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Within the general framework of Bardeen-Cooper-SchrieN'er pairing theory we derive coupled

gap equations of the Helfand-Werthamer type for two or more order-parameter components hav-

ing diA'erent symmetry. Assuming, for instance, coupled s- and d-wave pairing components, we

obtain for certain parameter values a solution for H, 2 perpendicular to the Cu-0 planes which ac-
counts qualitatively for the observed upward curvature and yields about 65 T at zero temperature.
We calculate also the in-plane fluctuation conductivity of the Lawrence-Doniach type for fields

parallel to the c axis. For large fields, the inverse fluctuation conductivity is almost linear in tem-
perature with slope depending sensitively on the ratio of coherence length to unit-cell dimension

along the c axis. It seems possible to fit the observed broad resistive transition for diAerent fields
with this inverse fluctuation conductivity. Just above the transition temperature, T,2(H), the in-

verse ac fluctuation conductivity is approximately a linear function of frequency for small fields,
and it is nearly a quadratic function of frequency for large fields. The field dependence of the
fluctuation contribution to the specific heat is also discussed in connection with recent measure-
ments.

I. INTRODUCTION

Single crystals' and oriented films" of high-T, super-
conductors such as YBaqCu307 — show some unusual
features in a magnetic field in comparison to ordinary
type-II superconductors. The upper critical field and the
width of the resistive transition are strongly anisotropic as
functions of the angle between the directions of H and the
c axis (the Cu-0 sheets are parallel to the ab plane and
the c axis is normal to the Cu-0 sheets). From the mea-
sured slopes of H, 2 one estimates coherence lengths
g,b(0)=22 A and g, (0)=2 —4 A. For a given field
direction H, 2 shows an upward curvature as T decreases
below T, . The resistive transition in a field is rather
broad, in particular for H lying parallel to the c axis.

Possible explanations for the upward curvature of H, 2

are critical fluctuations or flux creep. The observed cur-
vature of H, 2 perpendicular to the Cu-0 sheets is pro-
portional to (T, = T) ' which is in good agreement with
the predicted curvature derived from the fluctuation mod-
el of Ref. 5, i.e., (T, —T)" . On the other hand, the flux
creep model predicts a (T, —T)' dependence for H, q

which is in general agreement with the observed curvature
for H, 2 parallel to the Cu-0 planes.

Although strong arguments have been given that the
observed upward curvature of H, 2 is caused by critical
fluctuations or by flux creep we shall, nevertheless, pro-
pose in this paper another mechanism, namely, a mixing
of pairing components having different symmetries and
T, 's. Our theory is quite analogous to the modified
Helfand-Werthamer theory of Scharnberg and Klemm '

where it has been shown for a special state of partially
broken symmetry (a mixing of a p-wave component along
and another perpendicular to the c axis) that H, 2 perpen-
dicular to the c axis can exhibit upward curvature. We re-

mark that the temperature variation of two p-wave pair-
ing components with different T, s and their collective
mode spectrum become rather complex. In this paper we
shall consider a mixing of an s- and d-wave pairing com-
ponent similar to the two-component order-parameter
model which has been used by Kumar and Wofle' to de-
scribe thorium-doped UBe~ 3.

To explain the other field effect on high-T, supercon-
ductors, i.e. , the rather broad resistive transition in a
field ' ' we assume that this effect is caused by fluctuation
conductivity of the Aslamazov-Larkin and Lawrence-
Doniach type. We calculate the fluctuation conductivity
from expressions which are analogous to those derived by
Klemm. " Klemm's theory is a generalization of the
Lawrence-Doniach theory for layered superconductors'
where the field efl'ects have been introduced in analogy to
the theory of Mikeska and Schmidt' for bulk supercon-
ductors in the dirty limit. Here again the flux-creep mod-
el ' offers another explanation, i.e., that the point of devi-
ation of the resistivity from its normal-state value repre-
sents T, (H). This is in accordance with recent reversible
measurements of the magnetization' which yield an ap-
parent transition temperature that is not suppressed with
magnetic field nearly as rapidly as the temperature of zero
resistivity which we call T,q(H). We assume that the
latter temperature is given by that temperature at which a
pole first occurs in the pair fluctuation propagator. This
pole corresponds to the lowest Landau level. For H lying
parallel to the c axis this transition temperature is given
by' 1 [n,T(2H)/T, ] = —g,b(0) 2eH Doubts about th. e
applicability of the Lawrence-Doniach theory have been
raised by recent measurements of the in-plane paracon-
ductivity in zero field. ' It is found that the decrease to
zero resistance for T T, is much more abrupt than de-
scribed by the (T —T, )'t behavior of the Lawrence-
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Doniach theory beyond the crossover from two-
dimensional (2D) to three-dimensional (3D) behavior.
However, we will show that consideration of a second-
neighbor tight-binding term along the c axis can give a
better fit to the zero-field paraconductivity data.

