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We have extracted the leading low-temperature contributions to the specific heat and the mag-
netic susceptibility from the thermodynamic Bethe-Ansatz equations of the SU(3) invariant fer-
romagnetic Heisenberg chain of spin 1. The critical exponents for the specific heat, the suscepti-
bility, and the correlation length are a=— 4, y=2, and v=1, respectively. The susceptibility
and the correlation length exhibit logarithmic corrections, which are quenched by relatively small
magnetic fields. In large fields, the energy required to flip a spin gives rise to an exponential ac-
tivation.

The critical behavior of the one-dimensional isotropic  of the sites i and i+1. Model (1) has been diagonalized
spin-+ Heisenberg ferromagnet has been studied by a by Sutherland ' by means of two nested Bethe-Ansitze.
variety of methods, which yielded quite different critical Our main result is the critical behavior of the correla-
exponents' ~8 of the susceptibility ¥ and of the specific tion length, the susceptibility, and the specific heat, which
heat @. This long-standing problem was resolved in part are given by
by recent numerical solutions of the coupled thermo-

~ -1 24 ...
dynamic Bethe-Ansatz integral equations,”® both yielding E=QI/DILT +n L)/ L2+ -1, @
the exponent values a=— 7 and y=2 as expected from x=7|J/TOIL '+ UnL)/ L2+ -1, 3)
spin waves. A gradual crossover into the critical region is -
observed with decreasing temperature, which explains the c=12(1/17"*+o(r/|J]), )

diversity of extrapolated exponents! ¢ from temperature
ranges that were not low enough. Finite string-size scal-
ing of the numerical data’ suggests logarithmic correc-
tions to the susceptibility. The above exponents, as well as
logarithmic corrections to the susceptibility and correla-
tion length, have later been analytically extracted from
the thermodynamic Bethe-Ansatz equations® and extend-
ed to chains with arbitrary spin'® and SU(2) invariance. F=—2|J| —2H~—-Q/x)|J| ~12T3"2
Recently, Bonner and Miiller'""!? argued that not only is

where .L=In(|J|/T). The exponent a= — § has been
obtained previously by numerically solving the Bethe-
Ansatz equations.’> A small but finite magnetic field
smears the logarithmic corrections in (2) and (3) and a
large magnetic field (H > T) leads to an exponential ac-
tivation

the hyperscaling hypothesis'3 not satisfied for the S =1 xexp(=3H/T)+ - . )
isotropic Heisenberg ferromagnet, but also the scaling as- For J <0 the ground state is ferromagnetically ordered.
sumption breaks down. The excited states of the chain consist of magnons and
In this paper we report analytic results for the SU(3)  bound states of magnons. The rapidities describing the
Heisenberg ferromagnet by employing thc same pro- ground and Cxcitcd states are Solutions Of the discrete
cedure as in Refs. 9 and 10. The Hamiltonian for the  Bethe-Ansatz equations.'* In the thermodynamic limit a
SU(3) Heisenberg chain'* is bound state of n magnons is represented by a string of n
N complex rapidities. There are two sets of strings, since for
H =] Z [(S;-S;+1)+(Si-Si+1)?] S=1 there are two degrees of freedom per site. In

=1

thermal equilibrium the properties at finite 7 and H are

N given by the thermodynamic energies of these elementary

=JY (Pii+1+1), 1) excitations &\ and &\?. It is usual to introduce the sta-

i=l tistical weight of the excitations, 1% =exp(e{?’/T),

where J is the ferromagnetic coupling (J<0), S are  p=1,2, which satisfy the following nonlinearly coupled

spin-1 operators, and P; ;+ permutes the spin components integral equations'®
J

07" = = 22(J/T)8, 1G2+ G Il + 02D U+ 72/ + 7)1+ Gy Il + 72D A +22)/A+2M1,  (62)
Inn® = —27(J/T)8,.G1+ G+ In[A+7E DA +72 /A +7)]+G 1+ nl(1+7R DA+ )/ +7)]1,  (6b)
forn=1,2,... . Here the centered asterisk denotes a convolution,

G,(A)=(1//3)[2cosh(27A/3) — (= 1)71 7!, )
and n,f”) =0. These equations are completed by the asymptotic conditions

lim_{inln? (A)}/n =2H/T =2X,, | ®)
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and the free-energy per site is given by

F(T,H) =F(0,0) — T f dAIG:(M)In(1 +1{")
+G (M1 +9)]1,  ©)

where F(0,0) =J(2—1n3 — 7/3/3).

