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Fluctuation conductivity of high-T, superconductors

1 FEBRUARY 1989

Kazumi Maki and R. S. Thompson
Department of Physics, Uniuersity of Southern California, los Angeles, California 90089-0484

(Received 26 September 1988)

The leading correction to the normal-state conductivity due to superconducting fluctuations is
calculated as a function of temperature, externally applied magnetic field, and internal pair break-
ing for anisotropic high-T, superconductors.

Due to the short coherence lengths characteristic of the
new high-T, superconductors the effect of thermodynamic
Auct'uations on their resistive transitions is readily observ-
able. ' However, these materials are highly anisotropic, so
one needs highly oriented or single-crystal samples to
compare the numerical coe%cient of the temperature
dependence of the fluctuation conductivity with theory.
This coefficient depends on the coherence lengths of the
material, which are usually measured from the depen-
dence of the upper critical magnetic field H, q on tempera-
ture T. However, the electrical resistance drops continu-
ously from the normal-state value to zero without any ap-
parent break. The measurements appear to indicate ei-
ther the absence of a well-defined Aux-flow regime where
the magnetoresistance varies almost linearly with the
externally applied magnetic field B or that the Aux-Aow

regime merges smoothly with the fluctuation regime.
Defining H, 2 at the point where the resistance is 90% of
the normal resistance versus the point where the resis-
tance vanishes results in values of H, 2 which differ by
factors as large as 4 for very similar data.

The fluctuation conductivity is also dependent on 8
scaled by the coherence lengths. Measurement of the
magnetoresistance above the field-dependent transition
temperature T, (8) may allow a more accurate determina-
tion of the coherence lengths, which is less dependent on
sample inhomogeneity and magnetic Aux pinning. There-
fore, in the present paper we present a theoretical calcula-
tion of the dependence of the Auctuation conductivity on 8
and T as adapted to anisotropic superconductors with s
wave pairing. The Auctuation conductivity a' is added to
the the normal-state conductivity to get the total conduc-
tivity. a' is the sum of two parts, which we call regular and
anomalous, a' =a„+a, . We first consider a translational-
ly invariant model for the case where the temperature-
dependent coherence length is long enough that the lay-
ered structure is not important. Later we consider the
corrections due to the layered structure.

The regular Auctuation conductivity o„was first calcu-
lated in the absence of a magnetic field by Aslamazov and
Larkin (AL) (Ref. 7) and can also be obtained using only
time-dependent Gin zburg-Landau (GL) theory, as
shown by Schmidt. This theory is largely independent of
the mechanism producing the superconductivity. Aside
from the coherence lengths, it contains only two adjust-
able parameters. One parameter relates to the jump in
the heat capacity at T, in the mean-field theory. This pa-
rameter does not aff'ect the leading results for the Auctua-

S&(x) g (n+1)[( +xn2+1) ' 2 —2(x+2n+2)
n 0

+(x+2n+3) ' ] (2)

Alternatively, when B is applied parallel to E in the x
direction, b is defined by b =2e8$~(, /h, c. Again, using
Ref. 14 we get

(e'/8S)(g„/g, g, )b '"S (./b),
-

S (x) = —,
' g (x+2n+1) -"'.

n 0

The anomalous Auctuation conductivity a, results from
the scattering of the normal excitations by the supercon-
ducting Auctuations' and is extremely sensitive to pair
breaking, which we parametrize by B. Depending on the
microscopic mechanism responsible for the pair breaking,
b may in general vary with field and temperature. ' The

tion conductivity, just as it does not affect the leading re-
sults for the Auctuation contribution to the heat capaci-
ty. ' The other parameter is a dynamic parameter relat-
ing to the rate of decay of Auctuations. Relative to the
AL value, strong pair breaking increases the Auctuation
conductivity, while strong coupling reduces it. " For
definiteness we take the same value for the decay rate as
AL and Schmid.