In this paper we take the point of view that the existing
theories for the upper critical field of coupled order-
parameter components ' and for the field effects on the
fluctuation conductivity of layered superconductors'' can
be applied to describe high-T, superconductivity. Howev-
er, we modify these theories to take into account the quasi
two dimensionality of the effective tight-binding band and
to allow for anisotropic pairing. This is done in analogy to
the previous calculation of the coherence lengths and the
fluctuation conductivity in zero field. ' In analogy to the
method used for heavy-fermion superconductors, we ex-
pand the order parameter as well as the pairing interac-
tion in terms of basis functions of the representations of
the orthorhombic symmetry group. ' The spatial depen-
dence of the order-parameter components in a field is tak-
en into account by making an expansion in terms of gen-
eralized Abrikosov solutions. The parameters of the
theory can be calculated from microscopic theory by as-
suming an effective 2D band' plus a tight-binding band

I

term along the c axis. We shall see that we can explain
qualitatively the observed upward curvature of H, 2 and
the broad resistive transition in a field in terms of our sim-
ple model calculations. We find interesting field and fre-
quency dependence of the ac fluctuation conductivity
which suggest measurements at microwave and infrared
frequencies. Our results for the field dependence of the
fluctuation specific heat are discussed in connection with
recent measurements.

In Sec. II we develop the theory of the upper critical
field for mixed order-parameter components. In Sec. III
we calculate the dc and ac fluctuation conductivity for
fields parallel to the c axis. The results of Secs. II and III
and the fluctuation specific heat are discussed in Sec. IV.

II. THEORY OF UPPER CRITICAL FIELD FOR MIXED
ORDER-PARAMETER COMPONENTS

Our starting point is the linearized gap equation for the
order parameter h(r, k) in a magnetic field where r is the
center-of-mass coordinates of the Cooper pair [see Eq.
(B4) of Ref. 7]:

d k' [V, ~(k'). n(r)]
d, (r, k) = Tg g 3 V(k, k') g +, &(r,k') .ru„2tr m 0 Ek/'con [E k + tcog

Here, t.'(k) is an effective band function, a)„(2n+1)trT, and II = —i V, +2eA(r). The order parameter and the pairing
interaction V(k, k') are expanded in terms of basis functions y;(k) of the representations of the orthorhombic symmetry
group: '

h(r, k) =+A, (r)y, (k), V(k, k') =g V, y~(k)y~(k') . (2)

Let us consider first the Ginzburg-Landau (GL) equations which are obtained if we keep in Eq. (1) only terms up to
second order in the momentum operator II. By making use of the orthogonality of the y;, we obtain from Eq. (1), with
the help of Eq. (2)

d k[a; ln(T„/T)]A;(r) =g
3 y;(k)yt(k)8(k) [Vt, e(k) II(r)] d~(r),

2)r (3)

where

d'k
a;ln(T„t'T) =„,y;(k)' T Z

2tr) ' „(r) a)„[a).'+ e(k) ']
—T, g

„(r,)
/

a)„/ [co2+ e(k) '], (4)

-2
COD)

[a)2+ E(k) 2] 2
(5)

The co„denote the renormalized Matsubara frequencies in
the presence of impurity scattering. '

We take as a band model e(k) =e(k„,k~)+t, [cos(k,c)—1] where e(k„,k~) is an effective 2D tight-binding
band, for instance, that of Emery, ' and the second term
describes a small band dispersion in the k, direction. Fur-
ther, we assume for simplicity only extended s-wave and
d-wave pairing in the xy(ab) plane. The corresponding

basys functions are

y) (k ) =cosk„a +cosk~ a,
(tt2(k) =cosk a —cosk~a,

I//3 (k) =2 sin (k„a ) sin (k~ a )

Mixing of states of different symmetry has been con-



280 C. T. RIECK, Th. WOLKHAUSEN, D. FAY, AND L. TEWQRDT

+ —,
' (e2 —e,', )(iI+2+II' )

—e, equi (II j'. —II' ), (7)

(fl, ~i11,), .„=(a/ak, )e(k).1

2
(8)

The gap functions y; (r) are expanded now in terms of the
complete set of generalized Abrikosov solutions (Ref. 7)
g~(r), with p, =0, r =x,y, and N =0, 1,2, . . . being the
harmonic-oscillator quantum numbers

W)(r) =gb~gpv(r),

ap(r) =g c~g~(r), (9)

t4(r) =gtd~g~(r),

II~g~ =(2eH) 't (N+1) 't g~+),

II —g~ = (2eH ) 't N '
gjv —) .

(10)

One recognizes that in the GL equation (3), the second
term of the operator in Eq. (7) gives rise to coupling be-
tween A~ and h2, and the third term in Eq. (7) leads to a
coupling between 5] and A3.

