
PHYSICAL REVIEW B VOLUME 39, NUMBER 4 1 FEBRUARY 1989
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The frequency- and wave-vector-dependent spin response function is calculated for a Heisenberg
ferromagnet using the mode-coupling theory. Results are presented for the critical and paramag-
netic regions. The work is motivated largely by recent, high-resolution neutron spectroscopy stud-
ies of EuO and EuS. In view of this, the Heisenberg model used incorporates nearest- and next-
nearest-exchange interactions between spins on a face-centered-cubic lattice. The coupled-mode
theory is shown to be successful in describing the measurements. Additional features are predicted
as possible subjects of future experimental work. %'e present a review of various derivations of
mode-coupling equations and demonstrate the equivalence of some prescriptions. The question of
incorporating an external magnetic field in the theory is addressed, and we conclude that readily at-
tainable fields have a minimal effect on the spin dynamics.

I. INTRODUCTION

Recent high-resolution neutron-scattering experiments
on simple insulating ferromagnets' and computer-
simulation studies of Heisenberg magnets have fuelled a
resurgence of work on the theory of spin dynamics in
Heisenberg magnets in the critical and paramagnetic re-
gions. ' The most promising theories are based on ei-
ther a renormalization-group rationale' ' or the mode-
coupling approximation. ' ' Although the renormaliz-
ation-group method is established for the critical region,
it is plausible to extend it to high temperatures and wave
vectors through educated guesses about the form of the
scaling function. '

The mode-coupling theory, examined in this paper, is
more obviously an approximate technique since one
derivation, for example, uses a decoupling of the infinite-
order equation of motion. However, in the critical region
the theory is consistent with dynamic scaling which gives
confidence in the quality of the approximation. There is,
a priori, no reason to question the potential value of the
theory outside the critical domain, i.e., at higher temper-
atures and short wavelengths. The motivation to explore
the value of the theory in this region is twofold: first, to
explore the range of validity of a long standing and gen-
erally successful theoretical approach that is used in a
wide variety of physical problems, including localiza-
tion, ' the dynamical properties of liquids, ' and the glass
transition, and second, to access the critical domain ex-
perimentally is very demanding, and the constraints are
weaker in the paramagnetic phase. This comment is val-
id for both scattering experiments and computer simula-
tions. The aim of the work reported here is to present a
comprehensive account of predictions from the mode-
coupling theory in the critical and paramagnetic region,
i.e., for a wide range of the wave vectors and tempera-
ture. We incorporate an external magnetic field and pre-

dict that readily attainable fields have a minimal eAect on
spin dynamics.

The recent availability of samples of EuO and EuS
with tolerable neutron characteristics is largely responsi-
ble for the spate of experimental work that has been a
major motivation factor in undertaking the present study.
There is a controversy on the form of the measured
response in the vicinity of the critical region, ' and the
wave vector dependence of the damping of the collective
excitations in particular. It is well established that a col-
lective mode persists at the zone boundary in a large
range above the critical temperature, ' ' albeit strongly
damped. Long-wavelength fluctuations in the paramag-
netic phase have a di8'usive character. '" Hence, there
is a temperature-dependent wave vector that can be as-
signed to the crossover from collective to diffusive behav-
ior, and the experimental determination of said wave vec-
tor is a vexed question. Our results should help to focus
future investigation.

The Heisenberg model used is believed to be a realistic
description of EuO and EuS. Spins arranged on a face-
centered-cubic lattice are coupled by nearest- and next-
nearest-exchange interaction. For EuS the exchange in-
teractions are of opposite sign, and the competition pro-
duces pronounced spatial anisotropy in the predicted
neutron cross section. We provide a comprehensive re-
port of our findings to encourage future experimental
studies of EuO and EuS, which are classic examples of in-
sulating, ferromagnetic salts.

A second objective in our work is to explore the range
of validity of the mode-coupling theory and various ap-
proximate analytic studies of the integro-differential
equations. Our results are derived from a numerical solu-
tion of the mode-coupling equations, and we estimate
that the results are accurate within =2%. Availability of
computer time and resources has placed limit on the
range of wave vectors examined. To make significative
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progress beyond the results presented here requires, we
estimate, many hours of CRAY X-MP/12 CPU time.

