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Magnetically driven lattice instabilities
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The spin-lattice interaction, which very recent experiments suggest is significant in the layered
perovskites, is modeled by adding to the coupling constant of the anisotropic Heisenberg antifer-
romagnet a linear dependence on the lattice configuration. It is found that (a) the spin-lattice in-
teraction softens the mode with wavelength of twice the lattice parameter, (b) at finite temper-
tures the lattice symtnetry breaks and the system becomes dimerized, and (c) the dimerization
vanishes exponentially as the temperature approaches T 0. The calculation assumes a one-
dimensional model. However, the extension to higher dimensionalities is straightforward.

Apart from its obvious importance as the parent com-
pound of a class of high-T, superconductors, LazCu04 —s
is interesting for its remarkable magnetic properties. Ex-
periments show that, for small enough b, this material ex-
hibits three-dimensional antiferromagnetic order. The
Neel temperature T~ may be as high as T~ -240 K, but
decreases rapidly with the oxygen deficiency b. However,
long-ranged two-dimensional antiferromagnetic correla-
tions in the CuOz planes characteristic of these layered
perovskites do survive for temperatures well above T~.
It is not yet clear how the two-dimensional antiferromag-
netic order is affected by b but indirect evidence has been
provided on its connection with the tetragonal-to-ortho-
rhombic structural phase transition. Neutron scattering
experiments on the closely related compound LazNi04+s,
also a layered perovskite, show that for b'=0.05 the
three-dimensional antiferromagnetic order sets in at T~
=70 K and a tetragonal-to-orthorhombic transition takes
place at T, =240 K. Strong two-dimensional antiferro-
magnetic correlations are observed for T~ ~ T ~ T„but
the correlation length is drastically reduced when the
temperature surpasses T,.

Thus, it seems to be an experimental fact that in the
layered transition-metal oxides the coupling between the
spin and lattice degrees of freedom is not negligible.

With this motivation we studied the Heisenberg Hamil-
tonian with a phenomenological spin-lattice coupling.
Technically, we generalize an analytical nonperturbative
solution for the anisotropic antiferromagnetic Heisenberg
model, which is valid for strong antiferromagnetic order,
published recently. Since the method relies on the
magnetic order, it works, in principle, in the quasi-Ising
asymptotic limit. However, the comparison of the results
for the ground-state energy, correlation coefficients, and

I

structure of the ground state with elaborate computer cal-
culations shows that the analytic asymptotic solution is
very accurate in an unexpectedly wide range of the anisot-
ropy parameter a (a=O: Ising model; a=1: isotropic
Heisenberg model). For the linear chain the ground state
is accurate to 0.5% for 0~ a ~ 0.5. For the square lat-
tice the situation is much better, and the uncertainty for
0 ~ a ~ 1 turns out to be smaller than 0.3%, when com-
pared with results of an elaborate quantum Monte Carlo
simulation.

Therefore, the method of solution employed below is
ideal for the square lattice, since it works even for the iso-
tropic case. However, in the present stage we wish to
emphasize the physical ideas, and choose to treat the one-
dimensional model to gain mathematical simplicity and
clarity. The extension to higher dimensionalities is im-
mediate, and can be done applying the ideas of Ref. 7.

The results are quite striking. We found that the spin-
lattice interaction induces a lattice unstability. Depend-
ing on the strength of the elastic coupling, the ground
state may or may not be distorted. In the former case the
harmonic approximation simply collapses at T=O, and
the linear chain has a dimerized structure determined by
the anharmonic terms. If the harmonic interaction is
strong enough, the ground state involves no lattice distor-
tion. However, as the temperature is raised from T=O,
the system becomes progressively dimerized.

It is physically evident that the antiferromagnetic order,
which has a periodicity of twice the lattice parameter, will
couple predominantly with the lattice mode of the same
wavelength. Thus, since we are primarily interested in
qualitative trends, we can drop all the other modes and
write, for the Hamiltonian of the system,

p2H~N + 2 KQ +gfJ+y( —1) Q]/s, (i+1)s,(l)+a[s~(i+1)s„(l)+s~(i+1)sr' jj
I

where pz/(2~) is the kinetic energy of an ion, l 1,2, . . . , N characterizes the chain sites, ( —1) Q represents the ionic
displacement at site l associated to a lattice wave having wavelength of twice the lattice parameter, s;(l) is the i com-
ponent of the spin at site l, y is a coupling constant, and a is the anisotropy parameter.
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In the spirit of the adiabatic approximation (the spins respond rapidly to changes in the ionic configuration) we can
drop P /(2M) in a first step. The Hamiltonian then reads

H g[J+y( —I)'Q][s, (1+1)s,(l)+—[s+(l+1)s—(l)+s+(l)s —(1+I)]]+ 2 NKQ
I 2

(2)

where Q plays now the role of a parameter, J is a constant,
alld s +. ~s~ + Esy.

