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Quantized topological point defects in two-dimensional antiferromagnets
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We semiclassically quantize static topological point defects that exist within a continuum
Heisenberg model of the two-dimensional antiferromagnet. The quantum corrections reduce the
classical defect energy as defect size increases and induce an effective interaction between defects
that can be attractive at short range.
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Above, n denotes the Neel unit vector characterizing the
direction of the sublattice magnetization of the antifer-
romagnet, c is the velocity of the long-wavelength spin-
waves, and J denotes the effective exchange coupling con-
stant. Notice that Eq. (1) is just the Lagrangian for a
nonlinear o model in 2+ 1 dimensions. This hydrodynam-
ic model gives two acoustic spin-wave modes, which are
expected of an antiferromagnet, and it should, therefore,
describe the long-wavelength physics of an isolated anti-
ferromagnetic plane. Recently, it has also been success-
fully used to explain the low-temperature behavior of the
antiferromagnetic correlation length in La2Cu04.

However, as was shown by Belavin and Polyakov, this
model also contains static, topologically nontrivial classi-
cal minima. In terms of the conformal representation '

w =(1+n3) '(n~+in2), (2)

which is simply the stereographic projection of the Neel
vector onto the complex plane, the Lagrangian (1) can be

The mechanism for superconductivity in the recently
discovered class of ceramic high-temperature supercon-
ductors is still unknown. In order to understand the su-
perconductivity in these systems it is important first to
note the features which are special to these materials.
Two properties that may be essential for the ceramic su-
perconductors are (a) the two-dimensional nature of both
the charge excitations and the magnetic excitations, and
(b) the antiferromagnetic nature of the magnetic excita-
tions. The crystal structure, for example, is highly pla-
nar' and band-structure calculations indicate the ex-
istence of two-dimensional electronic bands. In addition,
inelastic neutron-scattering measurements on insulating
La2Cu04 show evidence for two-dimensional antiferro-
magnetic correlations parallel to the Cu-0 planes at tem-
peratures above the 3D Neel ordering temperature. The
above list of experimental facts indicates that the Cu-0
planes in the ceramic superconductors may be essentially
isolated two-dimensional antiferromagnets for insulating
compositions.

The simplest theoretical description of a 2D antifer-
romagnet is a continuum Heisenberg model in terms of
the Neel state. In the limit of zero temperature, it is rep-
resented by the following Lagrangian:
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where q is the topological charge of the configuration
given by

Ecl =4m Jq (5)

The fundamental solitonic configuration with unit topo-
logical charge q =1, for example, is given by wo=X&/z
where X~ is a complex parameter. Qualitatively, the
configuration is radial, pointing down at the origin and up
at infinity. The magnitude of X,

& gives the extension of the
defect, while the phase of X~ gives the rotational orienta-
tion of the defect configuration. In general, the q-soliton
configuration is given by wo =PP-&k;/(z* —r;*), where k;
and r;* are again complex parameters. It has q units of to-
pological charge and describes q defects at positions r;.
Note, however, that antisoliton solutions, obtained by in-
terchanging z~z, are also local minima of Eq. (1) de-
generate with respect to the above soliton solutions.
Throughout this paper, all statements made about solitons
apply equally to antisolitons. One must simply inter-
change z z* in all expressions.

From Eq. (5), we see that the classical energy of these
static defect configurations depends only upon the total to-
pological charge q. Thus, at the classical level there is no
preferred size or orientation for a fundamental soliton.
Nor do these solitons experience interactions classically.
This results from the conformal invariance of Lagrangian
(1). Quantization of these defects, however, will break
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Here, t), = —,
' (t)„,—i8„,) and t1,.= —,