II. FORMULATION OF THEORY

&= —
—,
' g J,, s, .s —h gs,', (2.1)

and this is usefully rewritten in terms of Fourier com-
ponents:

Mode coupling integro-diA'erential equations for the
spin correlation functions of a Heisenberg ferromagnet
including a small applied magnetic field can be derived by
decoupling correlations involving more than two spin
operators, which is a method that has been discussed in
Refs. 23 and 24 for zero applied field. Similar results are
obtained using the scheme employed by Refs. 25 and 26
and these topics are addressed in the Appendix.

The starting point is the Heisenberg ferromagnetic
Hamiltonian in which N spins on sites i,j are coupled by
exchange interactions J,",

ly in the Fourier transform of the quantity,
(Sq(t)[Sq(0)] ), which is related to the Fourier trans-
form of the Kubo relaxation function (see for example,
Ref. 24),

Rq(r)=(Sq(t), [Sq(0)] )

= I dzI(S;[S;(r+iX)]') I
—p(S;)(S;},

by the fluctuation-dissipation theorem (P= 1/T),
(2.6)

S(q, co) = Rq(co) .
1 —exp —co

(2.7)

F (r) =(S(i),S')y (2.8)

We now consider an exact equation for R (co) derived
from a generalized Langevin equation. Let the column
vector S have components S +,S',S, with q varying in
all the Brillouin zone, and the susceptibility matrix
y=(S,S ). The exact equation of motion for th™trix
of normalized relaxation functions,

&= ——g J s s Nhs'—
2 q q

—q 0 (2.2) can be cast in an appealing form by using the Mori-
Zwanzig projection method and it reads

where h =Hg p&, for an applied magnetic field H which
define the z axis, and the Fourier components F(t) =i QF(t) Jdt'—M(t t')F(t')—,

0
(2.9)

i q.R
s = e s;

t

'q [RI —a. )

Jq = Jt e
t

(2.3a)

(2.3b)
iA=(Q, S )y (2.10)

where a dot is used to denote the diA'erentiation with

respect to time, and the frequency matrix is

(in the following, to simplify notation, we suppress the
vector symbol for the wave vector index of Fourier
transformed quantities). Finally, we define the spin Auc-

tuation operators

Here, the memory function

M(r)=(f(r), f (0))y

Sk =Sk (Sk ) (2 4) is defined in term of the iluctuating force

we obtain the following exact coupled equations of
motion:

dS,+
coqSq +i g JqkSk Sq-

dt q q q
(2.Sa)

dS' = ——'i g JqkS„Sdt
(2.Sb)

dS dS+

dt dt
(2.Sc)

where the random-phase approximation (RPA) frequency

co = h + (s') (Jo —Jq ) .

In analyzing magnetic neutron-scattering experiments
we are interested in the fluctuation spectra S(q, co), name-

and the new constants Jqk Jk Jq p p moreover,
throughout the paper we set the Planck's and
Boltzmann's constants A and kz equal to one.

Taking into account that

(Sk ) = (S')5,iikO,

f (r) —eI(i P)tL(1 p)g— (2.11)

(2.12)

where 3 is an arbitrary column matrix operator.
Owing to the cubic point group and translational sym-

metries of the system, the matrices so far defined are di-
agonal both in wave vectors and Cartesian indices, and
we can limit our study to the 3 X 3 subspace with fixed q.
In the subspace we have

2y', 0 0

x, = 0 x~~ (2. 1 3)

0 0 2y

where the transverse and longitudinal susceptibilities are

Xq
= (Sq",S"

q ) = (Sq», S»
q )

and yq =(S;,S' ), and the frequency matrix

whose evolution is not controlled by the simple Liouville
operator L, but entails the projection operator P defined
by the operation
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0
0

0 0
0 0

(2.14)

where

Qq coq ( 2yq) g k Jqk(Sk+Sq k, S:q),
so that

(Sk Sq kS -q)-
k 2Xq

f (t =0)=
k

i+Jqk Sk Sq k
k

(Sk Sq k, S+q) S
2~l

(2.15)

Equations (2.9)—(2.15) are exact. To proceed further
we are forced to make approximations because we do not
know the fu11 effect of the projection operator P in the
modified evolution operator encountered in (2.11) or how
to evaluate the four operator correlation function appear-
ing in the quantity (f (t),f ).