By inserting Eqs. (6)-(10) into Eq. (3) we obtain three
sets of coupled equations where the first set contains the
coefficients b~, c~—z, c~+2, d~-2, d~+2 (N =0,2, 4, . . . ),
the second set contains c~, b~ —2, b~+q, and the third set
contains d~, b~ 2, and b~+q. Three types of coefficients
occur in these equations which arise from the three parts

sidered previously for heavy-fermion superconductors, for
instance, mixing of two p-wave pairing states and mixing
of an s- and d-wave pairing state. ' We specialize now to
a magnetic field perpendicular to the ab plane. Since we
are interested here in the upper critical field H, 2, which is
given by the largest eigenvalue of Eq. (3), we can assume
that 5;(r) is independent of z. Then the kinetic energy
operator in the GL Eq. (3) can be separated into three
parts, which have the same symmetries as the three y; in

Eq. (6):

[Vge(k) II(r)] = —,
' (e,'+ e,')(II II+ +11+II )

of the operator in Eq. (7):

ri;a ' = d'k(2') 'y;(k) '8(k) —,
' (e„'+e,'),

tl~qa = d k(2x) y~(k)y2(k)8(k) —,
' (e„—Qe~),

77j3a =& d k(2n) pj (k)&3(k)B(k)E' ey

The g; are related to the GL coherence lengths by

g, (T) ' =g, (0) '[T„/(T„—T)]
where g;(0) =(q;/a;)a . The quantities rt~z and @~3 are
the coupling terms between h, ~ and h, 2, and h, ] and h, 3, re-
spectively.

It is interesting to consider the generalized GL equa-
tions which have been successfully applied for convention-
al superconductors to obtain correction terms to GL of or-
der (T, —T)/T, . The generalized GL equations are ob-
tained from Eq. (1) by taking into account fourth-order
terms in II. Again the operator [Vqe(k) II(r)] can be
separated into three parts whose coefficients have the
same properties with respect to symmetry operations in k
space, as the basis functions in Eq. (6) or the coefficients
in Eq. (7). Therefore, this operator leads again to cou-
plings between 6] and h2, and h, ] and A3, respectively.
The first set of equations for the coefficients in Eq. (9)
contains now b~, b~ —4, b~+4, c~ —2, c~+2, d~ —2, d~+2
(N =0,2, 4, . . . ), and two corresponding sets with b~ c~
and bz d~, respectively. For lack of space we cannot
write down these equations.

In order to obtain coupled order-parameter equations,
which are valid at all temperatures and fields, we now
make the following drastic approximation. We integrate
in Eq. (1) over e(k') from —~ to + ~ at fixed direction
of k'. By numerical computations, we have ascertained
that for the Emery band ' the integrand is sharply peaked
at the Fermi surface, e(k') =0. We now expand the order
parameter A(r, k) (k =k/

~
k

~ ) and the pairing interaction
in analogy to Eq. (2) in terms of basis functions y;(k).
The s- and d-wave functions corresponding to Eq. (6) are

y) (k) = (k,'+ ky'),

y2(k) J2(k kJ) (12)

y3(k) =48k k~ .

In this way we obtain from Eq. (1), approximately, the
following coupled Helfand-Werthamer equations:

6;(r) =VN(0)g„y;(k)yi(k)AT+„dt exp( —
~

co„~ t)exp[ —t(i/2)(sgnco„)VI, e(k) II(r)]hi(r), (13)
4x

where N(0) is an effective density of states and Vqe(k) is at the Fermi surface.
We again assume Hllz, and that h~ does not depend on z. The exponential operator is written in the usual form in

terms of Boson creation and annihilation operators c and c:

exp[ —t(i/2) sgnco„Vt, e. II] =exp[ 2 it(qc +rt*c)],
(14)

(+).
c (4eH) ' (II —iII~, ) =(2eH) '

II&+~, g = —(sgnto„)(eH) ' (e„—ie~) .

The matrix elements of this operator with respect to the states g&(r) (r =x,y;p, 0) can be expressed in terms of associ-
ated Laguerre polynomials L„(see Ref. 20):
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(N'~exp[ —, it(rlc t+rt*c)l )N) exp( —
—,
' t ) rt) )( —,

' itrt*)~ (N'!/N!)'t2L~ ~ ( —, t2( rt[ 2) (N~ N'),

[ rt(k) ['=eH(ex+ey').
(is)

For N'~ N, g* g and N
By inserting Eqs. (9), (14), and (15) into Eq. (13) we obtain three sets of coupled equations for the coefficients btv, c&,

and d&. The problem now is to carry out the integrations over the solid angle d Ok. Since, for our band model, e„and e~
and thus rt(k) depend only on k„and k~, and since the pairing functions in Eq. (12) depend only on k„and k~, we have to
carry out a single integration over the azimuthal angle p. Most important are the terms [q*(k)] in Eq. (15) which
generate the couplings between different states. We shall approximate