The above equations have simple solutions in two limit-
ing cases. (1) In the high-temperature limit (free spins),
the driving terms in Egs. (6) can be neglected. The solu-
tions for the n{?’ are then constants fixed by the field
boundary condition (8) to be
W — . @ _ | sinhl(n+1)Xolsinh[(n+2)Xo] | _
T sinhXosinh (2X,) :

(10)

n

and the free-energy per site is then given by
F(T,H)=—TIn[2cosh(2Xo)+11. an

(2) If J <0, all £”’(A) >0 from Egs. (6). At T=0 the
driving terms dominate and nP) =oo for all n. The solu-
tions obtained from (6) are

P(A)=2nH+ |J| —"—5—5 (12)
g n .
" | |A2+n2/4 P!
Then we have S,/N =1 and E/N=—2]|J| —2H, the fer-
romagnetic ground state.

In the critical region the solution is an interpolation be-
tween these free-spin and zero-temperature limits. Con-
|
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sider a low but finite temperature. We now argue that the
functions s,S')(A) show crossovers between expressions
(10) and (12) as a function of A and n. For A or n
sufficiently large, the driving term in (6) becomes negligi-
ble and the solution is (10). For small A and n, on the
other hand, the driving terms dominate and s,,“)(A) is
given by (12). For £2(A), on the other hand, the large-n
limit of (10) is identical to (12).

For small A and H we define a crossover index n.(T) by
equating s,(,cl) from (10) with (12),

Tin(n.+ 2)=2|J]|/n., (13)

assuming that n.>1 at low T. For n>n, (n<n.) the
solution is then closer to the free-spin (strong-coupling)
solution.

In thermal equilibrium, the correlation length, i.e., the
average number of correlated spins, is approximately
given by &(T) =n,. Note that bound states involving less
(more) than n. spins are unlikely (likely) to occur, so that
n, is the average number of correlated spins. If 7>> |J],
for all n and n, <1, such that all spins are uncorrelated
(free spins). On the other hand, as T— 0 excitations are
suppressed as n. becomes very large and asymptotically
ferromagnetic order is approached. Solving (13) itera-
tively for T < | J| we obtain (2), corresponding to v=1,
with logarithmic corrections.

Following Refs. 9 and 10 we now derive the low-
temperature free energy by means of Eq. (9). For this
purpose we determine In[1+7{”(A)] using

In(1+7P) =2X,+ gl([m+1]+[m—1])ln(1+(n,(,{’))—‘)— Z=1 Imlin(1+ () ") =68, /T A2+ L), (14)

where p, g =1, 2, g=p, and [m] is defined so that for
any f
- i . m/2

mlf=/n N G s
To a first approximation, n$? is independent of A [Egs.
(10) and (12)] so that convolutions involving 72 are
easily integrated. The corresponding sums yield 2X)
—Inlsinh(3X()/sinhXo] if p=1 and minus twice this ex-
pression if p =2.

In the strong-coupling regime, n,f”—» o as T— 0 so
that the strong-coupling solution does not contribute to
the integrals in (14). We assume 7{’(A)=o0 for
|A] <A.(n) and n < n, and elsewhere given by the free-
spin solution. This assumption of a sharp crossover does
not affect the leading temperature dependence but only
the amplitudes. A.(n) obtained via similar arguments as

)Zf(A'). (15)

- %X&] [tan_l

(m+1)/2
A—A

]
ne is

Acn)=

7] L ” 16)
T Inln(n+3)/2] ’

Following Refs. 9 and 10 we divide the contributions to
ln(1+m(”)) arising from the remaining integrations in
(14) into two parts: (a) |A|>A.(n), n<n. and (b)
n=nc.

(a) Expanding the free-spin solution for small fields Xy,

2

2 2
—_ ——X +,
m(m +3) 320

Inl1+@P) " I=In|1+

an

and integrating (14) over the intervals [e,A.] and
[—Ac, — =], we obtain

+(A—=—A)]. (18)

1| m—1)/2
+tan [————AC_A

Since A.>>1 and the integration kernels in the free-energy expression (9) fall off exponentially fast so that onl
| A| <A, is relevant, we can expand Eq. (18) in powers of A/A.. This Taylor expansion generates a power series in T!
because A.~T ~'/2, with the leading term given by A=0. The leading (as T— 0) zero-field and small-field contribu-
tions are then '

2
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n.— oo

1/22 2
(T/IJI) = mZ_l ln[l+————(m+3)

16X2057IJI

Inln(|J|/T)
3 T +

1
[ln(IJI/T) In2(|J|/T)

(b) Since the free-spin solution does not depend on A, the integrals in (14) are straightforward and we obtain

3 20nl1+ () *11=;“—-—4X0+ n X3+ -

m=n, c

2817

]{m InlmGn+3)22  =3.3(T/|J )2, (19a)
. ] , (19b)