The simplest nontrivial solution consists in neglecting
P in the evolution operator of the Auctuating force and at
the same time decoupling scalar products where more
than two spin operators appear.

It is worthwhile to notice that both the approximations
are essential to give physical results. Although this ap-
proach, as shown in Refs. 11, 27, and 28, can be
insufhcient to reproduce some behavior of the elementary
excitations, it is found to give good results in many mag-
netic problems and in critical dynamics.

After decoupling, all terms containing a scalar product
involving three operator disappear, and considering all
possible decoupling of the type

( k+(t)S' k(t), Sk, qSk, ) = T(Sk+(t), S:k )(Sq k(t), Sk q )6k

we obtain the following coupled integro-differential equations for the normalized relaxation functions:

(2.16)

X'XIl-
F+(t)= i Q F+(t) T—g (J k)2 — — I dt'Fk+(t t')F' k(t t')F—+(t'), —

F,' = Tg (J,„' —
', J dt'F„+(t t')F,:„(t-t')F;(t')—, (2.17)

Fq (t)=[Fq+(t)]' .

=2g(Jqk)'X'kXq k
——g Jqkrk (2.18a)

In the Appendix we show that our result is the same up
to term of the first order in three operators scalar prod-
ucts as the one obtained by Kawasaki in the critical re-
gion using a quite different approach. %'e also provide a
comparison with the equations obtained by McLean and
Blume. "

To solve Eq. (2.17), we have to specify the static quan-
tities gq, g", and (s'). In the isotropic case the function-
al form of y can be obtained by requiring that the
second derivative of F (t) has the correct value when
t =0 and this prescription leads to the susceptibility of
the spherical model. ' Applied to our case, the same
prescription gives the followi. ng equations:

1X (Jqk AkXq k= ~ g Jqk(rk-+XI, ) .
k k

(2.18b)

(2.19)

where A, is a temperature-dependent parameter which has
to be determined. Subtracting Eq. (2.18a) from (2.18b) we
obtain

Equation (2.18a) contains only the perpendicular suscep-
tibility y . Since it has exactly the same form as the cor-
responding equation obtained in zero field, we obtain a
spherical model solution
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1
X Jqk(Xq —k Xq —k ) ~qkXk + (2.20)

dinal susceptibilities are the same in an approximation
scheme which incorporates only pair correlations.

which admits the solution y'), =yk. This result, which
can appear surprising and inconsistent with the field in-
duced anisotropy of the system, is simply a consequence
of the decoupling. To better understand this point, we
refer to the Appendix where we show that

X( Xk—=&s'&(2Xo» '(So+ S—k Sk»

and thereby conclude that the perpendicular and longitu-

III. NUMERICAL METHOD

In this section we give a brief description of the
method followed to obtain a numerical solution of Eq.
(2.17) in the absence of an applied magnetic field. In this
case, the system of coupled equations (2.17) reduces to
only one equation, which, if the static susceptibility is
that one of the spherical model, Eq. (2.19), can be rewrit-
ten as

q(+) N g ( Yk Yq )(Yk Yq —k )Gk j dr Fk(& & )Fq —k(& & )Fq(& )
k 0

where z= J0SR' ' t is a dimensionless reduced time, the
factor yq=jq/Jo and

NTW (S+1) 0
z v 3S @+1—y

x = (3.2)

in which the reduced temperature 0= T/T, . The
temperature-dependent parameter p, appearing in (3.2) is

obtained by using the sum rule

1 1

N k V+ I —
Yk

(3.3)

0«k) «k2 «k3 «n, (3.4a)

+kz+ k3 —,'n (3.4b)

and the Watson integral W is defined by the equality (3.3)
when 8=1 and @=0. Previous solutions of Eq. (3.1)
were obtained either in the critical region, performing an
approximation valid for long time and large wave vec-
tors, ' or for a simple cubic paramagnet with only nearest
neighbors interactions. ' The numerical solution
which we present here is valid for a face-centered-cubic
lattice with both nearest neighbors and next-nearest-
neighbors interactions, which is a realistic model of euro-
pium salts.

