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Dynamic structure factor for the Fibonacci-chain quasicrystal
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We have performed an exact real-space renormalization-group calculation of the complete wave-
vector- and frequency-dependent-response function, S(q, co), for the one-dimensional Fibonacci-
chain quasicrystal with "Goldstone" dynamics as in the case of phonons or magnons. We present
surface plots, which are highly structured, of the full response S(q, co), for different values of the
coupling ratio. In addition, we have obtained a hierarchy of dispersion curves of co versus q which
contain features related to the gap structure of the excitation spectrum. The limiting case of equal
couplings, while still nontrivial because of geometric effects, is analytically tractable and gives a use-
ful test of the renormalization-group treatment, of which it is a special case, and when extended us-

ing degenerate perturbation theory it provides an interpretation of the general situation.

I. INTRODUCTION

(l. la)

(l. lb)

to construct the following third order difference equation
for y„=—,

' Tr(T„), where T„ is the dynamic transfer ma-

trix describing level n of the hierarchy

Vn+1 Vn Vn —1 7n —2 (1.2)

The electronic (or phonon) spectrum is then obtained by
iterating (1.2) from three initial values y „yo, and y,
which are known functions of energy E (or squared fre-
quency co ) and the remaining system parameters, and ex-
amining the asymptotic behavior of the y„'s.

It is now accepted that the spectrum is a Cantor set of
zero Lebesgue measure corresponding to critical eigen-
functions (i.e., neither extended nor localized). In addi-
tion, the quantity

+p, +7 —
&

2'V +&7 'V (1.3)

was shown by Kohmoto et al. to remain invariant under
the action of (1.2) and is therefore (from its value at
n =0) a known function of energy (or co ). It was also

Quasiperiodic systems in one dimension are currently
receiving considerable attention. Although various prop-
erties of the spectra have been studied in the past, ' it
was not until the discovery of a quasicrystalline phase of
A1Mn by Shechtman et aI. and the subsequent interpre-
tation by Levine and Steinhardt in terms of the aperiodic
but space filling Penrose lattice (of which the Fibonacci
chain is the one-dimensional realization), that such activi-
ty has intensified.

Until recently all the results concerning the mathemat-
ical and physical properties of the Fibonacci chain have
been obtained using the transfer matrix approach intro-
duced independently by Kohmoto, Kadanoff, and Tang
and by Ostlund and Pandit. This method involves using
the Fibonacci inflation rule

shown by Kohmoto et al. that for a specific tight binding
electronic model the exponents describing the scaling of
the spectrum near the upper band edge and band center
(E =0) were governed by 2 and 6 cycles of the form

and

ct —&pact~. . . (1.4)

respectively. Furthermore, Luck and Nieuwenhuizen
later found another six cycle of the form

ct —+ —p~ ct~p~ —ct~p~a—~. . . (1.6)

of which (1.5) is a special case, and later, in collaboration
with Petritis, Luck showed that the scaling properties of
the upper edge of the phonon spectrum is governed by
(1.6). Finally, by linearizing about the two and six-cycle
fixed points one can obtain exponents which, through the
invariant (1.3), can be related to the energy E (or squared
frequency co ). Indeed, every gap edge in the spectrum
(of which there are infinitely many) is associated with its
own scaling exponent. The f (a) curve characterizing
such multifractal aspects has been discussed by Kohmoto
et al. , by Evangelou and more recently by Hawrylak
et a/. ' in the context of the Fibonacci superlattice.

