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van der Waals study of liquid-vapor coexistence in “He
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An augmented van der Waals theory is used to study the liquid-vapor coexistence and critical
constants T, p, and P, of “He. The reference system is taken as hard spheres, the properties of
which are computed by the path-integral Monte Carlo method. The results of this “mean-field”

theory are shown to be in semiquantitative agreement with experiment.

Predictions for the

Lennard-Jones and HFDHE?2 helium pair potentials are compared.

I. INTRODUCTION

In this paper we report on the calculation of the liquid-
vapor coexistence curve of “He by an augmented van der
Waals theory. In van der Waals’s work' the key sources
of the two-phase region and the existence of a critical
point were elucidated by the well-known equation of state
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where p=1/v=N/V is the number density, o represents
an effective molecular diameter, and a characterizes the
“mean-field” attraction between molecules. The liquid-
vapor phase transition can be viewed as a competition be-
tween the first term due to the repulsion between hard
spheres and the second term reflecting the attraction be-
tween the molecules that tends to induce condensation.
Above the critical temperature 7, defined by
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the pressure is monotonically increasing function of p,
whereas below T, there is a “van der Waals” loop for
which the standard equal-area construction yields the
coexisting liquid and vapor densities p; and p, and the
coexistence pressure Pcoex.

If the potential energy is of the pairwise form,
V=23,v(r;) (where r; is the distance between atoms i
and j), then the form of Eq. (1) can be argued from the
first-order perturbation theory result for the free energy?
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where the pair potential is broken up into repulsive and at-
tractive parts by>

) v(ir)+e, r<rm,
vo\r) =
0 0, r>rn,,
—€ r<rp,
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with € the magnitude of v(r) at its minimum r,,. In this
equation, f is the Helmholtz free energy per particle of
the system with potential v(r); fo and go(r) are, respec-
tively, the free energy and radial distribution function of
the reference system with potential vo(r). The mass m is
the same in both systems.

From the application of the relation P =p2(8f/dp)r to
Eq. (3) one finds

(i)
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and so the pressure breaks up into the pressure of the
reference system Py plus a contribution due to the attrac-
tive forces. These are the analogs of the first and second
terms, respectively, in van der Waals’s equation of state,*
which can be thought of as a model of the more realistic
Eq. (4). In this work we use simulation results for the
quantum hard-sphere free energy and radial distribution
function computed by the path-integral Monte Carlo
(PIMC) method® and, hence, we compute the first-order
free energy in Eq. (3) essentially exactly. The details of
these computations may be found in Ref. 5; we only men-
tion that here, as in our previous work, the particles are
assumed to obey Boltzmann statistics rather than Bose
statistics. This approximation should be quite accurate at
nearly all of the temperatures considered in this paper.
Equation (3) has often been used as the basis for per-
turbative studies of classical liquids,%’ such as the
square-well and Lennard-Jones potentials. With recent
improvements in computational power and in the PIMC
algorithm>? it is now relatively straightforward to com-
pute fo and go(r) for the quantum hard-sphere reference
system at finite temperatures in the fluid phase. The study
of the “He liquid-vapor phase transition is of interest be-
cause the coexistence region is strongly affected by the
quantum nature of the system. Indeed, the critical tem-
perature T, and critical density p. are 35% and 50%, re-
spectively, of the values for the classical system with the
same pair potential. The suppression of the critical con-
stants can be argued by noting that the ‘“quantum-
mechanical smearing” of each particle’s position [roughly
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by the de Broglie thermal wavelength Az~ (#?%/
mkgT) 2] makes the particles appear “larger” and thus,
the system is at a higher effective density. The well depth
€ of v(r) is effectively reduced, being replaced by a
“smeared” average of order Ay about the minimum. Be-
cause T, should scale roughly as this effective well depth,
T. is, therefore, reduced by quantum effects. In the work
presented here, these heuristic “‘quantum smearing” ideas
are accounted for by using a fully quantum mechanical
reference system.

Mean-field expressions such as Eq. (3) have long been
known to break down in the critical region. The reason is
that the approximation ignores large scale fluctuations in
the density (induced by the attraction between atoms)
that are all important near the critical point. For exam-
ple, the prediction of the mean-field theory for the order-
parameter exponent B, p; — p,~ (T. — T)P, will be g= 3
rather than the experimental value closer to = 3. Nev-
ertheless, nonuniversal quantities computed within the
theory, such as 7., p., and the coexistence curve, are
reasonably close to the experimental values (within rough-
ly 25%) and so the simple theory can be useful in studying
the dependence on mass and interatomic potential of these
quantities.

