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Flory formula as an extended law of large numbers
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A new derivation of the Flory formula for self-avoiding walks (SAW's) is proposed. It relies on

purely statistical arguments concerning sums of long-range correlated random variables, and does
not involve any free-energy minimization. It allows unambiguous generalization to several other
problems: in particular, the correct Flory-type formulas for SAW's and TSAW's on fractals are
obtained.

The aim of this Brief Report is to present a new physi-
cal picture of the self-avoiding walk (SAW) problem.
The first outcome of this picture is to provide for the first
time a crystal-clear interpretation of the Flory approxima-
tion ' for the exponent relating the end-to-end distance of
a polymer to the number of its monomers. Usually, the
Flory formula is found by balancing two terms of the po-
lymer free energy: the elastic energy (sometimes called
entropic term) and the repulsive energy, both estimated in
a "mean-field" way. Though the resulting formula is
amazingly successful, this derivation suA'ers from several
Aaws: both terms are grossly overestimated, one deals in
fact with subdominant terms, and the resulting free ener-

gy has the wrong sign. Attempts to account for its suc-
cess have been proposed, in particular in Refs. 4-7.

We want to show here that the Flory formula can be
obtained on statistical grounds: it can be viewed as a
self-consistent way of estimating sums of correlated ran-
dom variables. No free energy is involved in our deriva-
tion, which can be unambiguously generalized to many
other situations, as will be shown on several examples:
self-avoiding Levy flights, SAW's on fractals, "true"
SAW (Ref. 8), etc.

Taking this picture seriously suggests an alternati~. -'

field-theoretical representation for polymers which hap-
pens to give back the n =0 result at first order in e =4 —d.

The physical picture we propose is the following: a
polymer is a random walk with a long range correl-ation
between the elementary displacements, which is induced
by the self-avoiding constraint. It can be seen as a ran-
dom walk in a correlated environment, the structure of
which is generated by the past motion of the polymer it
self.

Let us first show how to deal with such a sum of corre-
lated random variables (&x;) =0):

N

Rjv= gx;,i=1

where we assume that the correlation function
C(n) =&x;x;+„)depends only on the diH'erence n (station-

ary process). The mean square of R~ is given by

&Rg) =NC(0)+2 g (1V—n)C(n) .
n i

(2)

The statistical meaning of this analysis is the following:

const ify ) 1,
N" &' fo&n=1 (y& (4)

is proportional to the number of times the variable x; is
essentially identical to x &, and thus N/1V;d can be thought
of as the number of electively independent variables (x;)
in the process. RN can now be estimated by rewriting it
under the form

R~ =N~d g x;,
N/N;d terms

(5)

where the central limit theorem in its usual form can now
be applied to the sum. This leads to RN-N;d(N/N;d) '

and (3) is recovered.
For the SAW problem, the exponent y governing the

correlations between displacements may be estimated as
follows. Consider the nth monomer of the chain: its dis-
placement x„ is strongly correlated to all the preceding
ones, xi, . . . , x„—i, by the fact that if this nth monomer
happens to be close to one of the preceding ones, the dis-
placement x„has to be chosen so as to expand the chain
radially, thus reducing the occurrence of further intersec-

Thus, one must distinguish between two cases.
(1) The sum g„-~ C(n) converges when N becomes

large [i.e., in practice, when C(n) decreases faster than
I/n] and then RPy —N behaves as a Brownian (uncorrelat-
ed) walk, the prefactor only being modified: correlations
are in this sense "irrelevant. "

(2) The sum diverges, and in this case correlations are
releuant: suppose that C(n) decreases for large n as I/n~
with 0 (y & 1. One gets a modified "stretched" behavior
of the walk:

&R')-N" &'.
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tions. Assuming perfect transmission of the correlations
at the contact points (that is, g;='~x;-N„where the sum
is restricted to contact points only), the integral N;g of the
correlation C(n) must scale as the number of contacts N„
which can be estimated in the usual mean-field spirit as
n "". This estimation yields a decrease C(n) —1/n"
where v is the exponent of the end-to-end distance R/v it-
self. Note that, since r —n', this amounts to a decay
1/r" '/" with distance, which is simply the behavior of the
correlation function of the polymer itself.

