Antisymmetric part of the dynamic structure function of liquid ⁴He

A. Belić and V. R. Pandharipande

Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (Received 26 September 1988)

At large momentum transfers it is convenient to express the dynamic structure function $S(k,\omega)$ as the sum of a symmetric part about $\omega = k^2$ and an antisymmetric part. The latter is zero in the impulse approximation, and its leading contribution is given by $S_A(y)/(2k)^2$, where $y = (\omega - k^2)/(2k)^2$ is the usual scaling variable. We calculate the integrals of $S_A(y)$, weighted with y, y³, and y⁵ in liquid ⁴He using sum rules as suggested by Sears. Polynomial expansions are used to construct models of $S_A(y)$ which appear to be in qualitative agreement with the observed antisymmetric part at large values of k.

Deep inelastic neutron scattering experiments¹⁻⁷ measure the dynamic response function $S(k,\omega)$ at large values of k and ω . If the impulse approximation⁸ (IA) becomes valid at large k and ω , then these data can be directly used to extract the momentum distribution n(p)of atoms in the target. However, it is well known⁹⁻¹⁶ that, in many systems like helium liquids, corrections to the IA must be taken into account in order to extract the n(p)from the available data. Many theorists^{10,17,18} have predicted that in helium liquids these corrections would persist over the entire range of momentum transfers of practical interest, and thus, have generated a significant interest in their calculation.

It is convenient to introduce the scaling variable 19 y:

$$\omega \equiv k^2 + 2ky , \qquad (1)$$

in units $\hbar^2/2m = 1$, or equivalently $A^{-2} = 6.06$ K in liquid ⁴He, and following Sears, ^{9,10} obtain the expression

$$2kS(k,\omega) = S_{IA}(y) + \frac{1}{2k}S_{A}(y) + \Delta_{S}(k,y) + \Delta_{A}(k,y),$$
(2)

where

$$S_{\rm IA}(y) = \frac{1}{4\pi^2 \rho} \int_{|y|}^{\infty} p dp \, n(p) \,, \tag{3}$$

is symmetric in y, ρ is density of atoms, $S_A(y)/2k$ gives the leading antisymmetric part,

$$S_A(y) = -S_A(-y)$$
, (4)

and $\Delta_S(k,y)$ and $\Delta_A(k,y)$ give corrections to the leading symmetric and antisymmetric parts. When the interparticle interactions are well behaved these corrections are of

order k^{-2} ; their asymptotic behavior, when the interaction contains a strong repulsive core, is being studied by many authors.¹⁴⁻¹⁸

The $S_A(y)$ is particularly important in nuclear physics,²⁰ where only the response at negative values of y, measured by scattering of high-energy electrons, can be used to study the n(p) of nucleons in a nucleus. In helium liquids the antisymmetric part of the correction can be eliminated by symmetrizing the data. Nevertheless it is, at least for well-behaved interactions, the leading k^{-1} correction to IA, and thus, must be included in any realistic treatment of the corrections to the IA.

It is well known²¹ that the ω^n weighted integrals of $S(k,\omega)$, the so-called sum rules, can be calculated from the ground-state wave function,

$$\int_0^\infty S(k,\omega)\omega^n d\omega = \frac{1}{N} \langle 0 | \rho_k[H,\ldots,[H,\rho_k^+],\ldots] | 0 \rangle,$$
(5)

where N is the total number of atoms,

$$\rho_k = \sum_i e^{-i\mathbf{k}\cdot\mathbf{r}_i},\tag{6}$$

and there are *n* commutators on the right-hand side. The sums $\overline{S}_n(k)$, for odd values of *n*,

$$\bar{S}_n(k) \equiv \frac{1}{(2k)^n} \int_0^\infty S(k,\omega) (\omega - k^2)^n d\omega$$
$$= \frac{1}{2k} \int_{-k/2}^\infty S_A(y) y^n dy + \int_{-k/2}^\infty \Delta_A(k,y) y^n dy ,$$
(7)

can also be calculated from the Eq. (5), and they give direct information about $S_A(y)$. We obtain

$$\bar{S}_{n}(k) = \frac{1}{2k} (-1)^{(n+1)/2} \sum_{m=1}^{n-1} (n-m) \binom{n}{m-1} \sum_{j(\neq i)} \langle 0 | [\partial_{z,i}^{n-m} v(r_{ij})] \partial_{z,i}^{m-1} | 0 \rangle + O(k^{-2}).$$
(8)

The terms of order k^{-2} (and higher) contain two (or more) interactions v; they give the contribution of $\Delta_A(k,y)$ to $\overline{S}_n(k)$, and are not studied in the present paper.