First of all we must consider the problem of discretiza-
tion in variables space, which is intrinsic to every numeri-
cal method. Wave vectors are defined on a cubic mesh
with 2n parts on each edge, of length 4~/a, of the cube
which represents a double Brillouin zone in the reciprocal
lattice. Owing to the symmetry properties of a bcc lat-
tice, many of the Sn points are equivalent, and therefore
a solution of equation (2.17) has to be obtained only for a
limited number of them. If we use for the wave vectors
the unit 2~/na, a point in our mesh is described by
(k, , k~, k3), where k, , k~, k3 are integer numbers in the
range —n + 1 «k, «n, and the unequivalent points are
defined by the relations

The integration of the equations in the time domain has
been performed using the simplest method, which is the
step-by-step integration retaining only the lowest-order
terms. We have exploited the relatively fast decay of
F (t) at large wave vectors to cut down the running time
of the computer program. This is accomplished by using
an expanded time increment at large times when Fq(t)
has most decayed to zero for high q, and it is slowly vary-
ing for small q.

Another problem which derives from the application of
discretization is the fact that the contribution to the sum
over the wave vectors of the term with k =0 diverges at
T = T, . To cope with this singular behavior we have re-
placed the term with k =0 by an integral over a sphere of
volume I /8n centered in k =0. The integral is obtained
replacing all elements with their value for k =0, except
Gj, which is replaced by an Ornstein-Zernicke form.
Such a procedure is equivalent to the substitution

(S+1) 0 — (S+1) J d k
0 3S 0 3S 2k 2

in which

(S + 1) 4'
3S

™

(3.5)

where

X v'3/4' arctan ——i/3/4qr
V'p S 3

s V~p

(3.6)

s =[(J,+J~)/6(2J, +J2)]4m. In

Obviously such a substitution is strictly necessary only
for T=T„ i.e., p=0; however, we can note that the
difterence between G0 and G0 becomes smaller and small-
er in the high-temperature limit.

In the present calculation we have used n =8; such a
value of n gives us adequate accuracy in the results, and
the improvement we can achieve taking, for example,
n=16 is negligible compared to the large computer time
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demanded (about 6 h on a CRAY X-MP/12).
The choice of the time step has been made empirically

and it is based on the stability of the solution in respect of
its variation. The numerical results we present have been
obtained with Av. =0.08 for 0~~&40, 6&=0.4 for 40
~ ~~ 200, and so on, multiplying b,~ and ~ using a factor
of 5 at each new iteration. We have found that decreas-
ing to an half br the variation of F (r) for v=2 is less
than 1%.

Once we obtained the relaxation function F (r) in the
time domain, the respective spectrum shape F~(co) has
been computed by using a standard fast Fourier trans-
form routine.

We have verified that our program applied to the sim-
ple cubic (sc) and nearest-neighbor Heisenberg model
reproduces the results obtained in Refs. 31 and 32.
Furthermore. the long time behavior is found to be in
agreement with low-q expansion used in Ref. 10.

IV. NUMERICAL RESULTS

The results obtained by using the numerical method
outlined in the previous paragraph are here described and
compared with experimental data and computer simula-
tion where available. The numerical values of the ex-
change constants reported in the literature by fitting to
the low-temperature spin-wave spectra are in good agree-
ment with each other, ' and the following values are
used in the present calculation: J, =1.22 K, J2 =0.25 K,
and a=5.12 A for EuQ; J& =0.48 K J2= 0.24 K and
a=5.95 A for EuS.

