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We study the partition function of two-dimensional lattice bosons at 7=0 and derive a dual
representation which is isomorphic to a bulk superconductor with fluctuating-gauge field in an ap-
plied magnetic field. This allows us to relate boson ground states to thermodynamic phases of the

superconductor.

A density-wave Bose insulator corresponds to an Abrikosov flux-lattice phase,

whereas boson superfluidity implies a nonsuperconducting flux-line liquid phase. By analogy with
a boson supersolid, we suggest the possibility of an exotic Abrikosov flux-lattice phase with no su-

perconducting long-ranged order.

A fundamental quantum feature of boson systems is
that the phase of the superfluid order parameter ¢ and the
boson density n are noncommuting conjugate variables'
[p,n] =i. A theoretical description is then possible either
in terms of a basis of states which is diagonal in the phase
or diagonal in the density. Although the standard ap-
proach is in terms of the phase representation,? Haldane?
has introduced a beautiful alternate framework for dis-
cussing one-dimensional (1D) bosons involving only the
long-wavelength density modes. This framework has re-
cently been applied successfully to study the (7°=0)
insulator-superfluid transition in a disordered Bose sys-
tem.* Attempts have been made to analyze this same
transition in high dimensions by working in terms of the
superfluid order parameter but are fraught with
difficulties.>® In light of this, it seems worthwhile to gen-
eralize Haldane’s framework to higher dimensions. In
this paper we describe a general scheme for doing this,
valid in arbitrary dimension 4, and work out the details
explicitly for a system of 2D bosons.

More specifically, we study the partition function of a
model of disordered lattice bosons at 7=0 and derive a
duality mapping from an order parameter representation
to a dual density representation. In 2D the dual model is
isomorphic to a bulk anisotropic lattice superconductor
with fluctuating-gauge field in an applied (random) mag-
netic field. This isomorphism allows us to relate various
possible ground states of the 2D bosons to thermodynamic

TABLE 1. Correspondence between 2D bosons and bulk su-
perconductor obtained from duality mapping described in the
text.

2D bosons (7=0) Bulk superconductor

Applied field H
Total field B
Meissner phase
Abrikosov flux lattice

Chemical potential u

Bose density n

Mott insulating phase
Density-wave insulator

Superfluid Nonsuperconducting
flux-line liquid
Supersolid Nonsuperconducting

flux lattice

Bose glass insulator Superconducting glass
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phases of the classical superconductor (see Table I). For
example, a density-wave boson insulator corresponds to an
Abikosov flux-lattice phase whereas superfluidity in the
boson system is isomorphic to a nonsuperconducting phase
consisting of a liquid of flux lines.” This phase was re-
cently predicted® to be present in the new Cu oxide super-
conductors, just above H.. From a symmetry point of
view, though, this phase is indistinguishable from the nor-
mal phase with H > H.;. The so-called “supersolid”
phase,’ if possible in the boson system, would correspond
to an exotic Abrikosov vortex lattice with no supercon-
ducting off-diagonal long-ranged order (ODLRO).

To be explicit, we consider a model Hamiltonian
describing interacting bosons hopping on a d-dimensional
cubic lattice: H =Ho+ H; with

ﬁ0=%zﬁi2—2#iﬁi s
1 1

Hi=—1tXcos(A,é;)
iv

(1a)
(1b)

where #;, which represents the deviation of the Bose num-
ber on site i from a mean value, is conjugate to the order-
parameter phase, [§,7i] =i. Here u is a repulsive interac-
tion between bosons and y; a random on-site chemical po-
tential. In (1b), A, denotes a lattice derivative A,
=¢;+,— ;. Typically,? the partition function for H in
(1) is expressed as a path integral over a basis of states di-
agonal in the phase of the order parameter
Z=Tryexp(—S,) (h=1)

S¢=_21;_.£; ¢I.Z(T)+i§£#i¢i(r) +J:H1[¢i(‘f)] . )