We use the anisotropic GL theory. ' The
temperature-dependent coherence lengths (J (T) along the
principle axes are obtained from constants gj by
(J(T) (J/J ~

r ~. All temperature dependence is in the
parameter r =(T T, )/T, . Al—though the two coherence
lengths in the ab plane may be equal for Y-Ba-Cu-O, the
Bi-Sr-Ca-Cu-0 material shows anisotropy in the plane, '

so we can allow for three different gt. For ease of inter-
pretation, we will only consider applying fields along one
of the principle crystal axes. Applying an electric field E
along the x direction we get

~„-(e'/32m) (g„/g,g, )/i7.
When 8 is applied perpendicular to E in the z direction, it
is convenient to introduce the dimensionless parameter
b 2e8$„(~/Ac. The critical field 8=H, 2 is obtained
when b = —z, so the scaled field is b =8/( —T,dH, 2/dT).
With this scaling the previous result of Usadel' is only
modified by a prefactor

o„(e/8h)(&„/&,&, )b 't'S (r/b),
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possible strong-coupling corrections to cz, have not yet
been studied. Keeping x as the direction of E, for 8=0
we get

a, =(e'/86)(&„/& g, )/(Jr+W8) .

10,0

5,0

When BWO the form of a, does not depend on the direc-
tion of 8, but the parameter b must be defined as in Eq.
(2) or (3) according to the chosen direction. Generalizing
a previous calculation for the two-dimensional case, ' we
get

2,0

1,0

a, =(e /8&)(& /&, g, )[b' '/( -b)]
x [(z/b)S, ( /b) —(h/b)S, (8/b)1,

S,(x) =(1/x) g [(2n+1) ' —(x+2n+1) ' ] (5)
n=0

0,5

0,2

The three sums defined above are graphed in Fig. l. If
8 =0 the anomalous contributions to cr' can be read direct-
ly off the graph, but for bAO a two-dimensional graph
would be necessary to illustrate cr'.

Some asymptotic expansions for the sums may be use-
ful. For large x&&0 we get

-09 -0,8 —0,5 Og 1.0 9,0

FIG. 1. Three sums S defined in the text are plotted vs a pa-
rameter x on a grid of logio(S) vs log&o(x+ 1).

S~(x) = —,
' x '~'(I —

—,', x '+,",, x 4),

S()(x) = —,
' x '~'(I —

—,
' x '+,",, x '), (6)

S (x) =x 'i (1 —0.428x 'i2+ —'x 2 —„x4)

Therefore, for weak magnetic fields when b « z the lead-
ing corrections to a„asgiven in Eq. (1) are of order 8 .
If the additional condition b«b is satisfied, the leading
correction to a, in Eq. (4) is also of order 8 . However, if
this additional condition is not satisfied, then the leading
correction to rr, is of order JB, as b plays a pair-breaking
role comparable to that of b in Eq. (4). The experimental
data have no strong dependence of a' on 8 for T)T„so
6 is not very small in these materials.

Forx=0, weget

S~(x) =0.380 —0.302x+0.287x

Sii(x) =0.422 —0.414x+0.963x

S,(x) =0.844 —0.414x+0.321x

Nothing unusual happens when the denominator r —8
vanishes in Eq. (5) because the numerator which follows
in square brackets also vanishes.

Finally, near the superconducting transition for
x= —1 we get

important to specify their relative orientation.
The layered structure is important for cr' when the

coherence length in the c direction perpendicular to the
layers g, /( z+b) '~ is less than or equal to the layer spac-
ing. Experiments on Y-Ba-Cu-0 were interpreted as
showing a dimensional crossover at z=0.1. However,
that analysis, like the present one, is based on a GL ap-
proximation and, therefore, is not quantitatively accurate
for z~ 0.1. Within the GL range, where z, b, and b & 0.1

(for 8 & 10 T the observed b &0.1), the correction for
layering in this material is apparently unimportant, and
one can use our above theory, Eqs. (1) to (8), until the
boundary of the critical region where interactions between
fluctuations are important (at z= 0.003 for 8 =0) is ap-
proached. Nevertheless, for completeness and possible fu-
ture applications we brieAy consider layering.