A. Critical behavior

The first topic we consider here is the behavior of the
system in the critical region, i.e, at T=T, and small
wave vectors. In discussing the critical dynamics, we
refer almost entirely to EuO, because more complete and
detailed sets of experimental data are available for this
compound; however, we ean observe that, as far as the di-
polar interaction is neglected, the critical properties of
EuS are the same of EuO, apart from a different time
scale of dynamical phenomena. This has been verified by
our numerical results (see Fig. 6) and it is a consequence
of the fact that, as it is well known, the microscopic de-
tails of the interactions give only a negligible contribution
to large scale properties of the system, which dominate at
the phase transition.

The most important result of the large amount of ex-
perimental work devoted to explore the critical dynamics
of EuO is the confirmation of the dynamical scaling law
with a dynamical critical exponent z=2.5, which can be
derived theoretically using many different approaches, in-
cluded the mode-coupling theory. The scaling law is
confirmed both by conventional neutron scattering and
neutron spin-echo experiments, but these same results,
which corroborates the scaling, are in some sense surpris-
ing. In fact the scaling law is verified for a very large
range of wave vectors: up to q = 0.4 A ' (Ref. 5), which
corresponds to about —', of the Brillouin zone, and it is
therefore not a very small wave vector. Moreover, the

time domain explored in spin-echo experiments by
Mezei contains relatively short times in which the
universal behavior should not yet be accessed. Finally,
and perhaps the more striking fact, Mezei obtained, after
a very short time, a simple exponential decay for the re-
laxation function F (t), which is not consistent with the
various theories applied to this problem and it is not
confirmed by the most recent conventional neutron-
scattering experiments, which give a non-Lorentzian
shape for the spectrum.

Although the smallest value of q for which we have ob-
tained the numerical solution is

qp =n/4a =0.1534A

which is 6.4 times larger than the value q=0.024 A ' for
which detailed experimental data for F (t) are reported. 2by Mezei, we generate the appropriate results for such
wave vector from our detailed knowledge for the correla-
tion function at the larger wave vectors.

In fact, the comparison of the shape of F~(r) for
q =q0, &2q0, &3q0, and 2q0, which lie all in the range of
wave vectors for which the scaling has been experimen-
tally verified, shows that they are very similar in their
functional forms. Values do not scale with q, since,
for very short times,

F (r)=1—
—,
' A v

where 3 ~ q in a system where the total spin is con-
served. This regime is consistent with an effective scaling
exponent z =2, and it is valid up to ~=8 for q =qp,
which should correspond to a value t=100 ps for the
wave vector of Mezei's experiment; the order of magni-
tude of this microscope regime time is the same as ob-
tained in Ref. 12. As the time increases, the effective ex-
ponent z increases too, and attains a value of about 2.4
only for r) 150 for q =q0 (i.e., t )2ns for q=0.024 A ');
the values of z obtained are essentially independent of q
in the previously mentioned range of wave vectors.

Correspondingly, the Fourier transform of the relaxa-
tion function F~(co) shows a scaling with q

~2 only for
small co(co (0.2 meV for q =q0) and in this range of co it
reproduces the universal function calculated in Ref. 31.

In view of these observations we can confidently
transfer the results obtained for Fq0(r) to the time scale
of q=0.024 A ' using for the scaling the effective ex-
ponent z(r) derived from our numerical calculations.
We emphasize that the procedure adopted does not rely
on theoretical speculation but is based firmly on our
findings from the detailed numerical solution of the
mode-coupling equations. The values displayed in Fig. 1

are obtained from our derived Fqp(r) by evaluating

00z4=~(q0/0. 024)". As we can see our results are
similar to those obtained by Folk and Iro in the frame-
work of renormalization group (RG) theory, and are thus
in contrast with the findings by Mezei. As guessed re-
cently, and confirmed by our numerical calculation, an
exponential decay would be explicable if the experiment
should not be performed exactly at T=T„so that a
crossover to hydrodynamic regime could occur. Howev-
er, in this case a different scaling would be present; more-
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Euo T=Tc q=0.024 A-' EuO T= 'I .6BTc q=0.4 A
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FIG. 1. Comparison of various theoretical results and spin-
echo data by Mezei: circle, Mezei data (Ref. 2); dot-dashed line,
hybrid theory by Balucani et al. (Ref. 12}; dashed line, renor-
malization group calculation by Folk and Iro (Ref. 15); solid
line, our numerical results.

over, the onset of this behavior, according to calculation
in the framework of the spherical model, could be seen
starting from T=1.01T, for q=0.024 A ', which is far
from the critical temperature.