~ rt(k) ~ by appropriate averages over the angle p
from zero to 2' which depend on the weighting functions y;(k) y~ (k). In this way we obtain the following sets of coupled
equations for N =0,2,4, . . . (for brevity we omit the coefficients djv):

[V~N(0)] ' —ttT+„dt exp( —
~

to„~ t ——,
'

t eHv~ )Lg ( —,
' t eHv~ ) b~

~n

+ ttTQ dt exp( —
~

co„~ t —
8 t eHv(2) ( —,

'
t eHv~2)

aJ 0

x [[(N+2)(N+ I)] ' LIv( 4 t eHv(g)cg+2+ [N(N —1)] ' Lg 2( —,
' t eHv—/2)c+ —2j 0,

[V2N(0)] 'cd —nTQ dt exp( —
~ to„~ t —

8 t eHv2)
n

x(Lg(4 t eHv2)c~+ 2 (4 t eHv2) j[(N+4)(N+3)(N+2)(N+ I)] '
Lg (4 t eHv2)ctv+4

+[N(N —I)(N —2)(N —3)] '
Lg 4( —,

' t eHv-2)cd 4j)—
f+ OO

+ AT+„dtexp( —(co„~t ——,
' t eHvf2) ( —,

'
t eHv~2)

n 2

x [[(N+2)(N+ I)] '
Lg ( —,

' t eHv~2)b~+2+ [N(N —1)] '
LJv 2(4 t eHv~2)bjv —2j 0.

(i7)

As has been pointed out above, the v; v;; and v;z are
averages of

~ Vie(k) ~
over the Fermi line perpendicular

to H, which refer to the diff'erent weighting functions
y; (k) y~ (k) in Eq. (13). We shall consider, in the follow-
ing, the v; and v;~ as parameters of the theory. The other
parameters are the pairing interaction constants V; which
can be expressed in terms of diff'erent transition tempera-
tures T„by means of the zero-field gap equations. Then
Eqs. (16) and (17) can be rewritten in terms of the follow-
ing reduced quantities:

h =eH(v ~/2trT, ~)

T/T, ~, (T,2/T, ~), (v~/v~), ( ~ v/v2~)

rt;Ja [7((3)/32m T;]v;j~. (19)

Thus, we can calculate in principle the parameters
(v2/v~) and (v~2/v~) for a particular 2D band with the
help of Eqs. (19) and (11).

We have solved the secular equation for the system of
linear Eqs. (16) and (17) for bo, c2, b4, c6, . . . , up to b~2.
There exist many solutions for h (t ) and the largest yields
h, 2(t ). We present our numerical results for h, 2(t ) in
terms of h,*2(t), which is the reduced upper critical field
[see Eq. (18)] normalized to its slope at t 1:

(16) and (17) in powers of (eH)' v;~/2~ co„~ and com-
paring the first two terms of this expansion with the GL
equations in Eq. (3). This yields the relationship

The ratio T,2/T, ~ is related to the pairing interaction con-
stants by hc2(t) hc2(t) [ I dhc2«)/« I ~-il (20)

ln(T, /T„) [N(0) V, ] ' —[N(0) V ]

The averages of the squared Fermi velocities v;~ can be re-
lated to the coefficients g;, of the GL equations in Eq.
(11). These relations are obtained by expanding Eqs.

In Fig. 1 we show our numerical results for h,*2 (t) vs t for
parameter values T,2/T, ~

=0.92, (v2/v ~ ) = 1.9, and
(v~2/v~) 1.4 [curve (1)]. The points in Fig. 1 represent
the experimental points found by Worthington etaI.
One sees that the observed upward curvature of H, 2 is
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simulated reasonably well by our theoretical curve. At
zero temperature, we obtain with the help of Eq. (20) an
upper critical field

H, 2(0) =h, 2(0)(0.3T/K)92. 6 K=66 T

which is close to the estimate of 64 T given in Ref. 3.
Curve (5) represents h,*2(t) for a pure pairing state
(T,2/T, ~

=1, v2=v~2=0). Notice that for the two-
dimensional case h,*2(0) =0.6, which should be compared
with the well-known value of 0.72 for the three-
dimensional case (clean limit).

We have calculated the quantities ti;~ from Eq. (11) by
using the Emery-band' and s- and d-wave pairing states
[see Eq. (6)]. Then we find with the help of the relation-
ship in Eq. (19) that the parameter values for (v2/v~)
and (v&z/v~) used to obtain curve (1) in Fig. 1 are quite
realistic. The h, 2(t) is insensitive to T,2/T, ~

and it is sen-
sitive to the values of (vz/v~) and in particular to the
values of the coupling strength (v~q/v~) [see curves
(2)-(5) in Fig. 1].