' (t)„,+it)„,); like-
wise, z=x~+ix2 and z* xi —ix2. For configurations
with a common value at infinity, n(x) is essentially a map-
ping of the sphere to itself and q measures the number of
times n does this. Each topological equivalence class in

the space of all possible configurations n(x) is uniquely la-
beled by its topological charge. From Eq. (3), it is evident
that, within a given topological sector of the field theory,
there exists static classical minima wo given by analytic
functions of z* satisfying t),wc=0 and having classical
energies
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the static conformal invariance. In this paper, we semi-
classically calculate the quantum corrections to the classi-
cal energy of such static defect configurations arising from
long-wavelength antiferromagnetic spin waves. This is
done by calculating the zero-point energy due to the anti-
ferromagnetic spin waves in the presence of the solitonic
background. As in the case of (1+1)-dimensional soli-
tons, and of skyrmions, we find that such contributions
lower the classical energy of the unit-charge defect. In
particular, the energy monotonically decreases as soliton
size increases. It is suggested that electronic vacancies or
interstitials in 2D antiferromagnets provide the nucleation
site for such defects of the homogeneous Neel state. We
also perform a similar calculation for the case of two soli-
tons separated by a distance r to extract an effective in-
teraction potential V,tr(r). We find that V,ir(r) has a
repulsive r tail at large separations and that it can have
a short-range attractive well, depending upon the relative
orientation between the two solitons. Assuming that the
above vacancy-soliton states are mobile, we suggest that
such an attractive interaction may resu1t in Cooper pair-
ing, and hence to superconductivity. Note that topologi-
cal excitations in 2D antiferromagnets and their relation
to high-temperature superconductivity have also recently
been discussed.

The object now is to calculate what effect such topologi-
I

(V —c 8, )wi =Vwi, (6)

where

V=g[8,.ln(1+ I wo I )18,

In the case of the homogeneous Neel state wo-0 and
V =0, and therefore, there exist two pure spin-wave solu-
tions to Eq. (6), with frequencies cok =ck. Thus, the
lowest-order effect of an inhomogeneous solitonic back-
ground wo is to produce an elastic scattering center for the
spin waves. Since the scattering potential (7) has a finite
range on the order of the size of the soliton configuration,
the asymptotic solutions to Eq. (6) are given by phase-
shifted cylindrical spin waves of the form w

& (x, t )
=yk (x)e" ' "with

cal defects of the 2D homogeneous Neel state have on the
associated long-wavelength antiferromagnetic spin waves.
First, let us write, the conformal representation for the
Neel configuration (2) as w wo+wi, where wo is the
static classical minimum configuration. The deviation
from the classical minimum, ~~, represents the antiferro-
magnetic spin wave. This can be seen by minimizing the
action corresponding to Lagrangian (3) to second order in
w i. This yields the field equation

yk (x) —
2 H )~ I
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Above, b (k) denotes the phase-shift matrix, coupling
the different angular momentum channels m and m', and
(p, 8) denote the cylindrical coordinates for x. By a gen-
eralization of arguments used in the semiclassical quanti-
zation of solitons in 1+1 dimensions, it can be shown
that the quantum correction to the classical soliton ener-
gy, given by the zero-point energy of the spin waves mea-
sured with respect to the vacuum, is

ko dkE =4+Jq —Ac trB(k) .
x

(9)

The second term above represents the zero-point energy
I

I

contribution, where the trace is taken over the angular
momentum indices. Here, we have assumed a Debye
model for the spin-wave excitations, with kD as the cutoff
momentum. Notice that expression (9) is invariant to the
choice of the origin. This results from the fact that a
translation of the origin in Eq. (8) simply transforms the
phase shift by a unitary transformation b(k) Utb(k)U,
under which trb(k) is invariant. Expression (9) for the
energy depends only upon the sum of the diagonal ele-
ments of the phase shift. The first-order and second-order
Born terms for the diagonal elements are given, in gen-
eral, by

b&'&(k) =-
b."'(k)- —
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where the symbol ( . )ti denotes an angular average,
p~ =min(p, p'), and p& =max(p, p'). Notice that
trb ' (k) vanishes identically for V given by Eq. (7).
Hence, the lowest-order contribution to Eq. (9) comes
from the second-order Born term (lob). Below, we calcu-
late the phase shift and the associated zero-point energy
contribution in the Born approximation for the case of a
single soliton.

