the steady state is then

APPENDIX
J= limt~ oo

tr[pf(t) j (A14)

We derive here the standard results of the linear
response theory for the conductivity of the system under
study, Eqs. (2.1) and (2.2), using the technique we
developed in Sec. III. This should be compared with the
other existing methods ' for the same problem.

For the system of electrons described by Eqs. (2.1) and
(2.2) we can write (A16)

In order to consider more easily the steady state, we in-
troduce the Laplace average

f(s) ef=dt e "f(t) . (A15)
0

From (Al 1), (A12), and (A15) we get

f(e)=E (iE)C,

KT g (H —eE.r)„c„c„, (A 1) where
P, V

where H =Ho+ V is given by (2.2). The current density
1s

K(iE) =(ie—L ) (A17)

Since now f ( t ~ co ) =f(v~0+ ), we have from (A14)

JT= lim Tr[PpT(t)j,
m

(A2) J= lim trjpf(s) j
= lim tr[pbX(is)Cj .

a~0+ m ~~0+ m

where

P= g (p)„,ctc
(A18)

In order to evaluate (A18) we expand K(is) and C in
powers of V. We note that while
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C= gC„,
n=0

(A19)
n

] 00

EK(ie)b, = . g . [S(E)]"6,
lE

O
lE,

(A29)

Co= —eE.[r,fo(HO)]=( i—e!trt)E.pfo(IIo)

presents no difficulty,

K(iE)= g [Ko(iE)L&]"Ko(ic).
n=0

with

(A19a)

(A20)

where

(A30)

~K(ie)~'= . g . [S(e)]"AL,b, 'K'(ie)h',
lE n=O lE

S(e)=~L~~'K'(iE)&'L, b =bL, K'(is)L, A .
(A21)

(A31)
Ko(iE) =(iE—Lo)

generates divergent terms such as E.—+0+. Specifically,
since

Taking now the impurity average and noting that
&[S(e)]"&=&S(s)&" a d &S(E)& &=&S(e)&&& & for
any operator 3 in the thermodynamic limit, we have,
upon summing the series,

Ko(i E)b, =
lE,

(A22)

such an expansion diverges term by term as a~0+ and
we must sum the divergent terms. In order to carry this
out, it is convenient to expand K(iE) in powers of hL„
rather than L

&
as in (A20}, i.e.,

& bK(i E)C & =b &K(i E) &6& C &+A&K(ie)b, 'C
&

=[tE —&S(E)&]-'[&SC &+D(E)], (A32)

where

K(ie)=(iE —Lo 6'L& AL,—)— D(E)=&EL&K'(iE)b, 'C& . (A33)

[K'(i E)AL &6,']"K'(ie),
n=0

(A23)
Since now S(e),D(e) have no singular terms as e~o
we have from (A18)

where

K'(ie) =(iE—Lo b, 'L,)—
=Ko(i e)+Ko(is)h'L, KO(i c)+, (A24)

J=2 Qkf„,
m

where fk =
& k

~f ~k & and f is the diagonal operator:

(A34}

K'(i )be, = [6+K'(i E)h'L, 5] .
1

lE

We thus have

bK'(iE)h= b, ,
l

lE

AK'(i E )b, '=0,

(A25)

(A26)

(A27)

We note that K'(i E)A' has no divergent terms, whereas
K'(i E)h does have divergent terms with a single ( I/i E)
factor, namely

f = —&s(o+) &-'[&ac &+D(o+)],
or equivalently

&S(0+)&f = —[&Ec&+D(0+)] .

(A35)

(A36)

g wkk (fk fk ) =(e lm)E kf o—(et, ),
k'

(A37)

This is an integral equation for the distribution function
fk. In the lowest order in A, ( V~A, V), we have clearly
that ft, is of order A, , and it is given by the standard
Boltzmann equation

b 'K'(i E )b. = b, 'K'(i e )b, 'L, b, ,
1

lE,
(A28) where

(A38)
while b, '

K(i )bE,
' has no singular terms. Finally, from

(A23) and (A26) —(A28) we get, after reorganizing the
series,

All these results can be obtained more simply by the
method of kinetic equations.
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