For a layered superconductor we use a model's which
assumes coupling between nearest-neighbor layers only.
Then for 8=0 the GL energy of a fluctuation of
momentum q = (q„,q~, q, ) is proportional to z+ (g„q„)
+((i q~) +4@sin (q,s/2), where s is the layer spacing in
the c direction, and g, is related to the coupling between
layers E by the small q, expansion, E= (g, /s) . The fluc-
tuation conductivity along the x direction in the layer is

S~(x) =(1+x) ' —0.985+0.685(1+x),

Si((x) 4 (1+x) +0.231 —0.089(1+x),

a, =(e /166)(g„/( s)z ' (z+4K)

(8) a' (e2/4h)(& /&ys)(z 8) (9)

S (x) =(1+x)-'"—0 605+(1+x)'"—1 076(1+x) xln[[z' '+ (z+4E) ' ']/[6' '+ (8+4K) ' ']] .

The divergence of Si is much stronger than that of S&.
Even when both j and 8 are in the plane of the layers, it is

The generalization of this result when B is applied perpen-
dicular to the layers is easy:
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o, -(e /4I'i)(& /& s) g (n+I) [[~+(2n+1)b] '~2[x+(2n+1)b+4K]
n 0

—2[i+ (2n+2)b] ' le+ (2n+2)b+4K]

+ [r+ (2n+3)b] i~ fg+ (2n+3)b+4K] '~ j

o, =(e /46)(& /& s)[b/(r b)]—g j[8+(2n+1)b] ' [6+(2n+1)b+4K]
n 0

—[r+(2n+1)b] '"-[i+(2n+1)b+4K] -'"J .

(10)

If 8 is applied parallel to the layers the generalization of
Eq. (9) is more diIIicult and requires study of solutions to
the Mathieu equation. ' We have not studied this case.
Instead, we wish to discuss what happens if the layering is
more complicated with some layers more tightly coupled
than others. The simplest example is when alternative
layers are coupled by alternate coupling constants K and
6. Then, there are two modes for the GL energy:

i+ (g„q„)'+ (g,q, ) '+ K+ G

+ [K +G2+2KGcos(q, a)l'

where a is the periodicity distance. The perpendicular
coherence length is determined by the small q, expansion
of the lower-energy solution (g,/a) =KG/[2(K+ G)].
For 8=0 we get

o, =(e'/8&)(& /&, a)(r+K+G) [~[i+2(K+G)](r+2K)(r+2G)]
(e2/4g)(g g a)(~ g)

—i(in[ril2[s+2(K+6)] i/2+(v+2K) i/2(r+2G) i/2]

—ln [$i~i [$+2 (K / G )] i ~2+ (b + 2K) ~2 ($+2G ) i~2] )

If K=G Eq. (11) is the same as Eq. (9) with s =a/2.
However, if 6 &(K the dimensional crossover is controlled
by the weaker coupling constant 6 and occurs as a func-
tion of T when r= G. For 8 and ~&&K Eq. (11) is the
same as Eq. (9) when expressed in terms of g„except that
s is replaced by a. The more tightly coupled pairs of lay-
ers flucuate like single layers, and the relevant length scale
is the periodicity length a. In the extreme two-dimen-
sional limit, where b and i»K, the relevant length scale
is the average layer spacing, s =a/2, and each layer fluc-
tuates separately. The same results are expected in these
limits for a more complicated multilayer unit cell.

In summary, we have worked out expressions for the
magnetoconductivity cr above the superconducting transi-
tion for anisotropic and layered superconductors as func-
tions of temperature T, external magnetic field 8, and pair
breaking B. Our results are consistent with the lack of a
strong dependence of o on 8 for T & T, and indicate that
the critical field 0,2 should be associated with a point
near the top of the transition curve, perhaps near the point
where the derivative of the resistance is maximal, rather

I

than with the point where the resistance vanishes. Closer
analysis of the small changes in cr on the upper part of the
transition curves as functions of T and 8 are necessary for
quantitative comparison of theory and experiment.

After completion of this paper an article appeared by
Hikami and Larkin, ' which uses the same basic model
for B perpendicular to a layered structure and obtains re-
sults which are equivalent to our Eq. (10), although ex-
pressed in a different form which is less convenient for nu-

merical evaluation. They also give an explicit expansion
of these results for small B. Our work is complementary
to theirs by considering some additional cases and giving
an explicit numerical evaluation of the summations in Fig.
1, which we hope will be of use in comparing theory with
experiment.
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