Case I: Fundamental sohton. Consider the case where
the classical soliton configuration is given by wo =Xi/z*. "
This describes a fundamental soliton of unit topological

b"'(k) =

charge and of size I A, i I. The potential operator (7) asso-
ciated with this configuration is cylindrically symmetric.
Hence, angular momentum is a good quantum number
and the phase-shift matrix 8~~ (k) is diagonal. Each an-
gular momentum channel of the phase shift can be calcu-
lated in the Born approximation via (10). The first-order
phase shifts (1oa) are given, in this case, by

'2~k
I && I E -i(k I &i I )I (k l)t i I ), for m ~ 1,

—8i '—~ (k), for m ( 1.
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Notice that limk oB ' (k) =0. This indicates that the
Born approximation is valid at long wavelengths for small
defects. However, as mentioned above, the lowest-order
contribution to the zero-point energy term in Eq. (9)
comes from the second-order Born terms. In particular,
the m =0, 1 angular momentum channels give the lowest-
order contribution to Eq. (9) in powers of kA, i. Using the
small argument expansion for the Bessel functions in Eq.
(10b), we find that this contribution yields the following
expression for the energy of a quantized fundamental soli-
ton, measured with respect to the vacuum:

Ei —4nJ —
3 ((2)l'tckD lki l (i2)

The above Born approximation result is valid for small
solitons, kD l Xi l ((1. To evaluate Eq. (9) in the limit of
large skyrmions, kD lX~ l &&I, we must obtain the high-
energy limit of the phase shifts. Using the conventional
Wentzel-Kr amer-Brillouin (WKB) expression for the
phase shift after an appropriate similarity transform
of Eq. (6) (see Ref. 10), it can be shown that '

limk trb(k) =n. Thus, in the limit of large skyrmions
kD l A, i l » I, (9) gives

E) —4+J —
hckD . (i3)

The complete function E i(X~) is likely to be a smooth in-
terpolation between the limits (12) and (13), with the
transition between these limits occurring at kD lX~ l

—1.
In antiferromagnetic La2Cu04, the spin-wave velocity is
on the order of Ac &'0.4 eV A and the lattice constant for
the Cu-0 plane is a =5 A.. ' The exchange coupling con-
stant is, therefore, on the order of J—h, c/a=0. 1 eV. If
we set kD-a ', then both the first and the second terms
in Eq. (13) are comparable. Thus, the energy cost of
large topological defects in La2Cu04 may be substantially
lower than the classical value.

We see, therefore, that semiclassical quantum correc-
tions lower the classical soliton energy as soliton size in-
creases. Anisotropy effects, such as a neighboring antifer-
romagnetic plane, will stabilize this quantum mechanical-
ly driven expansion to give a preferred soliton size l Xi l.
In addition, Eqs. (12) and (13) indicate that there may be
a critical soliton size above which it is energetically favor-
able to make a soliton, i.e., E& & 0. Consider the square
lattice nearest-neighbor Heisenberg antiferromagnet in
the homogeneous Neel state (q =0) at zero temperature.
If we remove a spin from the lattice, the nearest neighbors
of that spin will have a coordination number of three, in-
stead of the bulk-spin coordination number of four.
Therefore, such boundary spins would have larger quan-
tum Auctuations than the bulk spins and it is conceivable
that the above considered soliton configurations, with re-
versed sublattice magnetization at the center, would pref-
erentially nucleate about this vacancy. In the context of
high-temperature superconductivity, such a conjecture
motivates the following question; does the presence of an-
tiferromagnetic spin-waves give rise to an attractive in-
teraction between two defects of the Neel state, which
would then be inherited by the electronic vacancy defect
centers? Below we calculate the quantum corrections to
the classical energy of two fundamental solitons separated

by a distance r.
Case II: Two fundamental solitons. Consider now the

case where the classical configuration is given by wo
ki/z +X2/(z* r—), where Xi, Ai, and r are complex

parameters. This field describes a unit soliton at the ori-
gin in the presence of another one at distance l r l away.
The effective potential experienced between the two de-
fects is defined as