It has been known for some time how to use real space
renormalization group techniques (especially decimation)
to obtain standard dynamic scaling properties (exponents,
etc.) for linear dynamical processes at a continuous phase
transition, or on self-similar backgrounds (nonrandom"
and random fractals' ). A particularly powerful im-
plementation of the technique is that using a generating
function to obtain the density of states' ' and the full
wave vector and frequency dependent response func-
tion. ' Also, such methods are not restricted to one di-
mension and can be applied to regular' and nonuniform
fractal' ' lattices in two and higher dimensions, which is
not possible with the transfer matrix approach. With
such extensions in mind it has been considered of some
importance to develop corresponding decimation tech-
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niques for quasicrystals. This was initially done by Lu
et al. ' who combined a continued fraction expansion to-
gether with a decimation transformation, to show that
both the electronic and phonon spectra of the Fibonacci
chain quasicrystal were Cantor-like. More recently, Kan-
tha and Stinchcombe have applied decimation techniques
to the problem of difFusion on the Fibonacci chain and
have obtained the exponent characterizing the long time
dynamics. ' In a previous paper, ' an exact decimation
procedure was developed for the one-dimensional Fi-
bonacci chain quasicrystal, providing an a priori exact
determination of all the dynamic quantities, including the
fu11 Green functions 6; . The decimation procedure does
not rely on any translational invariance and exploits in a
very direct way the hierarchical properties of the quasi-
crystal. The associated rescaling transformation yields
not only information on exponents via a fixed point (or
cycle) analysis, but also provides an efficient computa-
tional means of obtaining the spectrum (density of states).
The density of electronic states, p(E), for a system of
tight binding electrons [or p(co ) for a phonon system],
which is related to the imaginary part of the diagonal
Green function, was calculated, and our results led us to
conjecture that the scaling properties of all gap edges
within the spectrum were governed by the general six cy-
cle (1.6). In addition we found that ln-ln plots of the den-
sity of states against energy E (or co ) near a gap edge
were periodic with period related to the exponent
describing the scaling of the spectrum at the same gap
edge.

It should be noted that physical realizations of the Fi-
bonacci chain quasicrystal do in fact exist. Merlin
et al. were the first to succeed in growing a quasi-
periodic superlattice, consisting of alternating layers of
GaAs and A1As corresponding to 13 generations (itera-
tions) of the rule (1.1). The Raman scattering measure-
ments they have carried out led to a spectrum with dips
at certain values of co which they ascribed to the gaps in
the density of states spectrum. More recently, both ex-
perimental and theoretical studies of Raman scattering
from acoustic phonons in Si-Ge Si, strained-layer Fi-
bonacci superlattices ' and the plasmon spectrum of an
array of two-dimensional electron-gas layers arranged in
a Fibonacci sequence' have been reported.

In the present paper we present, for the first time, a
calculation of the complete wave vector and frequency-
dependent response function (dynamic structure factor)
S(q, co), for a Fibonacci chain with spin wave or phonon
dynamics. Such a quantity is related to the cross section
obtained in an inelastic neutron scattering experiment
and so is clearly of importance. We sha11 assume that the
spins (or atoms in the phonon case) reside on a lattice X
of sites such that

and is a generalization of the techniques introduced by
Tremblay and Southern' for the density of states and by
Maggs and Stinchcombe' for the complete q and co

dependent response function. The associated recursive
evaluation of the full Careen. function G(q, cu) is given in
Sec. 2. Subsequent sections contain detailed numerical
results, including surface plots of S(q, co) (Sec. III), and
an interpretation via a soluble but characteristic "equal
coupling" limit and its perturbation theory extension
(Sec. IV); Sec. V is a concluding discussion.

II. THE DYNAMIC STRUCTURE FACTOR:
A GENERATING FUNCTION APPROACH

Although the techniques and results to be presented in
this paper are of a general nature and apply to any dy-
namic process obeying a linear equation of motion and
possessing a Goldstone symmetry, to be specific we shall
consider the case of Heisenberg ferromagnetic spin waves
on the Fibonacci chain; the replacement co—+co and ex-
change constants by spring constants provides corre-
sponding results for lattice vibrations, etc.

The dynamic structure factor S(q, co) is given by

S(q, co) = lim lim ImG&(q, co i ri), —
g~o N~ oo

where

(2.1)

(2.2)

r& denoting the position of site i on the lattice X and N
the number of sites. The Green functions 6;. satisfy the
following linear equation of motion

(2.3)

(2.4b)

it follows that (2.3) can be written in matrix form as

HG=I, (2.5)

where G is a matrix whose elements are precisely 6;j as
in (2.3) and I is the identity matrix.

The calculation of the G, is facilitated by introducing
the generating function

Vz(b j =ln= tb j, (2.6)

where ( b j denotes a set of (site dependent) generic fields
and

where L; = g& J;z, k denoting a nearest-neighbor site of
i. Introducing the N XN matrix H having elements

(2.4a)

(1.7) (2.7a)

according to the rule (1.1) where d; denotes the distance
between a nearest-neighbor pair of sites i and j.

