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Two-dimensional Heisenberg antiferromagnet with next-nearest-neighbor coupling
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We study the two-dimensional S = —, antiferromagnet with next-nearest-neighbor antiferromag-
netic coupling using a sublattice-symmetric spin-wave theory and exact diagonalization. For
sufticiently large frustration the theory predicts a transition to a disordered state with an energy
gap and exponentially decaying correlations, rather than to a gapless spin-liquid state. Compar-
ison- with exact results on finite lattices up to 26 sites indicates that the theory overestimates the
disordering effect of the next-nearest-neighbor coupling, implying that the long-range antiferro-
magnetic order is surprisingly robust.
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Recently, there has been great interest in two-
dimensional quantum antiferromagnets' due to their
possible relevance to high-T, superconductivity. Much of
it was generated by Anderson's suggestion that a novel
spin-liquid state may be the ground state of a two-
dimensional quantum antiferromagnet. However, recent
numerical work has conclusively established that the
ground state of the S =

2 Heisenberg antiferromagnet on
a square lattice with nearest-neighbor coupling only
possesses long-range order, close to but slightly larger
than that predicted by spin-wave theory.

If a next-nearest-neighbor antiferromagnetic coupling
J2 is introduced in this system, however, the situation is
less clear, and it has recently been suggested that the
system could exhibit a spin-liquid ground state for
sufficiently large J2. Besides its intrinsic interest, this
model has been proposed to describe the spin degrees of
freedom of the Hubbard model away from —,

'
filling, and

a detailed understanding of it is desirable.
The Hamiltonian of interest is defined on a square lat-

tice by

H=JgS; SJ+J2+S; S;, (1)
(i,j ) (i,i ')

where (i,j) denote nearest neighbors on diff'erent sublat-
tices, and (i,i') denote nearest neighbors on the same sub-
lattice. We study this Hamiltonian using a sublattice-
symmetric spin-wave theory (SSSW), recently intro-
duced, and exact diagonalization.

We diagonalize the Hamiltonian Eq. (1) within the
spin-wave approximation and impose the additional con-
straint that the sublattice magnetization be zero. The re-
sulting spin-wave spectrum has the form

Here, b(b') are the lattice vectors connecting a site to its
nearest neighbors on the other (same) sublattice, and z is
the number of nearest neighbors. The parameter q is
determined by the constraint equation
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On a finite lattice, Eq. (4) yields a solution with ri ( 1,
thus generating a gap for the spin-wave spectrum as ap-
propriate for a finite lattice. As N ~, Eq. (4) has a
solution with tl 1 —O(1/N ) for J2/J smaller than a
critical value. The long-range order is given by 3'0
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which is the same as predicted by ordinary spin-wave
theory. " Beyond a critical value (J2/J), determined by

2S+1= d k 1

" (2~)' JI nk(»7k-

the long-range order disappears and Eq. (4) has a solution
with ri & 1 in the limit N ~ that generates a gap for
spin-wave excitations. That is, the present theory predicts
that when the long-range order disappears for sufficiently
large J2 the resulting phase is a disordered phase with
massive spin waves as elementary excitations, rather than
a gapless spin-liquid state. For S —,', (J2/J), -0.38.
At J2/J 0.5 the theory breaks down as the argument of
the square root can become negative for k values close to
(tr, O) and (O, tr). In the limit S~ oo the ground state of
the Hamiltonian Eq. (1) crosses over between a Neel or-
dered state and a state where each sublattice is indepen-
dently Neel ordered at Jz/J 0.5.

Next we solve the Hamiltoman Eq. (1) on finite square
lattices of up to N 26 sites and compare spin-correlation
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functions with those predicted by SSSW:
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We diagonalize the Hamiltonian using a Lanczos
method. For N=4 and N=8, spin-spin correlations are
independent of J2 up to a critical value (J2/J), =0.5 (us-

ing boundary conditions such that each site has the same
number of nearest and next-nearest neighbors). At that
point there is a crossing of energy levels and the ground
state becomes Neel ordered in each sublattice. It is easy
to see that SSSW reproduces the behavior before the tran-
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(c) 26 sites
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FIG. 1. Spin-spin correlations (aSa„„-+ „-) vs J2 (in units where j=1) for lattices of (a) 10, (b) 16, and (c) 26 sites. Exact: solid

lines, points. SSSW: dashed lines. The exact results are labeled by (n, m). The corresponding SSSW results are indistinguishable
from the exact ones for J2 =0. For the 16-site lattice, the (2,0) and (1,1) correlations are identical within SSSW.
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FIG. 2. Spin-structure factor S(x) g„„-+ „-(—1)"+

(0/0 + y) vs J2 for lattices of 1 0, 16, and 26 sites. Exact:
solid lines, points. SSSW': dashed lines.

sition exactly: for these lattices, Eqs. (4) and (7) predict
spin correlations that are independent of J2/J because
I k 1 for all k values for which yke0. In addition, the
value of the spin correlations obtained from Eqs. (4) and
(7) are exact. However, SSSW does not see the transi-
tion point to the sublattice-ordered structure.

Results for spin correlations for lattices of size N=10,

N 16, and N 26 are shown in Fig. 1, and q ~ struc-
ture factors for these cases in Fig. 2. Results for N=18
and N=20 are qualitatively similar and thus not shown.
Note that SSSW consistently overestimates the effect of
J2 in destroying the antiferromagnetic correlations. This
indicates that J2/J-0. 38 underestimates the value of J2
at which the long-range antiferromagnetic order disap-
pears.

In the Lanczos procedure, we started with a random in-
itial vector and repeated the procedure several times to
make sure we did not miss any level crossing. For N=4
and N 8 we found that there was a crossing of energy
levels and a discontinuous change in spin-spin correla-
tions, as discussed. For other values of N no level crossing
was detected in the parameter range studied (J2/J ~ 1).

In summary, we have studied the two-dimensional anti-
ferromagnet with a frustrating next-nearest neighbor cou-
pling J2 using a sublattice-symmetric spin-wave theory
and exact diagonalization. Comparison between these
shows that the theory overestimates the effect of J2, im-
plying that the long-range order is surprisingly robust. In
particular, for S 2 these results indicate that the long-
range Neel order disappears at a value of J2 that is larger
than the spin-wave prediction J2/J=0. 38. The theory
predicts a disordered phase with massive spin waves as
elementary excitations for J2/J greater than this critical
value, and breaks down at J2/J=0. 5. These results sug-
gest that the disordered state in this system is not a gap-
less spin-liquid state but rather a disordered state of the
type described by the quantum disordered phase in the
nonlinear a model of Chakravarty, Halperin, and Nel-
son. '
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