Here, the imaginary time integration runs from 0 to 8 and
the prime on the 77, indicates a sum over all paths with a
constraint ¢;(8) =¢;(0)+2xN; for all integers NV;. Note
that for noninteger p;, exp(—.S,) is complex. For integer
Hi, the action is essentially a classical Hamiltonian for a
(d+1)-dimensional XY model. Since the 3D XY model is
known'®!! to be dual to a lattice superconductor with
gauge field, it is natural to explore the dual representation
of the full boson model (2) in 2D, with inclusion of the
complex chemical potential term. As shown below, in the
dual representation this complex term corresponds to a
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magnetic field applied to the lattice superconductor. This
allows the myriad of possible thermodynamic phases of a
bulk superconductor in a magnetic field to be related to
2D boson ground states.

The most direct way to obtain the dual representation
for the partition function above, is by working in a basis of
states diagonal in the density. To this end, the partition
function Z =Trexp(— BH) is split into infinitesimal time
slices with size ¢, and the identity operator 1, resolved in a
basis diagonal in 7, is inserted between adjacent time
slices. As in Ref. 10, it is convenient to replace the nondi-
agonal contribution to each time slice by a Villain form
explet cos(Ap)1— explV (Ag;et)] with

explV(Ag;K) 1= e exp(—m?/2K) . 3)

Since explV] preserves the required periodicity in the
phase ¢, the slight change in functional form should not
alter the physics, although hereafter we denote the
modified partition function by Zy. One thereby obtains

Zy=Try,8(A.-J+An)exp(—S,), (4a)
Su=Z eHollnd 1+ 5% 3,017, (4b)
T 1,7

where n;; and J;; denote an integer field and an integer d-
dimensional vector field, respectively, defined on each
discrete space-time point (i,7). Notice that Hy is diago-
nal in the density basis /. The constraint in (4a) at each
space-time point, A, -J+A,n=0, is a lattice continuity
equation reflecting conservation of boson density. Thus J
can be correctly interpreted as a lattice current.

Equation (4) is valid in general dimensions. In the fol-
lowing we specialize to d =2. Then the integer vector
field m= (J,n) is three dimensional and the constraint in
(4a) can be removed by introducing an auxiliary integer
field z such that AXz=m. The trace over {m} can then be
replaced by a trace over {z}, up to a multiplicative con-
stant to the partition function. The B-periodic boundary
condition on m is replaced, in turn, by the boundary con-
dition AXz; ,=AXz; .+p Itis convenient, at this stage, to
convert the trace over the integer field z to a trace over a
real continuous field a via the Poisson summation formu-
la. The partition function then reads

Zy =Try1€Xp [iZli,,-a,-,—S,,(Axa)] , (5)
it

with / an integer vector field.

In order to obtain a more instructive dual representa-
tion, we now soften the integer constraint on a by intro-
ducing the generalized Villain representation of the above
partition function, '° namely, Zy =Tr, exp(—S), with

S=—iYla,+S,(Axa)+ L X Iy |15 2+y.(7)%.
it it

(6)

Here y . and y, are core energies for the space and time
components, respectively, of the vortex loops'® in the or-
der parameter phase [see (2)]. From (2) it is easy to con-
vince oneself that a sensible ¢— 0 limit requires
yrx(e) 7! and y,xe. We thus take y, =(Je) ! and
y:=Ke.

