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Antisymmetric part of the dynamic structure function of liquid He
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At large momentum transfers it is convenient to express the dynamic structure function S(k, co)
as the sum of a symmetric part about m =k and an antisymmetric part. The latter is zero in the
impulse approximation, and its leading contribution is given by Sz(y)/(2k), where y =(co —k )/
2k is the usual scaling variable. We calculate the integrals of Sz(y), weighted with y, y, and y
in liquid He using sum rules as suggested by Sears. Polynomial expansions are used to construct
models of S~(y) which appear to be in qualitative agreement with the observed antisymmetric
part at large values of k.

Deep inelastic neutron scattering experiments' mea-
sure the dynamic response function S(k, co) at large
values of k and co. If the impulse approximation (IA)
becomes valid at large k and co, then these data can be
directly used to extract the momentum distribution n(p)
of atoms in the target. However, it is well known ' that,
in many systems like helium liquids, corrections to the IA
must be taken into account in order to extract the n(p)
from the avai1able data. Many theorists ' ' ' have pre-
dicted that in helium liquids these corrections would per-
sist over the entire range of momentum transfers of prac-
tical interest, and thus, have generated a significant in-
terest in their calculation.

It is convenient to introduce the scaling variable' y:

co=k +2ky,

in units 6 /2m =1,or equivalently 2 =6.06 K in liquid
He, and following Sears, ' obtain the expression

order k; their asymptotic behavior, when the interac-
tion contains a strong repulsive core, is being studied by
many authors. '

The Sz(y) is particularly important in nuclear phys-
ics, where only the response at negative values of y,
measured by scattering of high-energy electrons, can be
used to study the n (p) of nucleons in a nucleus. In helium
liquids the antisymmetric part of the correction can be
eliminated by symmetrizing the data. Nevertheless it is,
at least for well-behaved interactions, the leading k
correction to IA, and thus, must be included in any realis-
tic treatment of the corrections to the IA.

It is well known ' that the m" weighted integrals of
S(k, co), the so-called sum rules, can be calculated from
the ground-state wave function,

+ OO

nS(k, co)co "dco =—&0 ( pk[H, . . . , [H,pk+], . . .] (0&,

2kS(k, co) =SiA(y) + Sz (y) + As (k,y) +Az (k,y),

(2)

where 1V is the total number of atoms,

pk =Re
where

P OO

SiA(y) =
J pdp n(p) ~ (3)

4tt2p

is symmetric in y, p is density of atoms, Sz(y)/2k gives
the leading antisymmetric part,

Sg(y) = —Sg( —y), (4)

and As(k, y) and h,~ (k,y) give corrections to the leading
symmetric and antisymmetric parts. When the interparti-
cle interactions are well behaved these corrections are of

I

and there are n commutators on the right-hand side. The
sums S„(k),for odd values of n,

f OO

S„(k)—= S(k, co) (co —k ') "dco
(2k)" "o

+ OO P OO

S (y)y"dy+ ag(k, y)y"dy,

(7)
can also be calculated from the Eq. (5), and they give
direct information about S~(y). We obtain

n —1 nS.(k)- ( —1)'""'"g (n m), g—&0) [e,",; -.(r;, )]e;,-'(0)+O(k-'). (8)
m=1 foal ~(~I )

The terms of order k (and higher) contain two (or more) interactions v; they give the cohtribution of A~(k, y) to
S„(k),and are not studied in the present paper.

If we define quantities s„ to be the odd moments of Sz (y),
~ OO

s —=J „,Sg (y)y "dy, (9)
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we Iind

si =0,

j (&i)

s5= g [&O) [a,4;v(r;, )] )O&j (&i)

(io)

+O =IIf2(r'j), (i4)

lo (GFMC) method.
The s5, and higher sum rules, involve gradients of the

ground-state wave function, and thus cannot be obtained
from distribution functions alone. In the present work we
estimate s q with the simplest Jastrow approximation,

(i2)

The s3 depends only upon the pair distribution function
g(r):

s3=—
~ v"(r)+ g(r)r dr,1 4np " „2v'(r)

00 r

for the ground-state wave function of liquid He. It is
convenient to define

s5 =A —58;
4lrp I'

/ging( )+ 4v"'(r)
5 "o r

and it has been calculated with realistic potentials and the
exact g(r) obtained with the Green's function Monte Car-

can be calculated easily from the GFMC g(r). The term
8, with the Jastrow approximation, is given by

8 =8]+82+83,
8,'f2(r)

Bl =pJ d'rg(r)[8, 'v(r)]

It is easy to calculate 8 l exactly, and the superposition approximation

g3(r j,r;k) =g(r j)g(r;k)g(rjk),

2(r)

82 p ~ d rljd rkg3(I j I'k)[8, ;v(rj)] ", ', +2
2(rik ) 2 (riJ)2'(rl k )