If we define quantities s_n to be the odd moments of $S_A(y)$,

$$s_n \equiv \int_{-k/2}^{\infty} S_A(y) y^n dy , \qquad (9)$$

© 1989 The American Physical Society

we find

$$s_1 = 0$$
, (10)

$$s_3 = \frac{1}{2} \sum_{i(\neq i)} \langle 0 | [\partial_{z,i}^2 v(\mathbf{r}_{ij})] | 0 \rangle, \qquad (11)$$

$$s_{5} = \sum_{j(\neq i)} \left\{ \langle 0 | [\partial_{z,i}^{4} v(\mathbf{r}_{ij})] | 0 \rangle - 5 \langle 0 | [\partial_{z,i}^{2} v(\mathbf{r}_{ij})] \partial_{z,i}^{2} | 0 \rangle \right\}.$$
(12)

The s_3 depends only upon the pair distribution function g(r):

$$s_{3} = \frac{1}{2} \frac{4\pi\rho}{3} \int_{0}^{\infty} \left[v''(r) + \frac{2v'(r)}{r} \right] g(r) r^{2} dr , \qquad (13)$$

and it has been calculated with realistic potentials and the exact g(r) obtained with the Green's function Monte Car-

lo (GFMC) method.^{22,23}

The s_5 , and higher sum rules, involve gradients of the ground-state wave function, and thus cannot be obtained from distribution functions alone. In the present work we estimate s_5 with the simplest Jastrow approximation,

$$\Psi_0 = \prod_{i < j} f_2(r_{ij}) , \qquad (14)$$

for the ground-state wave function of liquid ⁴He. It is convenient to define

$$s_5 = A - 5B; \tag{15}$$

$$A = \frac{4\pi\rho}{5} \int_0^\infty \left[v'''(r) + \frac{4v'''(r)}{r} \right] g(r) r^2 dr , \qquad (16)$$

can be calculated easily from the GFMC g(r). The term B, with the Jastrow approximation, is given by

$$B = B_1 + B_2 + B_3, \tag{17}$$

$$B_1 = \rho \int d^3 r g(r) [\partial_z^2 v(r)] \frac{\partial_z^2 f_2(r)}{f_2(r)}, \qquad (18)$$

$$B_{2} = \rho^{2} \int d^{3}r_{ij} d^{3}r_{ik} g_{3}(\mathbf{r}_{ij}, \mathbf{r}_{ik}) [\partial_{z,i}^{2} v(r_{ij})] \left[\frac{\partial_{z,i}^{2} f_{2}(r_{ik})}{f_{2}(r_{ik})} + 2 \frac{\partial_{z,i} f_{2}(r_{ij})}{f_{2}(r_{ij})} \frac{\partial_{z,i} f_{2}(r_{ik})}{f_{2}(r_{ik})} \right],$$
(19)

$$B_{3} = \rho^{3} \int d^{3}r_{ij} d^{3}r_{ik} d^{3}r_{il} g_{4}(\mathbf{r}_{ij}, \mathbf{r}_{ik}, \mathbf{r}_{kl}) [(\partial_{z,i}^{2} v(r_{ij})] \frac{\partial_{z,i} f_{2}(r_{ik})}{f_{2}(r_{ik})} \frac{\partial_{z,i} f_{2}(r_{il})}{f_{2}(r_{il})}.$$
(20)

It is easy to calculate B_1 exactly, and the superposition approximation

$$g_3(\mathbf{r}_{ij},\mathbf{r}_{ik}) \approx g(r_{ij})g(r_{ik})g(r_{jk}), \qquad (21)$$

$$g_4(\mathbf{r}_{ij},\mathbf{r}_{ik},\mathbf{r}_{kl}) \approx g(r_{ij})g(r_{ik})g(r_{jl})g(r_{jk})g(r_{jl})g(r_{kl}), \qquad (22)$$

is used for the three- and four-body distribution functions in B_2 and B_3 . The calculation of B_3 is further approximated by expanding g_4 in powers of short-ranged functions $h_{ij} = g(r_{ij}) - 1$:

$$g_4(\mathbf{r}_{ij},\mathbf{r}_{ik},\mathbf{r}_{kl}) \approx g(r_{ij})g(r_{ik})g(r_{il})(1+h_{jk}+h_{jl}+h_{kl}+h_{jk}h_{jl}+h_{jk}h_{kl}+h_{jl}h_{kl}+h_{jk}h_{jl}h_{kl}).$$
(23)

The three terms 1, h_{jk} , and h_{jl} give zero contribution; the h_{kl} term gives the largest contribution ($\sim -8A^{-6}$), the terms quadratic in h give contributions of order 2.5 A^{-6} each, and the contribution of the $h_{jk}h_{jl}h_{kl}$ term, expected to be $\sim -1A^{-6}$, is neglected.

