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Surface impurity problem in the Hubbard model: A renormalixation-group study
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In connection with the problem of the chemisorption of an atom into a solid substrate, we solve
the one-dimensional Hubbard model with an impurity at one end using a real-space
renormalization-group procedure (RS RG). For this purpose we present an extension of the stan-
dard RS RG technique that allows handling systems in which there is no translational invariance.
We consider the case in which correlations are important both in the adsorbed atom and in the sub-
strate. We show results for the charge transference and binding energy of the impurity as well as
the charge rearrangement near the surface.

I. INTRODUCTION

The binding energy and the degree of charge transfer
between an adsorbed atom and a solid substrate are two
of the most important electronic magnitudes in the
description of the chemisorption phenomena. A model
extensively used to describe the chemisorption is the
Anderson-Grimley-Newns Hamiltonian which includes a
correlated impurity coupled to an uncorrelated band.
This Hamiltonian has been first introduced by Anderson'
for a single magnetic impurity in a nonmagnetic meta1
and has been adapted by Grimley and Newns to study
the chemisorption problem of adatoms on a metal sur-
face. After these works, based on the Hartree-Fock ap-
proximation, a number of different approaches have been
used to describe the chemisorption phenomena in which
the electron-electron interaction on the metal side is
neglected. ' In a more general context one is interest-
ed in considering a situation in which correlations are im-
portant in the impurity as well as in the substrate. This
can be the case of adsorption of atoms and molecules by
narrow band metals (for example H adsorbed on a Ni
substrate).

In this paper we will study a generalized Hubbard
model that includes correlations both in the substrate and
the adsorbate. Based on the real-space renormalization-
group technique' ' (RS RG) we extend the procedure to
the nontranslationally-invariant case. The RS RG tech-
nique is based on an approximation that consists in trun-
cating the Hilbert space to certain lowest-lying states of
finite clusters at each step of an iterating procedure. In
our case the approximation turns out to be valid in the
range of parameters in which the charge at the impurity
site fIuctuates around 1, in correspondence with the half-
filling of the substrate band. Despite this restriction, this
situation occurs in most of the realistic chemisorption
problems.

We calculate the binding energy of the adsorbed atom
at T =0, the impurity charge, and also the induced
charge redistribution in the first substrate sites. Our re-
sults show good quantitative agreement with available ex-
perimental results. In Sec. II we present the model and
give a description of the procedure. In Sec. III we dis-
cuss the results obtained.

H,„„H,„b„and H, are, respectively, the adsorbate, sub-
strate, and coupling Hamiltionians, given by

Uo UH d.
= g ( ~ p)no, + nono, +
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H, = g t'(co c& +H.c.), (4)

where 8'is the atomic level of the adatom, while Uo and
U are respectively the effective Coulomb integrals of the
adatom and the substrate. c; (c; ) is the creation (an-
nihilation) operator of an atomic orbital at site i with spin
o.. The corresponding occupation number operators are
n, =c,~ c, t and t' are the hopping matrix elements
for electrons in the substrate, and for an electron jumping
from the adatom to the substrate, respectively. For the
chemical potential p =

—,
' U the substrate Hamiltonian

maps into itself under the electron-hole transformation,
thus corresponding to the half-filled band case. The con-
stant terms in (2) and (3) were chosen so as to have the
t =t'=0 reference state with zero energy.

The real-space Hamiltonian renormalization-group cal-
culation is performed following the works of Jullien
et al. ' and Hirsh, ' with a modification that takes into
account the nontranslational invariance of the problem.

We proceed as follows. %'e divide the lattice into
nonoverlapping cells of three sites each and diagonalize
exactly the cell Hamiltonian. Note that the cells are all
equivalent except for the edge one containing the ad-
sorbed atom (see Fig. l). We keep the lowest-lying states
corresponding to n =2, 3, and 4 particles in order to
reproduce the level scheme of a single site; i.e., two de-

II. MODEL AND PROCKDURE

We will consider the following one-dimensional Hamil-
tonian:
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step n The renormalized parameters are

pr(m+ I)—E(m) E(m) (E(m) E(m))
b, ads a, ads, b a

U(m+1) E(m) +E(m) 2E(m)0 c,ads a, ads b, ads

(9)

(10)

step n+1

FIG. 1. Schematic representation of the renormalization pro-
cedure. The open circle represents the renormalized impurity
and the dashed line represents the renormalized coupling matrix
element.

generate states for n = 3 and S =
—,', S,=+—,

' and one non-
degenerate state in each of the subspaces n =2 and 4,
with S =0. We use these states as a new truncated basis
and express the new Hamiltonian in terms of block
operators. After m iterations we obtain

H( ) =II(-)+H(-) +II(-)
ads subs c

with
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a b

U(m)
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i=1

Here, E,',d+,
"and (a(I +", . . . , a6 +")are the lowest ei-

genvalue and the corresponding eigenvector, respectively,
of the matrix (the supraindex m was omitted for clarity,
I.e W—= W(-) t—= r(-) etc.)

d{m)+1' '(c; c;+I +H c )+
r2 r1 0

+t2 'c() c) no +Hc], (8)

where the operators in H' ' now refer to the block states.
The presence of occupation-dependent hopping terms in
H,' ' is due to the nonequivalent structure of the two-
and four-particle states at the edge cell. However, for the
erst iteration H,' renormalizes to the structure given in
Eq. (8) and preserves its form in the following iterations.