Our method of calculation is based upon the previously
mentioned real space renormalization-group approach, with

(2.7b)
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A =S HS+2b S

= g (I.; —co)S; —g J, S;S,. +2 g b;S; . (2.8)

A formal evaluation of the Gaussian integrals appearing
in (2.6) leads to the result

VlbI = ,'i—g—b,G,,b, , (2.9)

where we have ignored a field independent constant. It
thus follows that

G(j =i
ab ab

P[b l
1 J

and so in terms of 2 we can write (2.2) as

(2.10)

(r —r )

11'

(2.11)

A(b) =S,H„S,+S,H(~S~+ S~H~, S(

+SqH»S~+2b) S)+2b~Sp . (2.12)

Performing the Gaussian integrals over the variables as-
sociated with the sublattice X~ and a site relabeling, we
obtain a decimated action of the form

A(b')=S H'S+2b' S,
where

H —H) ) H)~H»'Hq),

b'=b) —H)~H~q'b~ .

(2.14a)

(2.14b)

Now, in the spirit of the renormalization group we
shall calculate Plb l recursively by successively perform-
ing a fraction of the integrals appearing in (2.7). In order
to implement that, it is convenient to partition the lattice
X into two sublattices which we shall denote by X, and
X~, corresponding to the sublattice of sites which remain
and are to be eliminated, respectively. Then in terms of
these sublattice variables, our previous expression (2.8)
can be written

FIG. 1. The three distinct types of sites.

lows from (2.16) that

q(1-, ) a2

2x „,~, ' ab ab,
X(bT)(n —1)(H—1)(n —1)(b )(n —1)

(2.17)

where all derivatives are implicitly assumed to be with
respect to the zeroth-order fields lb' ) l. Whereas the dis-
cussion from (2.9) to (2.17) applies to any one-
dimensional lattice, the procedure is only tractable for
the Fibonacci chain with a very special choice of sites to
decimate. In Fig. 1 we have shown the three different
types of sites for the Fibonacci lattice and in Fig. 2 we il-
lustrate the decimation for a chain containing F5 sites,
where it is clear that only sites of the type P are eliminat-
ed. It is thus necessary to distinguish between the six
different types of site terms appearing in (2.8) and so we
define

Now, under this same transformation by scaling factor b,
9 scales like

V)v lb, col =C(b, co)+ V)v l
b', col, (2.15}

where X'=X/b and for fixed b and co, C is a constant
arising from the completion of the square in carrying out
the Gaussian integration and obeys the following recur-
sion relation:

I.
Lp

I.

ifieX
if l EXp,
if iHX

(2.18a)

lC'= C+ —b,'H»'b, . (2.16)

Lll Lq Lp Iq Lp L~

It should be noted that the renormalization group ideas
leading to (2.16) are analogous to those which have been
used in the past in the context of thermal critical phe-
nomena, and indeed the result (2.15) is very similar to
that which one would obtain for the scaling of the usual
free energy in a thermal problem. Defining the contribu-
tion of such a constant term (2.16) to (2.11) at the nth
stage of such an elimination process by I&"'(q, co}, it fol-

L Lu L'p

FIG. 2. The decimation procedure illustrated for a chain of 9
sites.
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and III. RESULTS

f; if i EX
g, ifiEX&,
h; if

i'd%

(2.18b)

where X,X&, and Xr denote sublattices of type a, P, and

y, respectively, withe=X UX&UXr. Furthermore, we
define our exchange constants J, such that J~ and J~
correspond to the exchange interactions between two
nearest-neighbor sites separated by distances d „and dz,
respectively.

For the particular case of the Fibonacci chain with F&
sites we have the result

(2.19)

which applies because only sites of type /3 are eliminated
and such sites are never nearest neighbors of each other,
and so it follows that

I'"'(q co) =— 1

(L(n —1)
)

L' =L
Lp co

J2
L' =L 8

L cop

(3.1)

Ly =L
Lp CO

and from (2.14b) for the fields we have

It is clear that ip. order to carry out the procedure de-
scribed in the previous section, and in particular to calcu-
late G(q, co) using (2.23), that we require a closed set of
recursion relations for the parameters appearing in (2.3)
as well as for the fields f;, g;, and h;. From (2.14a) we ob-
tain directly using (2.17)