For small enough values of a one can assume large anti-
ferromagnetic order in the sense

~ (/2

yt(k) =—2
N

e'"'s+ (l + 1 )s —(l ) + a N
I even 8

(s 0))= ( —1)/2 (3)
The Hamiltonian (2) with condition (3) for a can be diag-
onalized by the procedure described in detail in Refs. 4
and 5. Although these previous works deal with the aniso-
tropic Heisenberg model with no coupling with the lattice
modes (y 0), the method of solution applies equally well

&/2

J+rQ ~J—rg
(4)

I

to our present problem. The extension to more than one
dimension can be accomplished quite straightforwardly.
However, for the increase of the range of a in which the
theory is valid (0~ a ~ 0.5 and 0~ a ~ 1, for one6 and
two dimensions, respectively) the dimensionality seems
to determine no major difference.

In order to deal with the system at finite temperatures
we introduce here new excitations, which were not con-
sidered in Refs. 4 and 5. Although they do not contribute
to the ground state, they are important for the spectrum.
We define the operators

y'(k) =—2
N

' ]./2 &/2

e'k's+(l)s —(l+1)+a — 8'k p,
I odd 8 J+y (s)

which for y=k =0 reduce to the ones defined previously. In Eqs. (4) and (5) k is in the Brillouin zone of one of the
two sublattices determined by the antiferromagnetic spin alignment. In the asymptotic regime of high antiferromagnetic
order the commutation relations satisfied by the p operators tend to '

and

lp, (k), pt(k')] =[y.(k), yf(k')] =&„, ,

[y, (k), y. (k')] = [y, (k), yt(k')] =O,

(6)

('7)

&/2 J+rg
bk pJ rg'"'-'g[J+y( —I)'gls. (l+I)s.(l),qJ(k) =(J—yg) yf(k) —a—

I

t/2

g [J+y( —1) Q]s, (l+1)s,(l),pt(k) =(J+yg) pt(k) —a — 8k, p
, I 8 J+y

Combining Eq. (2) with the definitions (4) and (5) the Hamiltonian (2) becomes

H =g [J+( —1)'yg ls, 0+ i )s, 0)+—'(J+ rg) —[yJ (o)+y, (o)]+—'(J—rg) —[yt(o)+ y, (o)1
2 2 ' ' 2 2

(8)

(J+yg)'+ (J—rg)'
J—

yQ J+ yQ

Equations (6)-(10) yield

[H, qt(k)] =(J—yg)qt(k),

[H, qt(k)] -(J+rg) yt(k) .

Hence

+ —,
' NEQ (io)

(i2)

H=g[(J —yg)pt(k)p, (k)+ (J+yg)pt(k)p, (k)]+Ep(g),
k

where Ep(g) is the ground-state energy.
The ground state

~ g(Q)) is determined by the set of equations

y, (k)
~ g(g)&=y. (k)

~ g(g)) =o,
whose solution is '

' I/2 ' l/2

I g(g)) =exp ——— [yt(0) —y, (0)l ——— [yt(0) —y. (0)] ( A),
2 2 J —

yQ
'

2 2 J+yg

(i4)

(is)
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where
~
JV) is the Neel state which assigns the spins up to

the sites of even I.
The ground-state energy Ep(Q) is obtained from insert-

ing the ket (15) and the original expression (2) of H in
the eigenvalue equation H ~g(Q)) =Ep(Q) ~g(Q)), and
using the commutation properties (6)-(10) to isolate
Ep(Q). We found

be rewritten as
r

P2 1 a2y2—Hyatt- +—&—2 (Q-bQ)'
N 2M 2

1 a 2f2

K —2 (bQ)
2 J

where the lattice distortion is given by

(20)

Ep(Q)
N

(J-yQ)' (J+yQ)'
J+yQ

+ J- yQ

——,
' J+ —,

' NKQ, J& yQ. (i6)

Thus, the contribution of the spin-lattice coupling to the
ground-state energy has a maximum at Q =0. Retaining
terms only up to second order in Q one is left with

2 2= —-'(i+ ')J+-' K 2' y Q-'.
N J

Hence, the spin-lattice interaction softens the lattice mode
having wavelength of twice the interatomic distance.

