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Fermi-liquid versus non-Fermi-liquid behavior in a two-band model of
high-temperature superconductivity
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We solve an extended Hubbard model describing a system with two N-fold degenerate bands in

the limit N=~. The system exhibits a phase transition from Fermi liquid to non-Fermi liquid as
the exchange interaction becomes comparable with the hybridization energy.

The discovery of high-temperature superconductivity
has renewed our interest in the understanding of the possi-
ble phases of the Hubbard model. Anderson' and co-
workers have emphasized the existence of possible phases
which cannot be described in terms of Fermi-liquid
theory. Mean-field theory so far has been unable to repro-
duce this scenario except in the case where the breakdown
of Fermi liquid is due to the onset of magnetic long-range
order.

In this paper we address this question by examining a
version of the two-band model currently used to study the
high-temperature superconductivity in the rare-earth-
based copper oxides.
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in the limit of infinite U. p; are creation operators for an
oxygen orbital which hybridizes with a d; copper orbital
with a hybridization matrix element yk. The term propor-
tional to J in Eq. (1) represents the exchange between
nearest-neighbor copper electrons generated by virtual

I

high-energy charge fiuctuations. o. takes values from 1 to
N, 1/N being the expansion parameter of the theory. The
physically relevant value is N=2.

In the two-band model of the copper oxide planes, as
discussed by Emery and co-workers, the copper-oxygen
exchange is given by t~q/(e~ —ed) and the copper-copper
superexchange is of the order of t~y/(s~ —ed) in the limit
of very large U. Since we scale t~d as t/ JN with t finite,
if we set J 0 in Eq. (1) the copper-copper superexchange
would appear as a 1/N effect. For N=2, the estimates of
Ref. 3 indicate J-0.2 eV, t-0.7 eV, and Gp Gd 1 2
eV. Therefore, the copper-copper superexchange is small-
er but of the same order of magnitude as the copper-
oxygen exchange. Here we propose to introduce the su-
perexchange explicitly in the Hamiltonian and to scale the
exchange constant as J/¹

For J=O, this model was studied in Ref. 4 where it was
pointed out that the N=~ theory exhibits a Brinkman-
Rice transition at a finite value of the coupling
t /(s~ —ed) . For 8'=0 this model was considered by
ANeck and Marston who showed that the model exhibits
several magnetic phases without spin long-range order:
the fiux phase, the uniform phase, and the dimer phase.

To study the N=~ limit, it is convenient to use a func-
tional integral representation of the model. The partition
function of the model is given by
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Following Refs. 4, 6, and 7, we have replaced the U=~
limit by adding a Bose degree of freedom b;~ to label the
empty site. The constraint on the occupancy of copper
sites

is then enforced by the Lagrange multiplier k; multiplying
the constraint (3). Originally q =1/N, but here it is taken
to be an independent parameter to generate a controlled
loop expansion. ' The exchange term is decoupled using
a field 6,;~. Integrating out the Fermi fields one obtains an
eff'ective action for the Bose fields.
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The N= ~ limit is dominated by a saddle point which is
taken to be static. It is determined from the extremum of
the mean-Geld free energy. F & expressed in terms of
(5;J), (b;) =v Nr and 4,;) -A, . The possible saddle points
for the field 6;J were discussed by Af8eck and Marston.
Besides the uniform phase which can be shown to be un-
stable in different ways they considered (a) the dimer
phase (dtd; —„)=5, (dtd;+„) (dtd;+~) =(dtd; — ) 0;
and (b) the flux phase (dtd;+ ) =(dtd;-„) 5, (d; d;+~)
=(d;td; ~) =ib. i is an even copper sublattice site and

i ~ x, i + y denote the nearest site to the right, left, above,
and below site i.

The mean-field free energy per copper site N, is written

where Egti are the eigenvalues of the matrix
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in the dimer phase. k varies in the reduced Brillouin zone
and G = (x, m) has been introduced to take care of the
doubling of unit cell.

The flux-phase free energy is written as
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The free energies (4) and (6) can be in principle extrem-
ized numerically with a realistic band-structure dispersion
yk. Here we will make some drastic simplification as to
the form of yk in order to gain insight into the problem. If
we assume yk = yk+6 the problem simplifies and we find
the following eigenvalues:

Ek—, = —,
'

[edk +e~)+ [(edk —e~) +16r t yk] '
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with

with the obvious notation fk~, 2 f(Ek 1,2 p), f being the
Fermi function,
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the energy of the exchange renormalized d subband if we
assume dimer order, and
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assuming flux order. Differentiating (4) and (6), we ob-
tain the mean-field equations
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E(k) -1 in the dimer phase and E(k) —,
' (cos k„

+cos k~ ) 't in the flux phase.
Equation (14) states that the total number of holes is

given by Nq(1+ b). From now on we shall assume q
so that b is the doping with respect to one hole per copper
site.