III. THEORY OF FLUCTUATION CONDUCTIVITY FOR
LAYERED SUPERCONDUCTORS IN A FIELD

0.5

FIG. 1. The reduced upper critical field parallel to the c axis
h,*2(t) [see Eq. (20)], vs t =T/T, ~ The curves d. enoted by
(1)-(5) refer to a mixed s- and d-wave pairing state with pa-
rameters T,2/T i, (v2/vi), and (Ui2/vi)' (the v's are eff'ective
Fermi velocities). The parameter values are T,q/T, ~

=0.92 for
(1), and T,2/T, ~

=1 for (2)-(5); (v2/U~)'=1. 9 for (1)-(3) and
(5), and 1.5 for (4); (v~2/v~) =1.4 for (1) and (2), 1.2 for (3)
and (4), and 0 for (5). The dots represent the experimental
data of Ref. 3.

The Aslamazov-Larkin (AL) contribution to the fluc-
tuation conductivity in zero field has been calculated pre-
viously' by taking into account the quasi two dimen-
sionality of the tight-binding band [e(k„,k»)] and of the
superconducting wave function. A small band-dispersion
term in the z direction [t, ( scko, c —1)] yields essentially
the Lawrence-Doniach Auctuation conductivity ' giving
rise to a crossover from 2D to 3D behavior as T T, .
The pair fluctuation propagator K(q, ro) is then found to
be

K (q, co) =[aln(T/T, )+4tl„»[sin (q„a/2)+sin (q»a/2)]+4t), sin (q, c/2) —irro]. (21)

Here, —a ln(T/T, ) and t), » are given by Eqs. (4) and (11) (from now on we omit the subscript i referring to the pairing
state). The coefficient t), is obtained from the expression for t), » [see Eq. (11)]by replacing (e„+e»)/2 by —,

' t, a . The
relaxation time r is given by

r =(z/2)„t d k(2z) y(k) [2e(k)] 'tanh[e(k)2T„]8[@(k)] . (22)

The eff'ect of a field can be calculated from the eigenvalues of a certain differential operator of infinite order [see Eq.
(A7) of Ref. 15] whose kernel contains the Fourier transform of K (q, co). For a field H parallel to the z axis, these ei-
genvalues can easily be calculated if one expands K '(q, co) in powers of q, and q» and keeps only the first-order terms.
This has the eff'ect that (q„+q~) is replaced by the eigenvalues 2eH(2N+1) of the Landau states having harmonic-
oscillator quantum numbers N =0, 1,2, . . . . In this way we find that the inverse fluctuation propagator in Eq. (21) is re-
placed by

Kz '(q„cu) =a[1 (nT T/, ) +g, »(0) (2eH)(2N+ I )+4[(,(0)/c] sin (q, c/2) —irro/a],

where

g, »(0) =tl, »a /a, g, (0) =t),c /a.

(23)

(24)

The two current operators occurring at the vertices of the AL diagram cause transitions between Landau levels
N N+ 1 and vice versa. Mikeska and Schmidt' have calculated the Auctuation conductivity of a bulk superconductor
in a field for the dirty limit, and Klemm has generalized their calculation to layered superconductors. Following the
methods of Refs. 13 and 11 and using our fluctuation propagator in Eq. (23) we obtain for the average AL fluctuation
conductivity in the xy (ab) plane for a field H lying in the z (c) direction:
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e z +. dy I w(e)+I w+i(e)
o'H(co) h g 4(N+1) j-,' [rtv(y)+rjv+((y)]'+(iso)'j

16AC N~o i+ 4 I++i 0
where

r~(y) - [ep, +2hN+ —,
' y(1 —cosy)],

fp ill [T/T2(H)] e+h, e ln(T/T),

h g„,~(0) 2eH, y 4[(,(0)/c]

~ -tran ai/16kaT„ i 8ktt T, rlttha.

In Eq. (25) the integration over the angle p can be carried out and we obtain

oH(a)) -(e i/16hc)ot, (ito),

(25)

(26)

(27)

ot, (iso) -4h'[h'+(i')']
x g (N+1)[[(et, +2hN)(et, +2hN+ y)] ' + [[et, +2h(N+1)][ep, +2h(N+1)+ y]j

N 0

—2[[et, +2h(N+ —,
' )]'+(iso)'j 't'[[et, +2h(N+ 2 )+y]'+(iso) j

xcos( —,
' arctan jico/[et, +2h(N+ 2 )]j+ & arctanjito/[et, +2h(N+ 2 )+ y]j)] . (28)

The limit ice 0 of the expression in Eq. (28) corre-
sponds to the limit co 0 of the expression derived in Eq.
(10) of Ref. 11 for the dirty limit. However, our expres-
sion in Eq. (28) is valid at all frequencies while that of Eq.
(10) in Ref. 11 corresponds to an expansion of the in-
te~rand in Eq. (25) in powers of c02, up to first order in
M .