Thus y = vd —1. Correlations are thus relevant as long
as d & 2/v; since v& —, , this yields the upper critical di-
mension d, =4. When d & 4 (y & 1), self-consistency re-
quires from (3)

2v =2 —(vd —1)

self-intersections are not strictly forbidden; instead, the
direction of an elementary displacement is given a weight
which favors neighboring sites with a low occupation
number. The correlation has thus a local nature: it sim-
ply decreases as the probability for the last monomer to
coincide with the first one, i.e., as 1/n'", and thus y = vd.
Self-consistency now yields

2v-2 —vd or v=2/(2+d),

which is the expression proposed by Pietronero, ' again
very close to numerical results in d= 1 (Refs. 11 and 12),
and possibly exact.

(c) Self avoi-ding Levy flights. If the elementary dis-
placements have a broad distribution behaving as

or

v=3/(2+d),
for large x, o. & 0, then, writing R~ as in (5),

which is precisely Flory's formula. (y=1 for d=4 im-
plies logarithmic correctins to R z =N, which indeed exist
at the critical dimension. This is out of reach of the con-
ventional Flory approach. ) This formula has thus a sta-
tistical content; as such, it is quite insensitive to "details:"
in particular, only the limiting behavior of the correlation
function is of any relevance. This again emphasizes the
link, suggested by Jona Lasinio, between critical phe-
nomena and sums of correlated random variables. Fur-
ther investigations along these lines are, in our opinion,
highly desirable.

The above derivation shows very clearly that Flory's
formula combines an exact result on some correlated ran-
dom variables [Eq. (3)), and an approximate way of es-
timating the decay of the correlation C(n), based on a
mean-field counting of the number of contacts and a "per-
fect correlation transmission" hypothesis. [Weaker corre-
lations through contacts characterized by a slower power
law g;-'~x;-N~, P ~ 1 would lead to a "generalized Flo-
ry formula" v = (2P+ 1)/(2+Pd ). The self-consistent
choice P = v yields a Flory-type formula v= 1/Wd which,
remarkably, is exact at first order in 1+e and 4 —e.] The
estimate C(n) —1/n" ' corresponds, in more familiar
terms, to the repulsive term N /R" in the free energy.
One can think of improving this estimation by multiplying
C(n) by the correction factor 1/n" ' which takes into ac-
count the depletion of the end-to-end probability distribu-
tion near the origin. This leads to a modified formula:

v = (4 —y)/(2+ d),

which again is exact for d=4 and d=l and has the re-
markable property to yield the correct first order term in
an e =4 —d expansion.

One of the main interest of this statistical interpretation
is that it allows unambiguous generalizations to many oth-
er problems: we now give four illustrative examples.

(a) Directed SAP"s. As soon as an average drift is im-
posed to the walk, the correlation C(n) will decrease ex-
ponentially, and it is thus obvious that one recovers the ex-
ponent v= 2 for the transverse spreading.

(b) "True" SAW. For the "true" SAW (TSAW),

N/N;d terms Nid terms
(io)

The internal sum then behaves as (N;d) '/ x; if 0 & cr & 1

and as N;dx; if cr& 1, where the x s are eff'ectively in-
dependent random variables, still distributed as (9).'
The remaining sum behaves as (N/N;d) '/ if o & 2 and as

JN/N;d for o & 2. The same self-consistency argument
as above (with Nd-N' Y, y=dv —1) thus leads [for
d & min(2n, 4)] to

0 & o & 1 (unperturbed Levy flight),l

2o —1

o(d+1) —d '

3
2+d' cr & 2 (normal SAW),

which are the results obtained in Ref. 14 through the usu-

al free-energy minimization (see Ref. 15 for the complete
phase diagram). Note that in this case the elastic part of
this free energy is rather subtle to obtain: it is not related
to the probability distribution of the free walk. 5

(d) Self avoiding walk-s on fractals. Walking on a
fractal network (of dimension dF) introduces two features
at variance with the Euclidean case.