As we said the solution of the equation of motion in
the critical region for EuS does not give any new features.
However new experimental data at T=T, for small q
would be interesting to see how important is the dipolar
interaction, so far neglected in the theory, which in this
compound is stronger relative to the exchange interac-
tion, than in EuO, and should therefore modify the criti-
cal behavior. The dynamical scaling functions for
Heisenberg ferromagnets have been calculated recently in
the framework of mode-coupling theory, taking into ac-
count also the dipolar interaction, ' ' and the effect of
the latter seems to be revealed by very recent experimen-
tal studies performed on EuS (Ref. 34).
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EuO T= t 68Tc q=o 8 A

(c)

B.KuO

The numerical calculation for EuQ has been carried
out for T =T„T= 1.68T„and T =2T, . Experimental
results are available at these temperatures; moreover
computer simulations have been performed at T = 1.68T,
and T —2Tc.

A large amount of experimental data for EuQ reported
in the literature are obtained with a powder sample, but
the effects of average among the various direction are
negligible, because our calculations show that the line
shape is almost independent on the direction of wave vec-
tors even at the zone boundary, where the difference is
less than 10%.

Finally, in order to normalize the experimental results
at T = T, and T =1.68T, we have drawn the line shapes
derived from the three poles approximation, using for
the parameter, 5, and 52, the values obtained by the
fitting to ihe experimental data and reported by the au-
thors in Ref. 4. Such a procedure also permits some ac-
count of the effect of the spectrometer resolution which
we do not know in detail, but that turns out to be impor-
tant for small wave vectors.

3
( meV)

EuO T=1.6BTc q=1.0 A

0.24--
R

0.2

)0.16

0.12

3 0.08

0.04

0.0
4 5

( meV)

FIG. 2. Comparison of our numerical results with spin dy-
namics calculation (Ref. 7) and neutron scattering data (Ref. 4)
at T = 1.68T, for EuO. Solid line, our numerical results;
dashed line, three pole approximation as explained in the text;
solid quad, neutron data; open triangle, spin dynamics simula-
tion.
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The comparison with spin dynamics results for the
spectrum shape S(q, co) has been made reporting in our
p1ots the data normalized to the experimental ones as
done in Ref. 7. As shown in Fig. 2, our numerical results
are in excellent agreement with experimental data for all
wave vectors at T = 1.68T, . The relevance of resolution
corrections is apparent in Fig. 2(a); as a matter of fact,
the three poles curve, which practically coincides with
our results, also gives very good fit of experimental data.
The comparison with spin dynamics calculation is also
favorable, but care is required with the normalization be-
cause if we try to evaluate
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FIG. 3. Comparison of our numerical results with neutron
data (Refs. 4 and 5) at T=T, for EuO. The meaning of various
symbols is the same as in Fig. 1, but the dot-dashed line in Fig.
2(a) represents the function proposed by Folk and Iro (Ref. 15)
(see the text).

FIG. 4. Experimental constant energy spectra compared with
renormalization group theory and our made-coupling results.
Solid quad, experimental data (Ref. 5); dashed line, renormaliza-
tion group {Ref. 15); open circle and solid line through them,
our numerical results.
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EuS T=1.5 I Tc q=0. 63 A EuS T=1.51T, q=0.84 A
'

0 .8 - '
8

0.6

0.4

(a)
0.4 =-

0.3—

0.2—

(b)

0.2

I I

'l . 6 2.4
( meV)

0.0
0.0 0.8 l.6 2.4

( meV)

EuS T=1.51T, q=1,06 A
' EuS T=3 OOTc q=O 63 A

0.5—

0.4 — a a
I

0.3—
E

0.2—
3

0. 'I

0.6

0.4

0.2

0.0
0.0 0.8 1.6 2.4

(meV)
0.8 1.6 2.4

( meV)

FIG. 5. Comparison of our numerical results and neutron scattering data {Ref. 3) along (1,0,0) direction at T =1.51T,
T =3.07; for EuS. Solid line, our numerical results; dashed line, three pole approximation as explained in the text; solid quad, neu
tron data.