II. RESULTS

In this work the reference free energy and pair distribu-
tion function in Eq. (3) are replaced by the values of the
quantum hard-sphere (HS) system:

Solp,T) = fus(p,T),
(5)
go(r;p,T) = gus(r;p,T) .

The hard-sphere diameter o is selected to match the s-
wave scattering length of the potential vo. In Ref. 5 we
demonstrated that this choice is a fairly accurate approxi-
mation for helium, even for densities in the solid phase.’
From the expression for f(p,7’) in Eq. (3), one can use
the standard Maxwell double-tangent construction to lo-
cate the liquid-vapor phase transition along each iso-
therm.

The helium pair potentials used here are the standard
Lennard-Jones (LJ) 6-12 potential with the de Boer-
Michels parameters °

v(r) =4el(a/r)2—(a/r)®],
€=10.22K, ' (6)
a=2.556 A,

and the HFDHE2 potential of Aziz et al.!' The
HFDHE2 potential is the result of an elaborate fit to ex-
perimental data on gaseous (two-body) helium. The LJ
potential has a minimum of 10.22 K at pair separation
rm=2.87 A, while the HFDHE?2 potential has a minimum
of 10.8 K at separation r,, =2.95 A. Exact Monte Carlo
calculations away from the critical point by Kalos, Lee,
Whitlock, and Chester!'? and by Ceperley and Pollock®
have shown that the HFDHE?2 potential is superior to the
LJ in reproducing thermodynamical and structural prop-

BRIEF REPORTS

39
C T T T T | T T T T [ T T T T 1]
s Coexistence Densities 7
: .................... HFDHEZ:
T LJ ]
F expt. A
6  — —
g - -
] 4 — 1
L 1
2 —
0 1 1 1 1 ‘ 1 1 1 1 l 1 1 1 1 ]
0.00 0.01 0.02 0.03

p (A7)

FIG. 1. *He liquid and vapor coexistence densities in parti-

cles per A3, The lower curve (solid) denotes the experimentally

measured coexistence and the upper curve denotes the predic-

tions of the first-order quantum hard-sphere perturbation theory

for the two pair-potentials discussed in the text. The maximum
of each curve corresponds to 7.

erties of liquid and solid helium. The s-wave scattering
lengths of the repulsive part vy of the L} and HFDHE2
potentials are 2.138 and 2.203 A, respectively. The 3%
difference in the effective hard-sphere diameter and the
5% difference in well depths may be thought of as charac-
terizing the differences between the two potentials.

In Fig. 1 we display our results for the liquid-vapor
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FIG. 2. *He coexistence pressure Pcoex in atmospheres as a
function of temperature T in kelvin near the critical point. The
solid curve denotes the experimentally measured values, while
the others denote the predictions of the first-order quantum
hard-sphere perturbation theory for the two pair potentials dis-
cussed in the text.
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phase diagram of *He using the LJ and HFDHE2 poten-
tials along with the experimental values given by
McCarty’s fit.!3 Both potentials overestimate the critical
temperature T, as is expected in mean-field theory (recall
the Bragg-Williams treatment of the Ising ferromag-
net'¥). We find 7,=6.4 and 6.8 K for the LJ and
HFDHE2, respectively, and these may be compared to the
experimental value of 7T,=5.2 K. The critical density is
p.=0.0116 A ~3 for both potentials, while the experimen-
tal result is p. =0.0105 A 3. For a classical system with
the pair potentials used here, one would have T, =13 K
and p,=0.020 A 73. The Monte Carlo statistical sam-
pling errors are estimated to be roughly 4% for 7. and
~2-3% for the coexistence densities. Since the same
Monte Carlo data are used for both potentials, any sys-
tematic differences (say in T.) are estimated to much
higher accuracy. The LJ potential yields T, closer to the
experimental value than HFDHE2 does, although away
from the critical region the LJ results deviate more from
experiment than do those of HFDHE2. For example,
below 5 K the liquid coexistence density p; in LJ is in
poorer agreement with experiment than is the HFDHE2
prediction. Also, the vapor density p, in the case of LJ
crosses through the experimental value at about 3.8 K,
while the HFDHE2 value evidently matches onto experi-
ment as T is decreased. We note that the ratio of LJ to
HFDHE2 critical temperatures is found to be 0.94 which
correlates well with the ratio of well depths e ;/eqr =0.95.
Figure 2 shows the coexistence pressure as a function of
temperature for the two potentials and for experiment.'3
Again, away from the critical point we see that the LJ
prediction crosses through the experimental curve,
whereas the HFDHE2 apparently matches onto it. We
find the critical pressures to be P. =4.5 and 4.9 atm for

the LJ and HFDHE2 potentials, respectively. The large
discrepancy from the experimental value of 2.3 atm is due
to the large slope of Pcoex near T.: A 25% change in T,
gives rise to roughly a factor of two change in P coex.

