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A new superconducting state is proposed that can coexist with very high magnetic fields, pro-
vided that Pauli pair breaking is absent. Such a state may arise, for example, in multivalley semi-
conductors and semimetals, where the valley degrees of freedom play the role of the electron spins
in the usual BCS theory, Below the transition temperature, such superconductors show no resis-
tance to a current flowing in the direction parallel to the field; in the plane perpendicular to the
field, under suitable conditions, their conducting properties will be reminiscent of a quantum
liquid of bosons of charge 2e. There is no orbital upper critical field for such superconductors.

Recently, one of us' has proposed that in multivalley
semiconductors or semimetals subjected to a very high
magnetic field, a superconductinglike instability may arise
at some finite temperature T, . With all electrons confined
to the lowest Landau level and spins fully polarized, the
Cooper pairs consist of electrons from different valleys,
the valley indices playing the role that spins have in the
usual BCS theory. Strictly speaking, such Cooper pairs
are spin triplet, and Pauli pair breaking will be absent as
the valley indices do not couple to the magnetic field.

Several fundamental questions arise with respect to this
observation. We know from standard theory that even if
we completely ignore electronic spins the orbital eff'ect of
the magnetic field will destroy superconductivity at some
critical field strength H, 2; How is it possible then that, at
fields generally much higher than H, 2, when the quantum
limit is reached the superconducting instability can again
occur at some finite temperature? Does this instability
lead to a stable superconducting phase at temperatures
below T„and what are the properties of this phase?

In this paper we show that indeed a stable supercon-
ducting state of a remarkable nature exists below the tran-
sition temperature. The equilibrium form of the super-
conducting order parameter represents a configuration
which consists of a collection of "tubes" of radius given by
the magnetic length. The density of zeros of the order
parameter is always fixed to one per Aux quantum. The
order parameter is uniform along the axis parallel to the
magnetic field (we take this to be the z axis). Correspond-
ingly, the Cooper-pair wave function is highly anisotropic,
extending by an ordinary coherence length in the direction
of the field, but being compressed to a size given by the
magnetic length in the perpendicular plane. The electrical
current Aows without dissipation along the z axis; in this
sense this system behaves like a quasi one dime-nsion-al
superconductor. As a consequence of this, as noted by
Rasolt, the increase in the magnetic field raises the densi-
ty of states at the Fermi level and can produce an increase
in the transition temperature. There is no upper critical
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where gk E(k) —tt, with k and E(k) being the wave
vector and energy of motion along the z axis, to, =e13e/mc
is the cyclotron frequency, a and P are valley indices, c„tk,

is the creation operator for electrons of linear momentum
k and angular momentum n in the lowest Landau level,
and g is the coupling constant. The field operators ttt, (R)
are given as

where R = (x,y, g), z =—x +iy, and p„(z) form a set of
basis functions spanning the lowest Landau level in the
symmetric gauge
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geld arising from the orbital effect; as long as there is an
eA'ective attraction at the Fermi level the transition tem-
perature will be finite. This is a qualitatively new situa-
tion in comparison with the behavior of well-known type-I
and type-II superconductors. We expect the fIuctuations,
which are due to the lateral motion of the "guiding"
centers of these superconducting tubes and the quantum-
mechanical tunneling of Cooper pairs between tubes, to be
important in high-magnetic-field superconductors.

We start by considering the system of electrons of mass
m in a strong external field 80 having an attractive 6-
function interaction. This interaction can arise through
phonons or some other more exotic mechanism which is
entirely due to electron-electron interactions. Here we
work out in detail the example of a two-valley system.
The Hamiltonian of such a system can be written in the
following form (we assume that electrons are confined to
the lowest Landau level and ignore spin indices):

H = g(gk+ —,
'
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T, =1.14Q exp
2zl