Let us consider first the limit co 0. In Fig. 2(a) we
have plotted our numerical results for the inverse reduced
fluctuation conductivity 8& '(0) vs e ln(T/T, ) et, —h.
For the ratio g, (0)/c we have taken the value J2/10
which yields y-0.08. Hagen, Wang, and Ong'6 have
tried to fit their in-plane paraconductivity data in zero
field for single crystals of YBa2Cu307 by the Lawrence-
Doniach expression, using values of y v(0) close to 0.08.
Oh et al. have used parameter values y 0.12, 0.05, and
0.07 to fit their fluctuation conductivity data obtained on
oriented thin films of YBa2Cu307 in zero field. Our re-
duced field values used in Fig. 2(a) range from 0 to 0.18.
From the estimate of g, (0)=24 A of Iye, Tamegai, Tak-
eya, and Takei together with the expression for the re-
duced field, h („~(0) 2eH, we approximately obtain
h =0.012H(T). The observed decrease of the zero-
resistance temperature for H parallel to the c axis varies
approximately as [T, —T,2(H)]/T, h =0.012H(T).
,The highest reduced field used in Fig. 2(a), h 0.18, cor-
responds to about H 15 T.

One recognizes from Fig. 2(a) that 8t, '(0) is zero at
0 (e' —h) as it should be, and that for larger values

of ep the curve for o~ ' becomes nearly parallel to the
curve for the inverse Lawrence-Doniach conductivity, '

80 '(0) le(e+y)]' . Hagen etal. ' find that in zero
Geld, the decrease to zero resistance for decreasing t. is
much more abrupt than described by the e' behavior
[see Fig. 2(a) for h 0]. We have generalized the
Lawrence-Doniach theory by taking into account a next-
nearest-neighbor contribution of the band dispersion term
in the z direction such that the total tight-binding band
term in the z direction becomes t, (cosck, —1)
+t,'(cos2ck, —1). The resulting inverse-fluctuation con-
ductivity varies as 80 '=[[(1+r)/r](ye)j' for e«y,
and 80 '=e+y( —,

' +1/8r) for e»y where r =t, /4t, ' In.
order to fit the given paraconductivity data in the ab plane
one has to decrease the crossover temperature y as r be-
comes finite. The effect is that the corrected curve of F0

'

yields a more abrupt decrease and better fit to the data as
t. tends to zero. We expect that the corrected curves of
a& as functions of ep will again be nearly parallel to the
corrected curves of 80 ' for larger values of e. Qualita-
tively, the picture will be the same as shown in Fig. 2(a).

We consider now the fluctuation conductivity at finite
frequencies given by Eqs. (27) and (28). In Fig. 2(b) we
have plotted our numerical results for 6g vs im for a
fixed reduced temperature et, 0.001 and for several
values of the reduced field h. in the limit h 0, we ob-
tain correctly the curve that has been calculated indepen-
dently from the following integral [see Eq. (7) of Ref. 17]:

.+- d80(iso) ~ arctan
g~ 4 & 27K

7N

e+ —,
' y(l —cosy)

1 e+ ( y/2) (1 —cosp)
1 1+

2 SCO

7CO

e+ (y/2) (1 —cos(p)

(29)
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0.25

h= 018

y= 008

In calculating the fluctuation conductivity, we have as-
sumed for simplicity a single-pairing component. For
several-pairing components we obtain coupled equations
for the corresponding fluctuation components 6h;(r, ro),
which are analogous to the linearized gap equations in Eq.
(13) determining H, 2(T) or T,2(H). The only difference
is that the coefficient [V~N(0)] on the left-hand side is
replaced by [V;N(0)] ' —ir; where r; is the relaxation
time of 6A;. By solving these equations in analogy to Sec.
II, one obtains the pair fluctuation propagator. It is clear
that for co =0 and decreasing T a pole occurs first in this
fluctuation propagator at T =T,2(H), as it must be.

-0.15 —0.1 -0.05 0,0 0.05
IV. DISCUSSION

(b) h =0.0
h =0.01

h = 0.025

h =0.05

y =008
z =0.001

h

The first interesting result of this paper is that two in-
plane pairing components (here an s- and d-wave com-
ponent) can give rise to an upward curvature of H, 2 per
pendicular to the ab plane. The reduced upper critical
field,

h,*2(t) =h, 2(t)[~ dh, 2(t)/dt ), =)] ', t =T/T, ),
h =0.075

h =0.1
h = 0.11

h =0.15
h =0.18

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIG. 2. Inverse of the in-plane reduced fluctuation conduc-
tivity az ' [see Eq. (27)] for different reduced fields h parallel to
the c axis and for a 2D to 3D crossover parameter value
@=4[(.(0)/c]'=0.08. Approximately, h =0.012H(T). (a) In-
verse of the dc conductivity versus reduced temperaturee:—ln(T/T„). The following relations hold: E=Eg h where

eq —= ln[T/T, 2(H)]. Thus oq '(0) =0 at e = —h corresponding
to eq =0 or T = T,2(H). (b) Inverse of the ac conductivity vs re-
duced frequency variable re [see Eq. (26)] for e'I, =0.001.