3 3 3 3 2 I),lf2(rik) ~, 'f2(r'1)83=p „d rjd rlkd rll g4(rj, rlk, rkl)[(8, ;v(rj)]
2(r'k ) 2(rll )

(2o)

(2i)

g4(r;, , rlk, rkl ) =g(r j)g(rk )g(r l )g(rjk )g(rjl )g(rkl ), (22)

is used for the three- and four-body distribution functions in 82 and 83. The calculation of 83 is further approximated by
expanding g4 in powers of short-ranged functions II;j. =g(r;j) —1:

g4(rlj, rlk, rkl) =g(rj)g(rv, )g(r l)(1+hjk+h l+jhkl+hjkhjl+IIjk4l+hjlhkl+hjkhjlhkl) . (23)

The three terms 1, hjk, and hjl give zero contribution; the
hkl term gives the largest contribution (- —8A ), the
terms quadratic in h give contributions of order 2.S A
each, and the contribution of the hjkhjlhkl term, expected
to be ——1A, is neglected.

The calculated values are given in Table I for the
Aziz and Lennard-Jones (LJ) models of the interatomic
potential. The appropriate GFMC g(r) of the Courant
group are used. The McMillan f2(r),

Sg(y) = g b.&.(y)SIA(y),
odd fl

(26)

pair distribution functions and the binding energy by—10%, and assuming that they have a similar effect on
s5, we can expect the present results to change by —10%.

The values of s3 and ss can be used to test calculations
of S~ (y). They can also be used to construct crude mod-
els of Sz (y) as follows. Let S~ (y) be given by

f2(r) =exp[ ——,
' (b/r)]

b = 1.17a' =2.99M,

(24)

(2s)
Term

TABLE I. The $3 and s5 in liquid He.

Aziz LJ
is used for calculations with the LJ potential, and an opti-
mized f2(r) obtained by the paired phonon analysis is
used with the Aziz potential.

The calculation of s5 can be significantly improved by
considering ground-state wave functions with pair and
triplet correlations, and by using exact many-body dis-
tribution functions via a Monte Carlo integration of the
expectation values. The triplet correlations inAuence the

$3
$5

8
8[
82
83

12.4A
1988
462M

53A

—578
—1A

1O. 1W
-4

133M
498'
73'

126M
—52'
—lA
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FEG. 1. The two approximations to S~ (y) calculated with the
Aziz potential compared with the antisymmetric part of
S(k,co)/(2k) measured at k=102 ' from Ref. l.

FIG. 2. The same as in Fig. 1, calcUlated with the LJ poten-
tial.

where P„are polynomials:

&.(y) - Z
oddm &n

P (y)P (y)SIA(y)dy=~

(27)

(28)

so that
b„ = g g„ s (29)

Oddm &n

We have obtained two approximations to S~(y). In the
filst bg ) 3 0 and I3l ( =0) and b3 are determined from s I

and s3, and in the second b„&5=0 and b„&5 are deter-
mined from s, ~5. The variational n(p), which has re-
cently been shown to fit experimental data, is used to
generate the weight function SIA(y). With the Aziz po-
tential we obtain b3=4.42 and b„&3=0 in the first ap-
proximation, and b3 =4.42, b5 =1.83, and b«3 5 0 in the
second. The two approximations are compared with the
antisymmetric part of measured' S(k, co) at k =102
divided by (2k) in Figs. 1 and 2. While the second ap-
proximation (solid line) is clearly better than the first one,
it does not completely fit the data; the position of the zero
of S~(y), in particular, is shifted from the experimental
value.

There is a large class of systems (hydrogen atom, for
example) such that S(k, co) has divergent co" weighted
moments for big enough n. On the other hand, in systems
with LJ-like interactions, these moments exist to all orders

due to e ' ' behavior of the many-body distribution
functions at small interatomic distances r. Usefulness of
these moments in reconstruction of S(k, co) via some sort
of orthogonal polynomial expansion has recently been
questioned. '

However, the results of the present calculations suggest
that just the lowest few terms of these expansions provide
a qualitative description of the Sz (y). A few more values
of s„ for n =7, 9, . . . may be needed to obtain a quantita-
tive description of the Sz(y). Unfortunately, it appears
that calculations of s„~3 are not trivial. For example,
there is a large cancellation between the leading two-body
integrals A and 8~ that contribute to s5. A wrong nega-
tive value of s5 is obtained if only the two-body integrals
are retained and 82 and 83 are neglected. These cancella-
tions appear to persist for higher s„.

Comparison of the present results with experimental
data suggests that at k =104 ', the S~(y)/(2k) gives a
large part of the total antisymmetric part of S(k, ro).
Thus, at k ) 104 ' it may be possible to treat dz(k, y)
as a correction. In principle the s„are sensitive to the in-
teratomic potentials; however, comparison of values ob-
tained with the Aziz and LJ potentials indicates that the
s 3 and s 5 need to be determined with errors smaller than
10% to study models of interatomic potentials.
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