In this study we have shown that in “He one obtains
semiquantitative agreement with experiment for the coex-
istence curve and critical constants (7. and p.) by treat-
ing the attractive well to first-order in hard-sphere pertur-
bation theory.!® Previously, perturbation theories similar
to the one used here have been applied only to classical
systems.” Thus, we have shown that a comparable level of
accuracy can be achieved in strongly quantum-mechanical
systems such as *He. We are presently collaborating with
Parola and co-workers'® in an attempt to apply their quite
successful hierarchical reference theory of fluids (HRT)
to the LY and HFDHE2 models of *He discussed here.
Parola and co-workers !¢ have shown that the HRT yields
the correct critical exponents and very accurate
(~1-3%) values for nonuniversal properties (such as T,
pe, and P.) of simple classical fluids. It is, therefore,
hoped that the HRT (along with additional approxima-
tions required to treat quantum-mechanical systems) will
provide accurate results for the critical point of “He.

ACKNOWLEDGMENTS

This research was supported by the National Science
Foundation Grant No. DMR-8513300 and was conducted
using the supercomputing resources of the National
Center for Supercomputing Applications, Champaign, Il-
linois and of the Center for Theory and Simulation in Sci-
ence and Engineering at Cornell University, which re-
ceives funding in part from the National Science Founda-
tion, New York State, and the IBM Corporation.

1J. D. van der Waals, thesis, Amsterdam, 1873; J. S. Rowlinson,
in Studies in Statistical Mechanics Volume XIV, edited by J.
L. Lebowitz (North-Holland, Amsterdam, 1988).

ZR. P. Feynman, Statistical Mechanics (Benjamin, New York,
1972) Chap. 3.

3J. D. Weeks and D. Chandler, Phys. Rev. Lett. 25, 149 (1970);
J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem.
Phys. 54, 5237 (1971); 55, 5422 (1971).

4If, as van der Waals did, one uses a density and temperature-
independent function for go(r), such as a step function, then
the second term of Eq. (1) follows immediately with a in-
dependent of density and temperature.

K. J. Runge and G. V. Chester, Phys. Rev. B 38, 135 (1988).

6J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 587
(1976); J. P. Hansen and 1. R. McDonald, Theory of Simple
Liquids (Academic, London, 1976), Chap. 6, pp. 346~356.

7). A. Barker and D. Henderson, J. Chem. Phys. 47, 2856
(1967); 47, 4717 (1967); B. J. Alder and C. E. Hecht, ibid.
50, 2032 (1969); B. J. Alder, D. A. Young, and M. A. Mark,
ibid. 56, 3013 (1972).

8D. M. Ceperley and E. L. Pollock, Phys. Rev. Lett. 56, 351
(1986).

9For the T=0 result, see M. H. Kalos, D. Levesque, and L. Ver-

let, Phys. Rev. A 9, 2178 (1974).

105 de Boer and A. Michels, Physica (Utrecht) 5, 945 (1938).

IR A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G.
T. McConville, J. Chem. Phys. 70, 4330 (1979).

12M. H. Kalos, M. A. Lee, P. A. Whitlock, and G. V. Chester,
Phys. Rev. B 24, 115 (1981).

3R, D. McCarty, J. Phys. Chem. Ref. Data 2,923 (1973).

14R. K. Pathria, Statistical Mechanics (Pergamon, Oxford,
1972), pp. 400-414.

I5A study that complements our work may be found in L. W.
Bruch, I. J. McGee, and R. O. Watts, Phys. Lett. S0A, 315
(1974). Rather than study the liquid-vapor phase transition
using “exact” numerical results for the first-order hard-sphere
perturbation theory as we have done, these authors use a mod-
el finite temperature density matrix involving an effective
quantum two-body potential. The thermodynamical proper-
ties of the density matrix are computed within the Percus-
Yevick approximation and hypernetted-chain approximation
integral equation approximations. Their study reaches a simi-
lar level of agreement with experiment as ours does.

16A. Parola and L. Reatto, Phys. Rev. B 31, 3309 (1985); A.
Parola, A. Meroni, and L. Reatto (private communication).