The calculated values are given in Table I for the Aziz²⁴ and Lennard-Jones (LJ) models of the interatomic potential. The appropriate GFMC g(r) of the Courant group^{22,23} are used. The McMillan $f_2(r)$,

$$f_2(r) = \exp[-\frac{1}{2}(b/r)]^5,$$
 (24)

$$b = 1.17\sigma = 2.99A$$
, (25)

is used for calculations with the LJ potential, and an optimized $f_2(r)$ obtained by the paired phonon analysis²⁵ is used with the Aziz potential.

The calculation of s_5 can be significantly improved by considering ground-state wave functions with pair and triplet correlations,²⁶ and by using exact many-body distribution functions via a Monte Carlo integration of the expectation values. The triplet correlations influence the pair distribution functions and the binding energy by $\sim 10\%$, and assuming that they have a similar effect on s_5 , we can expect the present results to change by $\sim 10\%$.

The values of s_3 and s_5 can be used to test calculations of $S_A(y)$. They can also be used to construct crude models of $S_A(y)$ as follows. Let $S_A(y)$ be given by

$$S_A(y) = \sum_{\text{odd}\,n} b_n \mathcal{P}_n(y) S_{\text{IA}}(y) , \qquad (26)$$

TABLE I. The s_3 and s_5 in liquid ⁴He.

Term	Aziz	LJ
<i>S</i> 3	12.4 <i>A</i> ⁻⁴	10.1 <i>A</i> ⁻⁴
\$5	198A ⁻⁶	133A ⁻⁶
A	$462A^{-6}$	498 <i>A</i> ⁻⁶
B	$53A^{-6}$	73 <i>A</i> ⁻⁶
B_1	$111A^{-6}$	126A ⁻⁶
B_2	$-57A^{-6}$	$-52A^{-6}$
B ₃	$-1A^{-6}$	$-1A^{-6}$

FIG. 1. The two approximations to $S_A(y)$ calculated with the Aziz potential compared with the antisymmetric part of $S(k,\omega)/(2k)^2$ measured at $k = 10A^{-1}$ from Ref. 1.

where P_n are polynomials:

$$\mathcal{P}_n(y) = \sum_{\text{odd } m < n} \xi_{n,m} y^m, \qquad (27)$$

$$\langle \mathcal{P}_m | \mathcal{P}_n \rangle \equiv \int_{-\infty}^{+\infty} \mathcal{P}_m(y) \mathcal{P}_n(y) S_{\mathrm{IA}}(y) dy = \delta_{m,n} , \qquad (28)$$

so that

$$b_n = \sum_{\text{odd } m < n} \xi_{n,m} s_m \,. \tag{29}$$

We have obtained two approximations to $S_A(y)$. In the first $b_{n>3}=0$ and $b_1(=0)$ and b_3 are determined from s_1 and s_3 , and in the second $b_{n>5}=0$ and $b_{n<5}$ are determined from $s_{n\leq 5}$. The variational²⁷ n(p), which has recently been shown to fit experimental data,⁷ is used to generate the weight function $S_{1A}(y)$. With the Aziz potential we obtain $b_3=4.42$ and $b_{n\neq 3}=0$ in the first approximation, and $b_3=4.42$, $b_5=1.83$, and $b_{n\neq 3,5}=0$ in the second. The two approximations are compared with the antisymmetric part of measured¹ $S(k,\omega)$ at $k=10A^{-1}$, divided by $(2k)^2$ in Figs. 1 and 2. While the second approximation (solid line) is clearly better than the first one, it does not completely fit the data; the position of the zero of $S_A(y)$, in particular, is shifted from the experimental value.