(2.20)

where g'n' denotes the nth iterate of the zeroth-order field

g ' ' under the renormalization group transformation.
Now, for general n the nth order fields g'n' are complicat-
ed functions of the zeroth-order fields Ib' 'I and we write

f =h;+ JBgi —1+JAgi +1
Lp ct)

Jagi —1

g,'=h, +
Lp N

P f + A~l'+1J
Lp M

(n) ~ ~(n) g(0)
gm ~ mr r

Thus (2.20) becomes

(2.21)
Finally, Fourier transforming the set (3.2) yields the fol-
lowing set of recursion relation for the Fourier com-
ponents f,g, and h

J~e '~ —J~ e' ~

7', =h +g

ll'm
(2.22)

Then, Fourier transforming (2.21) and taking unit ampli-
tudes for the field acting on the original lattice allows us
to write (2.22) as h ',q=f, +gq

J lq

Lp 6)

e l rg
A

Lp co

(3.3)

I(n)(q ~)—
g

(n —1)g (n —1)Fx —2 1

F (L( —
) ~)p

Letting X~ ~ we obtain

I(n)( )
1 1 —(n —1)- (n —1)

n+1 (L(n —I)
p

(2.24)

Finally, the full Green function G (q, co) is given by

G (q, co) = g I(")(q,co) .
n=1

(2.25)

The implementation of this scheme is given in the next
section.

The procedure to generate G (q, co) and hence S(q, co) [see
(2.1)] is thus as follows: starting from a fixed (complex)
frequency co, the physical values of the parameters
(J„,Js,L =2J„,Lii=Lr =J„+Js, f, =g, =h, =1) are
transformed according to Eqs. (3.1) and (3.3) and at each
successive stage I'"' is evaluated using (2.22) and accumu-
lated as in (2.23).

In Figs. 3 and 4 we have shown surface plots of the re-
sulting S (q, co) as functions of both q and co for J~ /J„= 1

and Js/J„=2. The finite width of the peaks is due to
the finite imaginary part g used in the frequency. It
should be emphasized however, that g is entirely arbi-
trary and we have used g=1X10 without problems.
In fact, in physically realizable situations level broaden-
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FIG. 5. A plot of co/J& vs q/o. 'for J&/J~ =1.
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FIG. 3. A surface plot of S(q, co) as a function of q/e and
co/J& for Jz /J~ = 1. The x axis corresponds to q/e and the y
axis to co/J&.

ing is likely to occur and for comparison the theory
should then include a corresponding imaginary part in
the frequency.

Note that in the "pure" limit J~ =Jz shown in Fig. 3
the peaking of the structure factor in the co, q plane is not
confined to the well known dispersion curve
co(q) =2(1—cosq) for the usual linear chain consisting of

equally spaced sites but instead a curve of the usual type
is accompanied by (infinitely) many satellite curves. This
is due to the particular geometry arising from the nonuni-
form tiling and leading to the appearance of nontrivial
phase factors in the defining equation (2.2) for G(q, co)
and in the recursion relations for the fields, leading to the
different form for S(q, co). This case of equal coupling
has however, proved to be analytically tractable and we
treat this in the next section where the existence of the
satellite peaks and their intensity is explained.

The full response for the nontrivial case of J~/J„=2
shown in Fig. 4 is clearly of a highly complex nature with
gaps appearing at values of co where the density of states
p(co) is known to be zero. ' To obtain dispersion curves
of co versus q from the S(q, co) data we show in Figs. 5—8

plots of those values of co and q for which the response
S(q, co) ~ 1.0 for the four cases J~ /J„= 1, 1.2, 1.6, and 2,
respectively. Figure 5 for the "pure" case (J„=J~ )

displays very clearly the prominent S-shaped band remin-
iscent of the 2(l —cosq) dispersion curve together with
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FIG. 6s A plot of co/J„vs q/a for J~/J„=1.2.
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FICx. 7. A plot of co/J& vs q /a for J~ /J& = 1.6.