N(o)g(8)
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where 0 is some low-energy cutoff 0 &&EF, EF being the
Fermi energy, and N(0) is the density of states at the Fer-
mi level. g(8) is the coupling constant due, for example,
to the electron-phonon interaction, which can have a
significant magnetic field dependence. Equation (3) sug-
gests that the superconducting transition may be an in-

with magnetic length I—:(e/e80) 'i .
We now proceed in the usual BCS fashion. The elec-

trons form spin-triplet Cooper pairs with the valley indices
playing the role of the BCS spins. It is important to em-
phasize here that the spin-triplet structure arises trivially,
as we assume that the electrons are fully polarized. The
gap parameter is defined through

n.p(R) = —gTQ&]p. , „(R)yp, — „(R)&, (2)
~n

where the co„'s are the Matsubara frequencies and
y, „(R) is the Fourier component of the field operator in
the thermal representation. We assume that the favored
state is the "valley singlet, " i.e., antisymmetric in valley
indices, and drop valley indices in what follows.

The self-consistent solution of Eq. (2) becomes possible
at some temperature T, given by

r

creasing function of the magnetic field, at least in some re-
gion of the parameter space; indeed this is the case for the
electron-phonon coupling. ' Other sources of attractive in-
teraction, arising from some electronic mechanism could
also contribute to g(8). To study what happens when the
temperature is lowered below T„we calculate the free en-

ergy in the superconducting state using the Ginsburg-
Landau (GL) expansion. One has to be very careful in
calculating the GL form of the free energy, as the mag-
netic field will generally couple to the order parameter.
Therefore, the finite superconducting order parameter T,
may change the average magnetic field seen by the elec-
trons forming the Cooper pairs. Here we assume that we
can split the total magnetic field into two parts: the con-
stant field 8, which is the sum of 80 and whatever average
field arises due to superconductivity; and b(R), which is
the fluctuating part, due-entirely to "supercurrents. " The
corresponding vector potentials are A and a(R). We first
consider the case when the order parameter is uniform
along the z axis. Then both A and a will be in the x-y
plane and it is useful to define complex quantities A and a.
The total free energy can be written as a sum of three
parts:

(4)

where

P(T)F, =a(T)„dr]dr2% (r )K](r2r])%2"(r )2+ „dr] dr2dr3dr4@ (r )]+(r )2 K4(r ]r 2r 3r4)%'(r )i%'(r4), (5)

and

Fg b
= y{T) dr] dr2@ (r])Ki(r],rz)@{r2). (7)

In these equations a(T), P(T), and W are all defined in
the standard GL fashion, r =(x,y), F, is the free energy
of a superconductor in the average magnetic field 8, Fb is
the magnetic free energy, F,—b describes the coupling of
+ to the fiuctuating vector potential. One should appreci-
ate that the physical situation here is very different than in
Ref. 3 where one expands Ginsburg-Landau free energy
in weak magnetic field. In our case, the field is very strong
and penetrates everywhere into the superconductor;

I

indeed, the superconductivity is due to such a strong field.
Consequently, the relationship between supercurrent and
fluctuating part of the vector potential is diH'erent from
that given by the London equation. The coefficient y(T)
is defined as

yT=——l6~'g(8)T' +
where n is the density of electrons. Clearly, the structure
of kernels E2, E3, and E4 is crucial to the problem; we
find

K2(r], r2) = exp( —z]*z]l2 —z2 z2/2+z]z2 ),1

(2~&')'

K4(r], r2, r3, r4) =
4 exp' —z] z]/2 —z2 z2/2 —z3 z3/2 —z4 z4/2+ (z]+z3)(z2 +z4 )/2], (lo)

and
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2 exp ( —z ]*z]/2 —z 2 z 2/2 +z ]z 2 /2 ) „dr3 exp ( —z 3 z 3/4 +z ]z 3 /2 )h (z 3 ) exp ( —z 3 z 3/4 +z 3z 2 /2 )

where

2

h(r) = (fa*,8/Bz*]++ fa, 8/Bz] i)+, (W*a+Aa*),
2lN1c 2mc



2720 BRIEF REPORTS 39

and we have now set z/1 =z.
The role of K2 is simple; as opposed to the two-particle

kernel in standard type-II superconductors, which mea-
sure the cost in "kinetic" energy arising from a non-
uniform order parameter, our K2 projects O (r) to
the "lowest Landau level, " i.e., all +(r) of the form
f(z)exp( —z z/2), where f(z) is an arbitrary analytic
function, have the same T, given by Eq. (3), while func-
tions orthogonal to this form do not contribute at all.
Note that the magnetic length in such a state is i*
=(I/J2)l and it corresponds to particles of charge
e* 2e. We expect that E4 and F, b will select those
particular configurations which have favorably low free