There are two diNerent physical situations. r~0 corre-
sponds to hybridization between p-d bands and to a non-
vanishing quasiparticle residue in the single-particle
Green s function (Fermi-liquid phase). At r =0, this pic-
ture breaks down and both hybridization and quasiparti-
cle residue are zero (non-Fermi-liquid phase).

We study how these transitions occur by solving Eqs.
(11)-(13)in the zero-temperature limit, for small b and
well in the insulating side of the Mott transition, i.e.,
t/(e~ —ed) (( l. We will also assume t/J&&1. In this re-
gime 4 can be approximated by the 8 0 solution of Eq.
(11): 4 —,

' J in the dimer phase and 5=0.239J in the
Aux phase.
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Combining Eqs. (12) and (14) we find
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which can be solved for r vs Gp Gd. In the dimer case we
obtain
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and c2 = (I/N, )gykfk ~ in the limit of vanishing B.
This first-order transition can be understood in simple

physical terms. In the Fermi-liquid regime we gain hy-
bridization energy t /(s~ —ed) per hole but we lose ex-

I

when ~p
—cd2 0.

When ep
—ed2&0 the only solution is r =0. X and,

therefore, sd ~ and sd2, is determined from Eq. (13). When
J« t /(sp —sd), ed~= cd2=—s~

——c~t /(e~ —sd). As J in-
creases, ep

—ed2 decreases. For sufficiently large J, Eq.
(13) with r AO becomes inconsistent with Eq. (15) and r
jumps discontinuously to zero. This occurs first when
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with sd =ad —X. The energy so is defined by Eq. (20).
For s~

—sd & so Eq. (18) is solved by
IP
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When sp
—sq & so we have y =(e~ —sd) /J holes in the

upper d band and 8 —y holes in the p band. It is con-
venient to rewrite Eq. (18) in terms of the variable y

change energy J per hole. When J is large it becomes ad-
vantageous to occupy only the lowest dimerized band and
to put the additional holes in the p band.

In the Aux case, for small 8, only the regions in k space
around (+ x/2, + x/2) are important and we approxi-
mate them by a linear dispersion of the d bands and ap-
proximate yq by yk (x/2, tt/2) =—y. With these approxima-
tions and q = —,', Eqs. (13)-(15)become
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At this coupling the system undergoes a continuous transi-
tion to a non-Fermi-liquid phase. The same criteria are
obtained by examining the stability of the non-Fermi-
liquid solution at r =0.

In conclusion, we presented a model which can be
solved in a 1/N expansion and which exhibits a
Brinkman-Rice transition at a finite density of holes. It is

significant that close to this phase transition the efective
mass and the susceptibility remain finite while the quasi-
particle residue becomes vanishingly small. Since the
thermodynamical properties of the high-temperature su-

perconductors are rather normal while its transport prop-
erties are very anomalous, it is tempting to associate this
strange behavior with the proximity to the transition line
found in this paper. It is clearly of interest to compute the

which can be solved to give r =(s/ —sd) /8y t lnJ/s .
That is, r vanishes as sd approaches ep. The second
equation can be solved for (sz —ed ). As the ratio
tJ/(e~ —ed) increases s~

—sd decreases and eventually

vanishes when

1/N corrections around the saddle point and to map our
phase diagram with a realistic copper oxygen band struc-
ture. This task will be carried out in a future publication.
It is not obvious how to generalize this work to the infinite
U one-band Hubbard model. The difficulty seems to be
that in this case the slave-boson expectation value mea-
sures both the number of carriers and the amount of
Fermi-liquid coherence, and, therefore, can never vanish
away from half filling at mean-field level. In the two-band
model these two roles are somewhat decoupled by the ex-
tra degree of freedom provided by the additional band.

In this paper we focused on the transition between the
Fermi-liquid state and a non-Fermi-liquid state which
takes place when the exchange energy J becomes compa-
rable to the hybridization energy t /(e~ —sd). This tran-
sition was studied analytically using the mean-field tech-
nique and an expansion valid for small density of holes.
This transition is diferent from the first-order phase tran-
sition between the dimerized phase and the metallic phase
with uniform h, that one encounters when one increases
the hole concentration 6 and the renormalized kinetic en-
ergy St /(s~ —sd) becomes larger than the exchange J.
This transition has a one-band analog and has been stud-
ied in Ref. 5.
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