(1) The statistical behavior of the sum of N/N;d in-

dependent random displacements is modified by the frac-
tal geometry. ' It behaves as

(N/N ) "', (i2)

where d, is the spectral dimension of the lattice.
(2) Performing Nd identical displacements on the lat-

tice results in a Euclidean distance from the starting point
scaling as

(N ) dldP

where d is the spreading dimension (see, e.g., Ref. 17).
Taking these modifications into account (together with
y=vdF —1) leads to a generalized Flory formula for
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SAW's on fractals:

4d —d,
VdF =

2+ 2d —d,

This expression diA'ers from a number of previously pro-
posed ones ' ' generally obtained through rather heuris-
tic arguments N. ote that formula (14) satisfies three
necessary requirements: (i) d, (4 appears as the cri-
terion for the relevance of the self-avoiding constraint, in-
dependently of dF and d. (ii) vdF is independent of dF it-
self and thus depends only on the intrinsic quantities d,
and d (see Ref. 20). (iii) vdF =1 if d =1, independently
of d, . Comparison with exact or numerical results are
summarized in Table I for several fractals. The agree-
ment is quite satisfactory (which anyhow is also the case
of most of the formulas referred to above). Nevertheless,
we wish to emphasize that formula (14) has been derived
on clear statistical grounds. [Note that formula (14) can
also be obtained by identifying the elastic energy with
the logarithm of the recently derived probability distribu-
tion for random walks on fractals. 1 For TSAW's on
fractals, one obtains in the same way (y

=derv)

vdF ~ 2d (i4')
2+2d —d,

We have considered along these lines ' the case of
self-avoiding manifolds of internal dimension D (Ref. 27)
for which y = vd/D —1; using

1V
r ~ 1 D/2

g x; —N~d (is)

one finds the generalized "Flory formula:"

v =(2+D)/(2+d),
which, interestingly enough, coincides with the one pro-
posed in Ref. 27.

This picture of a SAW as a random walk with a self-
induced correlation naturally suggests study of the prob-
lem of a random walk in a random environment, described

1V= —+ +
2 16

(19)

which is precisely the well-known n =0 result at one-loop
order. Note that this Geld theory also allows the recovery
of the exact asymptotic behavior of the end-to-end dis-
tance distribution P (R,%)—exp l —(R/N') 1 with
b =(1—v) '. At higher orders, the detailed structure of
the force correlations comes into play, and one presum-
ably cannot carry on with a quenched picture, but instead
introduce some nonstationarity, much as in Edwards for-
mulation of the SAW problem. 4, 29,30

As a conclusion, this work emphasizes the link between
Flory-type approximations and statistical limit behaviors.
As such it has a large degree of generality, and it would be
interesting to extend similar ideas to other problems such
as lattice animals or O(n) spin inodels.

by the following Langevin equation:

dR~
dW

=F(R~)+ rf(N), (i7)

where F(R) denotes a quenched random force with long-
range correlations decaying as (F„(R)F,(R')) —8„,(R—R') '. This problem has been addressed in Ref. 30
through a renormalization-group analysis, where we have
shown that disorder is relevant for a & 2 and that the
modified diffusion exponent v reads, at first order in
8=2 —a,

1 1 d —2+ + ~ ~ ~

2 8 d —1

Note that the self-consistent method explained above
would lead to v =2/(2+a) for this problem, which, at first
order in 2 —a, coincides with (18) in the d ee limit.

Coming back to the SAW problem, one can imagine
that the self-avoiding constraint can be implemented
through a centrifugal force associated with each mono-
mer, the correlations of which thus decrease as those of
the density itself. This suggests the choice of the value
a=d —1/v. Remarkably, matching the expansions of
both sides of (18) in e =4 —d, yields

TABLE I. Exponent v for SAW's and TSAW's on different fractal lattices: comparison between nu-
merical (or exact) values and formulas (14) in text.

d 3

Sierpinsky gasket
SAW
TSAW
SAW
TSAW

v: numerical or exact

0.798 (Ref. 19)
0.51 (Ref. 21)
0.675 (Ref. 19)

v: approximation
[Eqs. (14) in the text]

0.825
0.53
0.724
0.45

Percolation cluster (backbone)
d 2 SAW

TSAW
SAW
TSAW

0.767 (Ref. 22)

0.65 (Ref. 18)

0.76
0.48
0.67
0.44

Koch curve 0.891 (Ref. 19) 0.855
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