0 0 t1 0 r r

t t1 8' 0 0

r2 0 0 28 + Up 0 0

0
(20)
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where r =&Zt, rI =&Zr„and r2=&Zt2. Similarly,
E&,d+,

" and (b', +", . . . , b9™+I)) are given by the ma-
trix
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E,',z+,
"and (cI +", . . . , c6 + I)

) are in turn given by the matrix M2 below, which can be obtained from Mo by per-
forming an electron-hole transformation:

T

0
2

0 28'+ Uo 02

8'+ U 0

0 2U

0

0

0

0 (22)

0 0 U+28 +Uo 0

0 0 0 . 0 U+28'+ Uo

~Eb ~

= lim [E„(t'=0) E„(t')]—, (23)

where

(r~) ~(n) (n)+D(n)
n

and

(24)

E&™and EI', ' are, respectively, the lowest eigenvalues of
matrixes Mo and M& for the substrate parameters 8' =0,
Uo= U, and t, =t2=t. Equivalently, g is given by Eq.
(18) where a ' and bI ' are the corresponding eigenvec-
tors for the substrate parameters. After a few iterations
( —10) the renormalized hopping matrix elements vanish
and we obtain the fixed-point Hamiltonian, which
remains invariant at every iteration. The binding energy
Eb is calculated as the difference between the total energy
of the system with the adatom and that in which the ada-
tom is decoupled from the substrate (r'=0). That is,

that in Eq. (27) ~v, m ) must be replaced by a state corre-
sponding to the direct product of a set of cells that in-
clude the considered atom, and no by n&~ ~, where l(m) is
the index numbering the cell that contains the considered
atom in the mth iteration, for example, if 1(0)=6, then
l (1)=2 and I (m) =0 for m ~ 2.

III. RESULTS AND DISCUSSION

In Fig. 2 we show the results obtained for the binding
energy as a function of 8" for different values of the on-
site Coulomb repulsion Uo at the impurity site. The ob-
tained curves are symmetric with respect to
8'o = ( U —Uo ) /2, the value for which the charge
transference vanishes. In the limit t = t'=0, for 8'= 8 o,
transferring an electron from the impurity to the chain

E (r =0)= 1—1
n 3n

(25)

Note that the quantities E„correspond to cells of 3"
atoms, therefore D'"' and d'"' are of order 3". This fact
has to be taken into account in evaluating the limit in Eq.
(23). In Eq. (25), E„(t'=0) is given by the energy of a
bulk chain of 3"—1 atoms (the decoupled adatom has
zero energy). The charge at the adsorbed atom site is
given by

& np )

0.8

&n, ) = lim &o, m ~n, ~o. , m), (26)

where
~
o, m ) is the edge-cell eigenstate corresponding to

1 particle per site at the mth iteration. The mean value
&v, m~n

0~

vn )(v= 1', 1,0, I J, ) is given by the recursive
formula

-0.8

& v, m]n, [v, m ) = g [ & v', m —1(v, m ) ('

X & v', I —1(no (
v', m —1), (27)

where &o, O~no~o, O) =1, & tl, 0~no~ tl, O) =2, etc. The
charge at difFerent substrate sites are calculated in an
analog manner noting that & o, m

~ n& ~cr, m ) = 1 if I ) 3
at each iteration the considered site approaches the re-
normalized impurity site and merges with it for 3 &&I.
The intermediate iterations are handled differently de-
pending on the site considered. Formally this implies

-1.2
-1.0 0.0 0.5 1.0

FIG. 2. (a) Binding energy and (b) impurity charge as a func-
tion of the atomic-level energy W of the adsorbed atom for
U/t =2 and t'/t = 1.2.
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implies an energy cost that is equal to that of transferring
it from the chain to the impurity. The binding energy in-
creases with the degree of charge transference. In a per-
turbation expansion in t', the binding energy Eb can be
written as

0.15

t& 2

(28)

In Eq. (28) the first (second) term in the right-hand side
represents the correction due to a virtual jump from the
chain (impurity) to the impurity (chain). As can also be
seen in Fig. 2(a), for a fixed U, ~Eb~ decreases as Uo in-
creases because virtual jumps from the chain to the im-
purity are inhibited. In Fig. 3 we show the results ob-
tained for the charge redistribution Ap(l)=p(l) —I,
where p( l ) is the charge at site l.

In choosing the range of parameters shown in Figs. 2
and 3 we had in mind the case of on-top adsorption of H
on Ni. For that case we can take' U=5 eV, t =2.5 eV,
t'=3 eV, and Uo-8 —10 eV. For these values, our calcu-
lated binding energy varies between 2 and 3 eV for 8'
varying between —1.2 and 2.4 eV. The experimental
value' is Eb„„,——2.7 eV.

Finally we comment on the range of validity of the
method. In truncating the Hilbert space we neglect
states corresponding to zero, one, five, and six particles
per ce11. In order to obtain feasible results these must be
states with higher energy than those kept. In the bulk
chain this is guaranteed by taking p= U/2. In the edge
cell this imphes that the parameters have to satisfy that
U/2 —Uo( W( U/2, a range in which the impurity
charge fluctuates around 1.

In summary, we presented an extension of the real-
space renormalization-group technique to the case in
which there is no translational invariance. We applied

-0, 15
0

FIG. 3. Charge redistribution Ap as a function of lattice site
for U/t =2 and t'/t = 1.2. Site zero corresponds to the impuri-
ty. The di6'erent curves correspond to (a) W/t = —1.1,
Up/t =3' (b) W/t = 1.1 U/t =4' (c) W =0 Up /t =4. The
continuum lines joining the dots are guides to the eye.

the method to the chemisorption problem in a Hubbard-
type Hamiltonian that includes correlations in both the
substrate and the adsorbed atom. The results obtained
for the binding energy are close to experimental chem-
isorption energy values. %'e also calculate the charge
redistribution in the first substrate sites.
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