(20)

Expressions (19) and (20) are the contributions to In(1+7{"); those contributing to In(1+n{?’) are very similar.
Collecting all terms and inserting them into Eq. (9) we obtain the free energy per site in leading order as T— O:

1

Inin(|J|/T)

F==2|J] —1.65——— 085!J|

3/2
I I 1/2

The critical behavior is then similar to that of the SU(2)
ferromagnetic Heisenberg chains.®!°

We have assumed in our calculation that the crossover
from strong coupling to free spin is abrupt. Note that if
we assume that the free-spin solution is valid for
|A| >aA., n<an., and for all A if n > an., wherea =1,
the temperature dependence of the free energy remains

[J] Tl{
=—1In
ne 4

Hence, the magnetic field enhances n. and & If X is
small, we have n.Xo~H/T 2 indicating that the exponent
A (higher-field derivatives of the free energy) equals two
(with logarithmic corrections). Note that n.Xo can be
large at low 7 even if H is small and not all the exponen-
tial terms in (22) contribute. As a consequence, the loga-
rithmic corrections in the correlation length (2) and the
susceptibility (3) are quenched. The critical exponents in
a weak field remain y=2, a=— §, and v=1.

For a strong field H/T> 1, cons:derlng only the first ex-
ponential term in (22) we get the crossover index

n.=4(|J|/T)expQH/T), (23)
and the crossover rapidity
Ac=(n|J|/T)"?exp(H/T). 4

Both n. and A, are considerably enhanced by the field. To
calculate the free ener§y we repeat the procedure used
above with In[1 +(n ) 11=e "?™* a5 the free-spin
solution. Since X is large, only the m =1 term contrib-
utes to the leading order. Hence, part (b) can be neglect-

In(|J|/T)

"C
4o Moo 8oy .. 4, "2+ DXy [ 1+(—1) ]e—chXo] _e—zncxo}'

In2(|J|/T) @D

unchanged and only the amplitudes are rescaled.

We now discuss the critical behavior in an external
field. Since the magnetic field favors magnetic ordering,
the strong-coupling region will be enhanced by the field.
Hence n. is expected to grow with H, such that more exci-
tations are suppressed. Equating &5’ O3 from (10) with (12)
at finite H, we obtain

_.1)"c

4o Xogo oy . . 4o 2Ky [ 1 -—(2 }e—Z(nc+l)Xo]

> (22)
I
ed and part (a) yields
2(x/10) exp(=3H/T). (25)

Collecting all the terms we obtain (5) for the free energy
to leading order. Note that the second term in (5) just
gives the saturated magnetlzatlon and 2H is the Zeeman
splitting. The last term in (5) can be rewritten as
(—8l|J |/7r)§ 32 in terms of the correlation length ¢&.
Hence, in a strong ma%netlc field, & ~! replaces T in the
zero-field free energy.'’ It should be mentioned that we
implicitly assumed H < | J | when dividing the integration
regime into a weak- and a strong-coupling regime.

In summary, we obtained the critical behavior of the
SU(3) invariant ferromagnetic Heisenberg chain of spin
1. The crossover index n. represents the average number
of correlated spins, i.e., the correlation length. We obtain
v=1 with logarithmic corrections. From the zero-field
free energy at low T we obtain that a=— 3 and y=2
with logarithmic corrections.

The leading zero-field free energy, proportional to 7'¥2,
arises from the large |A| values which correspond to
small momenta. Hence the result is indeed due to long-
wavelength magnons. The leading term of the susceptibil-
ity, on the other hand, cannot be explained within a simple
magnon picture since strings of all orders contribute. The
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logarithmic corrections in x arise from the temperature
dependence of £&. These logarithms are quenched by small
magnetic fields.

In sufficiently large fields, T < H < | J |, we obtain that
the temperature-dependent part of the free energy is pro-
portional to &2 where & grows exponentially with
2H/T.

Finally we discuss our results in the context of scaling
and hyperscaling. The relations among the critical ex-
ponents!3 for a zero T are different from the usual ones
where T,.70. Since in the ferromagnetic ground state all
spins are aligned, the spin-spin correlation function is in-
dependent of the distance n=1 and the magnetization is
independent of the field § =cc. The scaling and hyper-

scaling relations!? yield then

y=1+v, y=A, and —a,;=dv, (26)

where d =1 is the dimension. The first and second rela-
tions are satisfied, since y ~&/T, including the logarithmic
corrections, while the last one is not obeyed. The con-
clusion by Bonner and Miiller'"!? that the scaling and
hyperscaling hypothesis break down is also valid for the
SU(3) Heisenberg ferromagnet.
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