In the limit re » (e+ y), Eq. (29) yields

oo(re) -rr/iso [rcu » (e+ y) ], (30)

Comparison of Eq. (31) with the exact results shown in
Fig. 2(b) shows that Eq. (31) is a good approximation
only for rm & h. For Em»h the inverse fluctuation con-
ductivity a~ becomes an almost linear function for iso.
For larger values of eq we find that the curves for og ' vs
EG tend more and more to the curve for ao '.

which agrees in the limit y 0 and e 0 with the well-
known result for an ordinary bulk superconductor. For
finite h and eh « h the first term for N =0 in Eq. (28) be-
comes dominating. This term yields

ap(rro) = [eg(op+ y)] (h » eg) .
4h —]/2

h'+ (re)'
(31)

depends sensitively on the parameters of the theory,
namely, T,2//T, ~, (v2/v~), and (v~2/v~) . This can be
seen from the curves (1)-(5) in Fig. 1. Curves (I) and
(2) refer to T,z/T, ~

=0.92 and 1.0, respectively, and to
the same values of (U2/v~) =1.9 and (v~q/U~) =1.4.
Both curves fit the observed upward curvature of H, 2 (see
the experimental dots of Ref. 3) and yield values of 66
and 63 T, respectively, at zero temperature. In general
the shape of the curve for h,*2(t) does not depend sensi-
tively on the ratio of transition temperatures T,z/T, ~ of
the two pairing states. The effect of changing the squared
ratios of effective Fermi velocities (v2/v~) and (v~q/v~)
for a given T,2/T, ~

=1 can be seen from curves (2)-(5).
It is interesting that curve (5) is identical to the curve for
a pure 2D pairing state (T,2/T &

=I, vx=v~2=0) and
yields h,*q(0) =0.6 which should be compared with the
well-known value of 0.72 for the 3D case (clean limit).
We remark that in principle the effective Fermi velocities
U], v2, and v~2 can be calculated from the effective 2D
band e(k„k~) (Ref. 19) and the effect of impurity
scattering can be taken into account. '

We hope that future experiments will decide whether
the upward curvature of H, 2 is an intrinsic property of
high-T, superconductors or if it is just a consequence of
flux creep. In the former case we would have a strong
indication that anisotropic pairing states mix in. Then we
expect other interesting phenomena such as those that
have been investigated for heavy-fermion superconduc-
tors, for instance, a rich spectrum of collective modes
which could lead to measurable effects on ultrasonic at-
tenuation.

We intend to extend our theory to the much more com-
plicated case where the field is directed perpendicular to
the e axis. This can be done in analogy to the existing
theory for mixed p-wave pairing in layered superconduc-
tors. ' The aim is to predict H, 2 at zero temperature by
fitting the observed upward curvature of K, 2 perpendicu-
lar to the c axis. The effects of paramagnetic limiting
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and impurity scattering on H, 2 can be treated more easily
within the framework of the quasiclassical equations of
Eilenberger which have to be modified in analogy to the
present theory to account for an anisotropic Fermi surface
and for anisotropic pairing.

The second interesting result of this paper is the field
dependence of the in-plane dc fluctuation conductivity for
fields parallel to the c axis. In Fig. 2(a), we have plotted
our results for the inverse reduced-fluctuation conductivi-
ty, 8b '(0) vs a=in(T/T, ) for different reduce fields,
h =g„~(0) 2eH. Notice that 8b ' is actually a function
of e b=l n[T/T, 2(H)] =a+It and that 8b ' =0 at
T = T,q(H), that is, at e = —h. One recognizes from Fig.
2(a) that for large values of eb the curve for 8b ' becomes
nearly parallel to the curve for the inverse Lawrence-
Doniach fiuctuation conductivity, ' i.e., 8o '(0)
= [e(e+ y)] ' . Here y is given by y =4[(,(0)/c] where

g, (0) is the coherence length and c the dimension of the
unit cell along the c axis. In principle the ratio g, (0)/c
can be calculated from the effective 2D band e(k, k~).
Again the effect of impurity scattering can be taken into
account.