In terms of the lattice bosons, the approximation in (6)
is equivalent to softening the integer constraint on the ei-
genvalues of the number operator #;. Although this will
change quantitative features in the phase diagram, such as
the precise location of phase boundaries, it should not
affect the long-distance, low-energy structure of the
phases themselves. It does, however, allow the / summa-
tion to be conveniently performed using (3), which yields
Zy=Traexp(—S,) with

Sa=Sy(Axa)+ X V(aiz;Je)+V(ais1/Ke)l. (1)

It remains to take the time continuum limit ¢e— 0. Be-
fore doing so, it is useful to exploit the gauge invariance of
S, by shifting a— a —A@ and then performing a func-
tional integral over the real field 6. This simply introduces
a multiplicative overcounting in the partition function.
Care is now needed as e— 0, since the last term in (7)
forces the constraint af, —A.0; ,=2zam; .+ O(¢), with in-
teger m. These integers, though, can be conveniently ab-
sorbed into 0, provided the B periodic boundary conditions
on 0 are replaced by 6; .+p=0;,.+2nN;, for all integers N.
Then upon defining A, =¢"~ la,{, and A/, =a;, the e—0
limit can be easily taken, giving the final desired dual rep-
resentation

Zy=Traeexpl—S(A,0)], . ®
with S =So+.S; and

S0=Zi:fdr[% | (VxA)*|?2
+%I(VXA)'I z—pi(VXA)’] , (9a)

=_1__ 1.9)2 4V
S ZKZ,-:de(A 0) +J§,fdrcos(AV9,- AY).

(9b)
Here A and 6 are time-continuous fields satisfying the
boundary conditions (VXA) +5=(VxA);, and 6; .+
=0;,+2xN; for all integers N;. In (9a) the gradient
operator is discrete in space yet continuous in time
Vv=(A,,d,). For notational clarity the Villain function
has been replaced by a cosine in (9b). Note that the dual
action (9) is entirely real, in contrast to the phase-
diagonal action S, in (2).

Since u couples to (VXA)? in (9a) it is apparent that
this operator is effectively the boson density. The second
term in (9a) is then simply the repulsive on-site interac-
tion present in the original Hamiltonian (1a), whereas the
first terms in (9a) and (9b) take into account the noncom-
mutativity of ¢ and . The cosine term in (9b), upon trac-
ing out 6, gives a field acting on (VX A)* which favors in-
teger values. Thus this term reflects the discreteness of
the underlying boson field. Indeed, in its absence (J =0)
the action is quadratic and at T =0 (even in the presence
of a random y;) S describes a third sound mode,
(k) ~ (ut) 'k, indicative of superfluidity in the boson
system. Destruction of superfluidity is in fact only possi-
ble when a symmetry is broken and {exp(i6))>=<0. Then A
picks up a (Higgs) mass, destroying the third sound and
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superfluidity. Note, by contrast, that in the phase repre-
sentation (2) a symmetry breaking implies superfluidity.

At T =0 the action (9) closely resembles the Hamil-
tonian of a classical anisotropic 3D superconductor,'®!!
coupled to a fluctuating-gauge field A. More precisely,
the analog superconductor has a lattice structure in two
space dimensions yet is continuous in the third direction
(as in an array of superconducting cylinders with principle
axis in the 7 direction, Josephson coupled with strength
J). Notice that the chemical potential z, which was the
coefficient of a complex term in the phase representation
(2), now plays the role of an applied magnetic field H (in
the 7 direction), whereas the Bose site density [((VxA)/)]
corresponds to the local magnetic field B; actually pierc-
ing the ith plaquette. Thus, the flux lines penetrating the
classical superconductor are equivalent to the world lines
of the Bose particles.'?> Moreover, boson superfluidity (at
T =0) implies an absence of ODLRO in the superconduc-
tor, since the third sound mode indicates a massless A.
Likewise, a normal (insulating) boson ground state,
wherein density fluctuations (and A) acquire a mass,
implies a thermodynamic superconducting state with
ODLRO.