IV. INTERPRETATION; A SOLUBLE LIMIT
AND EXTENSIONS

additional "satellite" subbands. In addition, the gaps in
the excitation spectrum arising in the nontrivial case of
Je/J„&1, lead to a striped aspect as is evident from
Figs. 7 and 8. The interpretation of all these features is
presented in the next section.

the general cases (J„=Je ) is the appearance in Figs. 6—8

of stripes, parallel to the q axis, of zero response. They
correspond to gaps in the spectrum i.e., the frequency re-
gions containing no eigenenergies. These gaps occur
everywhere so our reference to "curves" of nonzero in-
tensity or response [S( q, co ) ] has to be understood as a
loose terminology, when J~ =Jz. It will be shown later
in this section that the gaps and the associated
modification of the "curves" can be at least qualitatively
explained by a degenerate perturbation theory extension
of the equal coupling limit.

One interesting feature is that the curve through the
origin has, especially near the origin, a large intensity.
The reason for this is that an excitation of small wave
vector q sees the Fibonacci lattice as very like a continu-
um and is therefore asymptotically an eigenstate for any
J& and Je. However, for q&0 it is not an eigenstate,
even in the equal coupling case, and this can already be
seen by the fact that a line of fixed q intersects many
curves of nonzero S(q, co), and this corresponds to the
overlap of the wavelike state with many eigenstates.

%'e now treat the Fibonacci chain with equal couplings
(Jz =Je ) but still retaining the diFerent tile lengths
(d„:de=ad:1). It is obviously crucial to distinguish the
site label n from the actual position r„of the nth site.
For, a wavelike excitation periodic in n (i.e., of the form
e'"") is an eigenstate of the equal coupling Fibonacci
chains with eigenenergy

The surface plots of S(q, co) indicate that it has a great
deal of structure, with most of the intensity coming near
certain curves in the co —

q plane, as is evident from Figs.
5—8. Even in the case of equal couplings (Fig. 5) there is
more than one such curve unlike the situation in an equal
coupling chain with equal atomic spacings. The Fibonac-
ci chain with equal couplings (but aperiodic atomic spac-
ings) has therefore a nontrivial structure factor, and since
it turns out to be exactly soluble it can provide. an under-
standing of the origin of the different curves, as will be
shown shortly.

The obvious difference between the equal coupling and
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cok =2J(1—cosk), (4.1)

iqr„
while the wave e ", which is the probe for which the dy-
namic structure factor provides the response, is not an
eigenstate. Clearly, by decomposing the probe wave into
eigenstates we obtain

fiq(r„—r„, ) —i (n —n')k]
S(q, co)= g e " " 5(co —cok) .

nn'k
(4.2)

So it is the geometry of the chain, rather than its dynam-
ics which gives the difficulties in the equal coupling case.
By using the projection method for the construction of
the Fibonacci chain with tile lengths ~, 1 it is not difficult
to show that
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where a= 1+1/2 and Ix ] denotes the fractional part of
x. Thus (4.2) contains factors like exp(iqIxj/r) where
x =n~. Such factors are periodic in x, with period 1, so
can be written as Fourier series
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S(q, co) then involves a sum over n, n ', k, m, and m ', say.
The sums over n, n ' can be carried out, producing 5 func-
tions, which require m = —rn' and determine the value of
k. As a result,
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S(q, co)= 2 sin
27

2

—2

X y q —2~m

(4.5)

is the dynamic structure factor of the Fibonacci chain
with equal couplings. Using (4.2) or (4.5) it is straightfor-
ward to show that for the special values q =0, and

q =2~~ the dynamic structure factor is given by

S(q =O, co) =5(co),

S(q =2rcw, co)=5(co—
co2 q, ) .

(4.6a)

(4.6b)

Referring to Fig. 5 each curve corresponds to a rela-
tionship

aq —2~I m v I ak (q, m) (4.7)

for some m, as given by the separate terms in (4.5}. The
rn =0 term has the strongest intensity, for the q values
shown in the figure, by virtue of the weight factor
(q/r 2am) —in (.4.5). Indeed, for q ~0 it gives the full
response, and it is the effective medium" asymptotic
eigenstate referred to above. The term "effective medi-
um" is appropriate here, as can be appreciated when it is
noticed that in the frequency co of the I =0 term the
quantity a is actually the average spacing of sites in the
chain. The I =1,—1 branches can also be identified
readily in the figure and, with a little more difficulty also
m =2, —2. Thereafter the intensity is very small in the q
region covered by the figure. A direct comparison be-
tween the results of (4.5) and the generating approach of
the previous section, for the special case J~ =J~,was car-
ried out as a check on both methods, and results in agree-
ment to very high precision. The analytic form (4.5) also
allows the extraction of rather subtle characteristics of
the response, for example hierarchical periodicities:
analysis of (4.5) shows that S (q, co) is of the form
q f (co/q, lnq) at small co, q where f is a periodic func-
tion of its second argument.