I

energy. Finding such configurations involves, in principle,
a minimization of F with respect to %'(r) and a(r). This
is a very nontrivial problem which we can avoid by simply
noting that from (8) follows that the coupling between
O(r) and a(r) is of the order T,/EF, which translates to
order (T,/EF) for F, b. -Therefore, in the weak-coupling
approximation (T,«EF) we can neglect the coupling be-
tween the order parameter and the magnetic field and the
minimization of the free energy reduces to minimization
F, with respect to +(r) at fixed magnetic field. This is
similar to the case x » I in the Abrikosov theory where x
is the Ginsburg-Landau parameter. Setting 6F,/
b% t(r~) 0 we obtain

a(T) drzK2(r~, r2)+(r2)+P(T) dr2dr3dl4k(r2)K4(r [I2 r3 r4)%'(ri)e(r4) =0. (12)

We observe here that %'(r) =% exp( —z*z/2), where %' is
a constant, is an exact solution of Eq. (12). It describes a
superconducting order parameter localized to a region of
size -l around the origin, and extending to infinity with
constant magnitude along the z axis. This is our super-
conducting "tube. " This particular solution is not useful
since it leads to the order parameter which is not an inten-
sive quantity. But it suggests that we should search for
solution of the form

I

work of Kleiner, Roth, and Autler, who have determined
the minimum free-energy configuration of the order pa-
rameter in the case of the Abrikosov flux lattice. We can
adopt their results, but the scale of variation of the order
parameter has to be changed from the coherence length in
their paper to the magnetic length in present work. The
zeros in the order parameter form a triangular lattice dual
to the hexagonal lattice of tubes. The area of the elemen-
tary hexagon is 2+i*; it is very important to emphasize

ze(r) =egc~f(z, R;) exp
IR, I

'
2

that this quantity, at least in principle, can be arbitrarily
small. In type-II superconductor the unit cell of flux lat-
tice diverges near T, and decreases as one lowers the tem- ~

perature but it cannot be "compressed" beyond the value
where R; is a set of the "guiding" centers of superconduct-
ing tubes. Function f has to be chosen in such a way that
0'(r) remains in the form imposed by K2. This implies
that f(z,R;) has to be an analytic function of z.

With this form of the order parameter we will have to
resort to an approximate calculation. We Grst choose the
magnitude e so that bF, /W =0 without varying f. The
overall magnitude %' is now eliminated from the problem,
and the free energy becomes simply F, = —a (T)/
2P(T)K, where K is given by

Kgf)
&fKzf&

(13)

The problem is now reduced to finding the set of guiding
centers R;, the set of coefficients c;, and the form of f
which give the smallest K.

Even within the above approximation, the minimization
of EC is a very complex problem. However, we can show
that K4 in (13) can be transformed in the form analogous
to the fourth-order kernel of the Abrikosov theory. This is
due to the fact that E4 acts as a 8 function on the part of
Hilbert space consisting of analytic functions. Therefore,
the problem of minimization of EC is identical to the corre-
sponding problem in the Abrikosov theory near H, 2, al-
though the form of the free energy and the physics are
quite diAerent. Having made this observation, we expect
that the lowest free-energy state arises for the choice of
real vectors R s forming a hexagonal lattice in the xy-
plane. For the choice of c s and f(z,R;) we rely on the

2n(0, where go is the coherence length at zero tempera-
ture. This smallest unit cell defines the maximum upper
critical field through 8,2(0) =@0/2+go, +0 being the ele-
mentary Aux. In our case, the area of unit cell scales with
the magnetic field, decreasing and becoming very small
with increasing 8, always containing the elementary Aux,
and being basically independent of temperature. There-
fore, there is no limit on the strength of magnetic field
arising from nonuniformity of order parameter. If one ig-
nores the effect of magnetic field on the coupling constant,
the transition temperature wouM increase very strongly
with magnetic field, as long as one remains within the lim-
its of weak-coupling approximation.