One can recognize some similarity between the theoret-
ical curves for 8b in Fig. 2(a) and the measured resis-
tivity curves in YBaqCu307 —,(Ref. 1) and CJdBazCu3-
07, (Ref. 2) for H parallel to the c axis. In particular,
the observed temperature of zero resistance T,2(H) corre-
sponds roughly to that temperature where 8b '(0) =0.
Then T,z(H) would be given by the relation '

[T,2(H) = T, ]/T, =h = —0.012H(T) where the latter es-
timate corresponds to the measured g,b(0)=24 A of
Refs. 1 and 2. It is tempting to fit the long almost linear
rise of the experimental resistivity curves as a function of
temperature' by the almost linear o.p

' vs e& curves.
This can be done by choosing an appropriate value of the
parameter y =4[(,(0)/c] which determines the tempera-
ture for crossover from 2D to 3D behavior. In Fig. 2 we
have chosen a value y=0.08 which is close to the values
which have been used to fit the measured fluctuation con-
ductivity in zero field. ' As has been shown in Sec. III,
the fit of the measured paraconductivity in zero field by
fluctuation conductivity' can be improved by considering
a nearest and a next-nearest-neighbor band term along
the c axis. These two terms can account for the two
different separation distances between the Cu-0 sheets.
We hope that future experiments can decide whether the
observed broad resistive transition in a field is due to fluc-
tuation conductivity or to flux creep. '

The third interesting result of this paper is the frequen-
cy dependence of the in-plane ac fluctuation conductivity
for fields parallel to the c axis. In Fig. 2(b) we have plot-
ted our results for 81, versus the reduced variable T:co for
a fixed reduced temperature ep =0.001 and for various re-
duced fields h. One recognizes that for h =0 and for small
fields h the function 8b (re) becomes nearly a linear
function for iro» (eb+ y), and that for large h this func-
tion is quadratic in Fco. In the limit h 0, y 0, and

0 one recovers the well-known result for an ordinary
bulk superconductor, namely, that the inverse fluctuation
conductivity is strictly proportional to the frequency. Just
above the transition temperature T,2(H) (that is, eb =0)

the ac fluctuation conductivity will contribute significantly
to the surface impedance, transmissivity, and reflectivity
at microwave or infrared frequencies. We hope that our
results can be tested by measurements of these quantities.

Finally, we discuss the contribution of fluctuations to
the specific heat in the presence of magnetic fields. For a
field lying parallel to the c axis we obtain from the
Aslamazov-Larkin diagram and the pair-fluctuation prop-
agator in Eq. (23) the specific-heat contribution

CH = [ks/4xcg, y (0) ]Cb, (32)

Cb = g 2h(eb+2hN+ —,
'

y)
Iv 0

x (Eb+2hN) (e/, +2hN+ y) (33)

30.

20.

10.

-0.1 -0.0 5 OQ 0.05 0.1 0.1 5 0.2

FIG. 3. Reduced fluctuation specific heat Cb [see Eq. (32)]
vs a=in(T/T, ), for 2D to 3D crossover parameter y=0.08 and

for different reduced fields h. The divergence of Cp, occurs at
—h corresponding to T T,2(H ). The field is directed

along the c axis.

The variables ep =a+ h, y, and h have been defined in Eq.
(26). In the limit h 0 we recover the previous zero-field
result, ' i.e., Co= [e(e+ y)] ' . For (eb+2hN) « y we
recover the previous result for an ordinary bulk supercon-
ductor.

We have calculated numerically C& as a function of t. z

for y=0.08 and for different fields h. For h 0 we ob-
tain agreement with the analytic expression quoted above.
For large values of h the N =0 term in Eq. (33) becomes
dominant which means that CI, diverges like eq as

0. In Fig. 3 we have plotted our results for
Cb (eb ) =Cb (e+ h ) versus e =ln(T/T, ) = (T —T, )/T,
for different values of h.

In Refs. 14 and 23 the difference of the measured
specific heats in zero and finite field H (Co CH) has
been plotted versus temperature. For a fixed temperature,
this difference is found to increase as H is increased, much
more rapidly for H parallel than for H perpendicular to
the c axis. ' One can recognize from Fig. 3 that for a
fixed value of e=(T —T, )/T, & 0 the difference (Co
—Cb) indeed increases as h is increased. Thus it may be
possible that above T, where only fluctuations should con-
tribute to (Co CH) the data can be fitted by choosing an



286 C. T. RIECK, Th. WOLKHAUSEN, D. FAY, AND L. TEWORDT 39

appropriate value of y. Comparison with experiment
below T, is hampered by the fact that we do not know the
fluctuation specific heat below T,2(H), in particular, that
for zero field. Further, the theory predicts a divergence of
Ct, at et, =0, that is, at a temperature T,2(H) =T, [1
—0.012H(T)]. This prediction seems to be in contradic-
tion to experiment: According to the data of Ref. 14 the
difference (Cp CH) at given field is almost constant as T
is decreased while the data of Ref. 23 yield a kind of peak
for this difference as T is decreased.

It is much more di%cult to calculate the contributions
of fluctuations to conductivity and specific heat for mag-
netic fields perpendicular to the c axis. First, one would
have to solve the eigenvalue problem for the fluctuation
propagator. ' This is complicated because the kernel of
the difIerential operator of infinite order contains the

tight-binding band term [cos(cq, ) —1]. Second, one
would have to consider the possibility of a pairing com-
ponent along the c axis.

We hope that future experiments will decide whether or
not our simple modifications of conventional BCS theory
are adequate to describe high- T, superconductivity.
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