V,ff(r) =E i 2(r) E—
i E2,— (i4)

where

P „dx(Jingo+ JolVi)(l Jo)
m~

+2 g dx(J lV —)
—J yilV )J~.

m=i
(i7)

The first term in Eq. (17) corresponds to transitions be-
tween the m=O, I angular momentum channels and it
vanishes. The remaining terms in Eq. (17) correspond to
transitions between the m, m +1 and —m, 1 —m angular
momentum channels. Here, mD denotes an angular
momentum cutoff for the trace sum in Eq. (9). The first
five terms of the series were calculated numerica11y and
are well approximated by (nm) '. Hence, if we extrapo-
late this dependence to all angular momentum channel,
then P=n 'In rnD asymptotically. The cut-off angular
momentum is given approximately by mD —kDL, where L
is the length of the system, and thus P=~ ' InkDL.

Given Eqs. (15) and (16), we can make a reasonable
qualitative picture now of the effective potential experi-
enced between two small semiclassically quantized topo-
logical solitons. Asymptotically, the potential has an r
repulsive tail. For the case that both solitons are oriented
within 90 of each other, Eq. (15) indicates a negative
value for the potential at zero separation. Hence, in this
case there is a short-range attractive well with a length
scale on the order of l Xi+i,2 l. On the other hand, if the

where Ei 2 is the energy (9) of the bisolitonic config-
uration and Ei and E2 are the energies (9) of the isolated
unit solitons. Thus, from the previous calculation of the
energy of a fundamental soliton (12), we find that the
value of the effective potential, in the limit that the sepa-
ration vanishes, is given by

V ff(r) ——
3 ((2) ltckD (k)&2 +Xi k2) + 0(kD&) ' .

r 0

(is)
Let us now calculate the effective potential in the limit
that the separation is large. Unlike the previous case, the
operator V defined in Eq. (7) is no longer radially sym-
metric. The angular momentum is no longer a good quan-
tum number, nor is the phase-shift matrix b (k) any
longer diagonal. The lowest-order term in powers of r
comes from the m'=m+ I terms in Eq. (10b). Upon
substituting in Eq. (7) and making suitable integrations
by parts of Eq. (10b), we find that such terms result in an
asymptotically repulsive interaction given by

V ff(r) ——', nphckD 2
+ O(kDX), I &i I

'I &2 l
'

OQ
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solitons are oriented more than 90' with respect to each
other, Eq. (15) indicates a positive value for the effective
potential at zero separation, and it is then not clear wheth-
er or not a short-range potential well exists. Finally, Eq.
(15) also indicates that it is energetically favorable for
two small skyrmions to have the same orientation.

Above, we have shown that linearized spin-wave Auc-
tuations about static solitonic configurations of the 2D
Neel state (a) lower the classical energy of the fundamen-
tal soliton as soliton size increases and (b) induce an
effective interaction potential between soliton pairs that
can be attractive at short range. If we assume, as suggest-
ed earlier, that electronic vacancies in 2D antiferromag-
nets nucleate these topological defects, and that the result-
ing vacancy-soliton hybrids have metallic mobilities, then

such an effective interaction could be a pairing mechanism
for superconductivity in doped 2D antiferromagnets and
have some relevance to high-temperature superconductivi-
ty. However, the calculation of the interaction energy
(14) was performed in the Born approximation, which is
valid for small solitons satisfying kDA, « 1. Multiple
scattering effects will be important outside of this regime
and must be investigated in order to see if our present re-
sults extrapolate to the large-soliton regime.
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