To explore the consequences of this isomorphism, con-
sider first the pure case u; =u. Since the boson compressi-
bility dn/du is related to the superconductor susceptibility
dM/dH, via dn/du— 1 —4rndM/dH, the incompressible
Mott insulating phase of the bosons (with {n) =integer) is
isomorphic to the Meissner (superconducting) phase in
which dM/dH = —1/4n. Likewise, superfluidity in the
boson system with {n;) noninteger, corresponds to a bulk
nonsuperconducting phase consisting of a liquid of flux
lines. Such a phase was recently predicted to be observ-
able just above H.; in bulk Cu oxide superconductors.
From a symmetry point of view this phase is indistinguish-
able from the normal phase with H > H,,, exhibiting, for
example, a nonzero dc resistance.

In the presence of a longer-range boson-boson interac-
tion Hy= 7 X; ju;mn; in (1a), a Mott insulating phase
in which the Bose density exhibits a commensurate super-
lattice structure can be stabilized. This amounts to intro-
ducing a flux-flux interaction term in the superconductor
and, hence, enhances the type-II character. Indeed, the
boson superlattice Mott state is isomorphic to the Abriko-
sov vortex lattice phase in the superconductor. In light of
this, an extremely interesting question arises: What is the
analog phase of the supersolid state postulated to exist in
the boson problem,® wherein ODLRO and diagonal (den-
sity) long-range order coexist? In this phase the classical
superconductor would exhibit an Abrikosov flux lattice yet
be normal with no ODLRO. A finite dc resistance would
be observed (even in the presence of a periodic pinning po-
tential acting on the flux lattice). In an array of supercon-
ducting cylinders, this phase could only occur provided (i)
the mutual inductance between nearby plaquettes was
strong, and (ii) the temperature was below the bulk tran-
sition temperature of the cylinders yet above the phase-

coherence temperature of the array.

In the presence of disorder the Bose system can exhibit
yet another possible ground state:® the Bose glass insula-
tor wherein there is no ODLRO yet the compressibility is
finite. In this phase the Bose density is effectively pinned
by the random potential. The corresponding phase in the
classical superconductor is a superconducting glass state,
where the magnetic field penetrates the system yet super-
conductivity persists since the flux lines are frozen in and
pinned by the disorder. It should be emphasized that in
the classical analog system the disorder is perfectly corre-
lated in the 7 direction. It has recently been argued that
in the more realistic case of uncorrelated disorder, a su-
percloanducting (or vortex) glass phase nevertheless ex-
ists.

When the bosons are at T > 0, the time integration in
(9) is of finite extent (0 to B), and the action apparently
describes a superconducting film with finite thickness
L ~pB. Extreme caution is necessary in this case, though,
due to the B periodic boundary conditions on (VXA)~
which are essential in describing correctly the Bose statis-
tics (at T=0), yet are exceedingly unnatural in terms of
the flux tubes penetrating the classical superconductor.
Indeed, with free boundary conditions appropriate to the
superconducting film, the distinction (at 7=0) between
the normal fluid and superfluid phases of the boson system
would cease. In a real superconducting film, we expect
only one flux-line fluid state is possible, ' in contradiction
to the speculations by Nelson.?

In addition to the mapping to a 3D classical supercon-
ductor, the interacting boson problem in the pure limit is
isomorphic to (2+1)-dimensional lattice quantum electro-
dynamics. To see this we note that in the Coulomb gauge
V.-A+=0,S¢in (9a) becomes

S() =Zfd‘r

1 1
v T 2+ 112
oy [ Vad®| 2+ ——]3.4* |

+%|(VL><A*)’|2 , (10)

which describes photons in 2+1 quantum electrodynamics
with the identification of 47 and A+ with the scalar and
vector potentials, respectively.

Finally, we remark that when the steps used to obtain
(9) are repeated for 1D lattice bosons the dual action is
given by So=S,+S,, with

S()=Zfd‘r
S ==JZfdrcos(A,-) ,

with A;(7) a real scalar field. The action arrived at heu-
ristically by Haldane for 1D bosons is precisely a long-
wavelength coarse-grained version of (11).

, (11a)

1 -
EA,‘Z'*‘ ‘;i (AXA,‘ ) 2 _[.l,'AxAi

(11b)
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