Our main interest in the equal coupling result is how-
ever for the interpretation it provides for the general
(J„&J~) case. From Figs. 6—8 as J~ —J~ increases from
zero, eftective medium behavior persists in the small q
limit (with the correct curvature of the dispersion curve)
but in general the equal coupling curves develop gaps at
their crossing points. These gaps are suggestive of those
that occur in weak-coupling approaches to the Bloch en-
ergy bands of periodic systems, and in the present case
are the gaps in the Cantor set spectrum of the Fibonacci
chain. It is therefore of interest to see whether the usual
weak coupling approaches (degenerate perturbation
theory) can be generalized to provide an explanation of
the nature of these figures and in particular the oc-
currence of arbitrarily many gaps in the horizontally
striped fashion exhibited in the figures. This turns out to
be possible, and a very brief indication of the procedure
will now be given (details will be published elsewhere}.

The "unperturbed" starting point is the equal coupling

case, for which, according to (4.5) there are unperturbed
states, labeled by (q, m) with energy co as defined in (4.6).
The perturbation, proportional to Jz —J~, has a compli-
cated spatial dependence. Though it can be precisely
specified, all we need here is that it is quasiperiodic and
can be decomposed into (arbitrary many) Fourier com-
ponents of which the ith can mix unperturbed states
whose k(q, m)-labels differ by Ql, say. The "fundamen-
tal" Q; is Q &

=2n/( 1+w ) where ( 1+r ) is the mean
spacing of B bonds. So according to degenerate perturba-
tion theory if we had only the m =0 branch to consider,
dominant splittings should result from the mixing of twoI =0 states of equal unperturbed energy whose q labels
differ by Q;. This results in the splittings at q = 1.4, 0.85
which are indeed the largest gaps. In general, first order
perturbation theory produces a gap when two degenerate
states, labeled by q, m and q', m', are linked by a Q, , i.e.,
when

~ak (q, m) ~ak (q', m')

k(q, m) —k(q', m')=Q, .

(4.7a)

(4.7b)

A given Q,. produces the two complete stripes of gaps
which open at energies 2J(1+cos—,'ccQ, ). This explains
the striping and the exact positions of gaps in q (for any
Jz, Jz ) while the gap position in energy is asymptotically
correct as J„—+Jz. The perturbation method must, how-
ever, fail for the arbitrarily small gaps if J~ —J~ is finite.
It nevertheless explains not only a11 the principal qualita-
tive features, but also gives a quantitative account of
most of them.

V. CONCLUSION

We have presented an exact real space renormalization
group calculation of the complete wave vector and fre-
quency dependent response function S(q, co). Our calcu-
lation is based on a recursive evaluation of the generating
function 7 which involves the change, under a length
scale transformation, of the parameters characterizing
the physical system (e.g., exchange constants, fields, etc.).
Though the pure limit of equal couplings is not trivial
due to the quasiperiodicity of the underlying lattice, we
were able to obtain an analytic expression for S(q, co) for
this case.

Our surface plots of the full response S(q, co) for the
general case of unequal couplings displayed very compli-
cated structure, the main feature being the appearance of
striped gaps corresponding to zero response. In addition,
we obtained dispersion curves of co versus q whose
features could be understood both qualitatively and quan-
titatively using ideas of degenerate perturbation theory,
in particular the precise 1ocation of gaps.

Though we have treated only the fundamental one-
dimensional quasicrystal, many of the features obtained
and methods used apply also to higher dimensions. In
particular, striping and "dispersion curves" should again
occur in the support of S(q, co). Also, the equal coupling
case and its degenerate perturbation theory extension
should again be tractable, while the decimation approach,
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combined with techniques to be presented elsewhere can
give the response function and density of states for cer-
tain two-dimensional quasicrystal models. To the best of
our knowledge, no experimental work has yet been per-
formed which probes S(q, ro) (e.g. , neutron scattering)
and so it is our hope that this present work will stimulate
each eAort.
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