%'e have now obtained a stable, stationary solution for
the order parameter which represent the local minimum
of the free energy (of course, one cannot exclude the pos-
sibility that the solution exists which has a lower free en-
ergy). Making use of the results in Ref. 6, we have
EC 1.16. How do we interpret these results? The free
energy is minimized by the configuration describing a
Wigner lattice of superconducting tubes. It is important
to note, however, that the lateral size of these tubes is
essentially the same as the separation between the elec-
trons. The extremely anisotropic Cooper-pair wave func-
tion reaches its molecular limit in the x-y plane. We ex-
pect, therefore, that quantum Auctuations will be impor-
tant for the ultimate form of the order parameter. These
Auctuations will lead to tunneling of the Cooper pairs be-
tween superconducting tubes and the system could gain
further energy by them hopping from site to site. While
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the quantum fluctuations will have a quantitative effect on
our results (for example, they will renormalize the mean-
field transition temperature) we do not expect any qualita-
tive changes in properties obtained from the mean-field
theory. In this respect, the role of quantum fluctuations in
our problem is similar to that in the system of coup/ed su-
perconducting chains. Qualitatively new effects may
arise, however, if the motion of electrons is restricted
along the direction of magnetic field. They would be par-
ticularly pronounced in a film geometry, with B perpen-
dicular to the film and the thickness comparable to coher-
ence length. The situation is then somewhat similar to the
one suggested by Kivelson, Kallin, Arovas, and Schrieffer
for the quantum Hall eA'ect. There the signer lattice of
electrons melts into the incompressible quantum liquid via
the cooperative ring exchanges. In our case, we can con-
sider the Cooper pairs to behave like bosons of charge 2e;
R; are the coordinates describing the positions of these bo-
sons in the x-y plane. By analogy, we would expect that
our Wigner lattice of superconducting tubes may melt via
cooperative ring exchanges into the highly correlated
quantum liquid, once the superconducting density in the
tubes is sufticiently large. One, however, does not expect
such a liquid to be strictly incompressible, as it is the case
for purely two-dimensional fermionic system. Whether
such a state would be realized in some portion of the T-8
phase diagram is clearly a question that deserves further
study. We also expect that near T, the thermal fluctua-
tions of the %'igner lattice will be very important. As
pointed out in Ref. 9, the fluctuations drive the transition
to the Abrikosov flux lattice first order below six dimen-
sions. %'e expect that a similar effect takes place in our
case and the superconducting transition in very high mag-
netic field may be discontinuous.

To summarize, we propose here that a new type of su-
perconducting state may exist at very high magnetic field.
This is no upper critical field in such a state, and the su-
perconductivity may be enhanced by increasing the mag-
netic field. The stable configuration of the superconduct-

ing order parameter resembles the Abrikosov vortex lat-
tice for type-II superconductors, but the scale of variation
of the order parameter is set by magnetic length. The
density of zeros of the order parameter is nearly indepen-
dent of temperature and is fixed by magnetic field; there is
always a unit flux per elementary plaquette. Experimen-
tally, multivalley semiconductors and semimetals, with
low electronic density and strong electron-phonon cou-
pling, appear to be good candidates to observe this new su-
perconducting state. In these systems we do not expect
the magnetic field to significantly affect the band struc-
ture and change the nature of interactions from that in
zero field. The mixing of the valleys due to orbital cou-
pling to the field which changes the effective Coulomb
repulsion is proportional to exp( —

Q l ), where Q is the
wave vector separating the valleys in reciprocal space.
Q is of the order of interatomic spacing while the su-
perconducting state proposed here develops for l compara-
ble to interelectronic separation. In degenerately doped
semiconductors and semimetals the latter is much larger
than the former and the intervalley mixing due to strong
magnetic field will be small. One would particularly like
to utilize those materials which are superconductors in
zero field and are known to have a strong intervalley com-
ponent of electron-phonon coupling.
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