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We show that the mean-field theory of quantum Heisenberg models introduced by Arovas and
Auerbach predicts long-range order for all dimensions d ~ 2 in the ground state as well as below
a critical temperature T, (d) that is nonzero for d & 2. The long-range order in the ground state
is the same as predicted by conventional spin-wave theory.

Functional integral theories of quantum Heisenberg
models were recently discussed by Arovas and Auerbach
(AA). ' For dimensions larger than 1 they found that a
boson mean-field theory yields a lower free energy than a
fermion mean-field theory and, thus, they suggest that the
former one is valid. They focus their discussion on the
disordered state at finite temperatures and show that
below a temperature T —& 0 for d & 2 no solution of the
mean-field equations for the disordered state exists. Thus,
they suggest that T should be associated with the Neel
temperature.

In this Comment, we point out that the AA theory in
fact predicts long-range order below a critical tempera-
ture in dimensions greater than 2, as well as in the ground
state for dimensions equal to 2. Our reasoning closely
parallels the well-known analysis of Bose-Einstein conden-
sation: Below a critical temperature, passage from a sum
to an integral becomes invalid as one (or in this case two)
terms contribute a finite fraction to the total sum. The
long-range order obtained in the ground state in the ther-
modynamic limit is the same as the one predicted by
Anderson's spin-wave theory. '

The spin-spin correlation function for a quantum anti-
ferromagnet on an %-site lattice is given within AA's
mean-field theory by
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and in the thermodynamic limit it is related to the mean-
squared staggered magnetization m by

The parameter g ~ 1 and spin-wave velocity c are deter-
mined by the constraint equations'
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We have included in Eq. (1) a normalization factor —', so
that the condition &So Stt) =S(S+ I ) is satisfied, as sug-
gested by AA. ' The structure factor at wave vector x is
given by

S(~)=g( —1)'&S. S,)
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where the order parameter m =&[gk( —1) Stt] ).
We now use the above equations to calculate the

ground-state magnetization in the thermodynamic limit.
First we take the limit T 0 on a finite lattice and then
let 1~/~ ~. As T~ 0, Eqs. (4a) and (4b) will be decou-
pled; only Eq. (4a) is needed to determine tl, and the
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spin-spin correlations do not depend on the value of the
spin-wave velocity c.

As T 0, Eq. (4a) simply becomes

2S+ 1 1
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As pointed out by AA, the right-hand side of Eq. (7) is an
increasing function of ri. The integral that one obtains
from the right-hand side of Eq. (7) in the limit%

d"k 1 (8)" (2 )" (I-q' ')'" '

is nondivergent in d) 1, and as ri 1 takes the values
I=1.3932 and I=1.156 (Ref. 3) for 2 =2 and d =3, re-
spectively. Thus, it would appear that Eq. (7) cannot be
satisfied for any S~ 2 . However, passage from the sum
to the integral will be invalid as ri 1. Following the
analogous treatment for Bose-Einstein condensation, we
separate the divergent terms at k =0 and k = js from the
sum to yield

d"k
1V(I — ')'" " (2~)" (1 — ' ')'" '

which can be satisfied by an ri that diH'ers from unity by
O(1/N ). The value of ri is easily obtained from Eq. (9)
by setting g =1 inside the integral. It is easy to convince
oneself, following analogous arguments for Bose-Einstein
condensation, that no other k values contribute a finite
fraction to the sum in Eq. (7) for large 1V.

The long-range order can now be obtained from Eq. (6)
as
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Because the integral Eq. (10) is nondivergent at d =3 and
diverges only as In1V at d =2, it gives no contribution to
the long-range order in the thermodynamic limit in either
case, and the long-range order is given by
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We have, then, from Eq. (9)
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to be solved self-consistently for c and ri, and m is ob-
tained from Eq. (11).

In summary, we have shown that the mean-. field theory
of quantum antiferromagnets introduced by Arovas and
Auerbach yields sensible predictions for the ordered phase
of quantum antiferromagnets in dimensions 4 =2 and
greater. The equations have a solution with finite long-
range order for dimensions d ~ 2 at T =0, and for T ( T,
for d & 2, analogous to the case of Bose-Einstein conden-
sation. The long-range order in the ground state coincides
with that obtained from Anderson's spin-wave theory.
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which is identical to Anderson's expression from spin-
wave theory, yielding for S = —,

' a long-range order
m 0.303 and m 0.422 in d =2 and d =3, respectively.

At finite-temperatures, the summation in Eq. (4a)
diverges in two dimensions in the thermodynamic limit if
ri=l. Equation (4a) can, therefore, be satisfied at any
finite temperature with ri & 1, yielding a finite value for
S(tt, tt) and no long-range order. Thus, there is no phase
transition at finite temperature in d -2 in agreement with
what one would expect from the Mermin-Wagner
theorem. In three dimensions, the right-hand side of Eq.
(4a) is nondivergent. We can find the critical tempera-
ture T, by setting ti 1 in Eq. (4a), solving (4a) for (pc),
and (4b) for c. We find for S —,

' T, =4.30 to be com-
pared with high-temperature series estimates T, -3.83.s
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