It is apparent from Eq. (17) that the ground state is un-
stable in the extreme case when K & 2a y /J. The har-
monic approximation then breaks down and anharmonic
terms have to be taken into account in order to stabilize
the lattice. The new lattice configuration then have a
dimerized structure.

Let us concentrate now in the more likely situation in
which the elastic energy is larger than the magnetic ener-
gy gained from dimerizing the system (K& 2a y /J).
Then the ground state is not distorted. However, it will be
shown in the next paragraphs that the system is driven
continuously to a dimerized structure as the temperature
is raised from T=O. One may think of this interesting
property of the model as a sort of Jahn-Teller effect of
magnetic origin.

The energy of an excited state of the Hamiltonian (2)
reads

bQ=
2 2

—g[n, (k) —n, (k)]. (21)
1

K —2ay/JN t,

The energy spectrum of Hf,« is quite obvious and has
two contributions: a purely vibrational part and the dimer-
ization energy. In order to retain only what is essential we
disregard the vibrational energy. The total energy eigen-
values then become

—= —
4 (1+a )J+—g [n, (k)+n, (k)]

2 2
K —2 (bQ) (22)

where b'Q is related with the quantum numbers n, (k) and
n, (k) through Eq. (21).

The free energy of the system is

a2 2

bQJ (24)

and

—F(bQ, T) = ksTln(l —e P )N
2 2

K —2 (BQ) +XBQ, (23)

where P= 1/(kg T), and A, is a Lagrange multiplier intro-
duced to take into account the dependence of b'Q on the
quantum numbers n, (k) and n, (k), which was omitted
when performing the summations yielding Eq. (23).
Minimization of Fwith respect to BQ and T gives

r

E(Q) = ——,
' (1+a )J+ —' K —2 Q

a 2 2 8 —J
8T 8T

cYQ= — [ksTln(l —e ~ )]. (25)

+—g [n, (k)+np(k)]J Combining Eqs. (24) and (25), and recalling that BQ =0
for T =0, one finally obtains the temperature dependence
of the dimerization energy

Qg [n, (k) —n, (k)],
k

where n, (k) and n, (k) are the occupation numbers of the
bosonic excitations (4) and (5). The Q-dependent terms
in the right-hand side of Eq. (18) are the adiabatic poten-
tial governing the motion of the ions. One has for the lat-
tice dynamics the adiabatic Hamiltonian

2 2

Ed;.(T) =- —,
' K- lbQ(T)]',J

which turns out to be

Ed; (T) = ——,
' ksTln 1 —exp

J
gT

(26)

1 P2 1 a2y2—H), tt = +—E—2
2M 2 J
—~g [n, (k) —n, (k)]Q,N

which represents a distorted harmonic oscillator. It can

Ed; (T) = —, ks Texp —,T«1 J J
kgT kg

high-temperature range (T»J/ks) Edim grows

(28)

Therefore, as T approaches zero the dimerization ener-
gy vanishes exponentially according to the asymptotic law
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like TlnT. However, the validity of our result (27) for
T )J/kg is questionable because of the risk of violating
the assumption of small displacements, which is implicit
from the start.

The approximate method used to diagonalize the aniso-
tropic Heisenberg Hamiltonian with coupling coefficient
depending on the lattice configuration can be extended
quite straightforwardly to higher dimensionalities. Essen-
tially, all one has to do is to separate the lattice into two
sublattices, which play the roles of the even and odd sites
in the linear chain. Nevertheless, no new qualitative trend
is expected to occur in two and three dimensions. Of
course, two- and three-dimensional lattices are richer in
competing distortion possibilities. The discussion of them,
however, is out of the scope of this work and will be treat-
ed in full in a future communication.

The results obtained above may have quite interesting
consequences. For example, (a) the spin-lattice coupling,
though weak, tends to stabilize one of the two degenerate
antiferromagnetic spin configurations and (b) since affects
the lattice periodicity, the spin-lattice interaction opens
temperature-dependent gaps in the electronic bands.
Thus, it provides a mechanism for metal-to-insulator tran-
sition in one-dimensional systems. A material having a
metallic low-temperature regime may turn into a semicon-
ductor at higher temperatures.
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