There is a large class of systems (hydrogen atom, for example) such that $S(k,\omega)$ has divergent ω^n weighted moments for big enough *n*. On the other hand, in systems with LJ-like interactions, these moments exist to all orders

FIG. 2. The same as in Fig. 1, calculated with the LJ potential.

due to e^{-c/r^5} behavior of the many-body distribution functions at small interatomic distances r. Usefulness of these moments in reconstruction of $S(k,\omega)$ via some sort of orthogonal polynomial expansion has recently been questioned.¹⁶

However, the results of the present calculations suggest that just the lowest few terms of these expansions provide a qualitative description of the $S_A(y)$. A few more values of s_n for $n = 7, 9, \ldots$ may be needed to obtain a quantitative description of the $S_A(y)$. Unfortunately, it appears that calculations of $s_{n>3}$ are not trivial. For example, there is a large cancellation between the leading two-body integrals A and B_1 that contribute to s_5 . A wrong negative value of s_5 is obtained if only the two-body integrals are retained and B_2 and B_3 are neglected. These cancellations appear to persist for higher s_n .

Comparison of the present results with experimental data suggests that at $k = 10A^{-1}$, the $S_A(y)/(2k)^2$ gives a large part of the total antisymmetric part of $S(k,\omega)$. Thus, at $k > 10A^{-1}$ it may be possible to treat $\Delta_A(k,y)$ as a correction. In principle the s_n are sensitive to the interatomic potentials; however, comparison of values obtained with the Aziz and LJ potentials indicates that the s_3 and s_5 need to be determined with errors smaller than 10% to study models of interatomic potentials.

This work was supported by the U.S. Department of Energy, Division of Materials Sciences, under Grant No. DE-AC02-76ER01198.

- ¹P. Martel, E. C. Svensson, A. D. B. Woods, V. F. Sears, and R. A. Cowley, J. Low Temp. Phys. 23, 285 (1976).
- ²A. D. B. Woods and V. F. Sears, Phys. Rev. Lett. **39**, 415 (1977).
- ³V. F. Sears, E. C. Svensson, P. Martel, and A. D. B. Woods, Phys. Rev. Lett. **49**, 415 (1982).
- ⁴H. A. Mook, Phys. Rev. Lett. **32**, 1167 (1974).
- ⁵H. A. Mook, Phys. Rev. Lett. **51**, 1454 (1983).
- ⁶H. R. Glyde and E. C. Svensson, in Methods in Experimental

Physics, edited by D. L. Price and K. Skold (Academic, New York, 1987), Vol. 23, Pt. B.

- ⁷T. R. Sosnick, W. M. Snow, P. E. Sokol, and R. N. Silver (unpublished).
- ⁸P. C. Hohenberg and P. M. Platzman, Phys. Rev. 152, 198 (1966).
- ⁹V. F. Sears, Phys. Rev. 185, 200 (1969).
- ¹⁰V. F. Sears, Phys. Rev. B 30, 44 (1984).
- ¹¹H. A. Gerch and L. J. Rodriguez, Phys. Rev. A 8, 905 (1973).

- ¹²L. J. Rodriguez, H. A. Gerch, and H. A. Mook, Phys. Rev. A 9, 2085 (1974).
- ¹³P. M. Platzman and N. Tzoar, Phys. Rev. B 30, 6397 (1984).
- ¹⁴R. Rosenfelder, Nucl. Phys. A459, 452 (1986),
- ¹⁵S. Stringari, Phys. Rev. B 35, 2038 (1987).
- ¹⁶A. S. Rinat, Phys. Rev. B 36, 5171 (1987).
- ¹⁷J. J. Weinstein and J. W. Negele, Phys. Rev. Lett. 49, 1016 (1982).
- ¹⁸R. N. Silver, Phys. Rev. B 37, 3794 (1988).
- ¹⁹G. B. West, Phys. Rep. 18C, 263 (1975).
- ²⁰D. B. Day et al., Phys. Rev. Lett. 59, 427 (1987).
- ²¹E. Feenberg, Theory of Quantum Liquids (Academic, New

York, 1969).

- ²²P. A. Whitlock, D. M. Ceperley, G. V. Chester, and M. H. Kalos, Phys. Rev. B 19, 5598 (1979).
- ²³M. H. Kalos, M. A. Lee, P. A. Whitlock, and G. V. Chester, Phys. Rev. B 24, 115 (1981).
- ²⁴R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G. T. McConville, J. Chem. Phys. **70**, 4330 (1979).
- ²⁵F. J. Pinski and C. E. Campbell, Phys. Lett. **79B**, 23 (1978).
- ²⁶Q. N. Usmani, S. Fantoni, and V. R. Pandharipande, Phys. Rev. B 26, 6123 (1982).
- ²⁷E. Manousakis, S. Fantoni, V. R. Pandharipande, and Q. N. Usmani, Phys. Rev. B 28, 3770 (1983).