F, (co) =( I/3', )&(q, ~),
using for y the spherical model susceptibility and for
S(q, co) the spin dynamics results, we obtain values small-
er than ours or those given by the three poles approxima-
tion.

In Fig. 3, the comparison with experimental data is
given at T = T, for three wave vectors, showing all the
significative information. The dot-dashed line in Fig. 3(a)
represents a dift'erent analytic form for the relaxation
function derived by Folk and Iro' ' by means of the
renormalization-group approach and used by Boni et al.
to fit their experimental data; it has been plotted for the
same purpose of the three poles in the other figures.
Also, for T = T, the agreement between our theory and
experimental results is good for intermediate and small
wave vectors, but our numerical calculations fail to
reproduce the inelastic shoulder in the line shape at the
zone boundary [Fig. 3(c)j.

For T=2T„ the comparison with spin dynamics cal-
culation gives almost the same results than that for
T =1.68T, . The existing experimental data for this tem-
perature are obtained from a single crystal, but are given
only for the two wave vectors q =0.5qz~ and q =qzB
along the [111]direction. ' In this case we do not have
any good criterion to normalize the measured intensity;
the agreement is not very good anyway because the ex-

perimental data show a well-defined two peaked structure
which is not present in our calculation. However, we can
observed that these results of Ref. 1 are partially contra-
dicted by those by Boni and Shirane, because the latter
show no well-defined inelastic peak at T = 1.68T, .

Finally, in Fig. 4, we compare our results with experi-
mental data obtained in constant energy scans and re-
normalization group predictions. The normalization con-
stant has been fixed in each plot to fit the intensity of the
maximum. The experimental data are very well repro-
duced by the renormalization-group calculation at low
energies, but this approach fails at higher energies, where
our results become very good. This can be explained tak-
ing into account that at higher energies the large wave-
vector contributions become more important. These mi-
croscopic characteristics of the system cannot be taken
into account by a renormalization-group approach, based
on the continuum limit of the Heisenberg Hamiltonian.

C. KuS

For europium sulfide the solution of Eq. (3.1) has been
obtained for T =T„T= 1.08T„T= 1.51T„and T=3 T, . Detailed experimental data are available for
T=1.08T„T=1.51T„and T=3T„and the solution
for T = T, has been produced mainly for the purpose of
comparison with EuO.
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The available experiments were performed on a single
crystal of EuS along the [100]direction, and the cornpar-
ison with our results is shown in Fig. 5; the normalization
of the intensity having been made using the same pro-
cedure as for EuO. It is apparent from the figures that
the agreement is good for q=0.63 A ' at both tempera-
tures. For higher wave vectors the agreement is also fair-
ly good, except for some point around E=0.3 meV.
However, we have to observe that the experimental data
for EuS do not appear to be as good as those for EuO, not
only because of the relatively large error bars, but also
because they show an enhanced intensity around E = 2
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FIG. 6. Comparison of the relaxation functions in EuO and
EuS for q =(2~/Sa), the smallest wave vector given by our nu-
merical solution; as expected, they are equal, except for the
difFerent time scale.
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FIG. 7. Mode-coupling theory results for the longitudinal
line shape at T=1.08T, for EuS at the zone boundary along
(0,0,1) (0,1,1), and (1,1,1). Solid line, isotropic case; dashed line,
with an external field R =100 Cx. They show a marked spatial
anisotropy and the very small efFects of the applied field.
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meV which can be an index of an incomplete subtraction
of nonmagnetic effects. As it is clearly shown in Figs.
5(c) and 5(f), our numerical solution of the mode-coupling
equations is able to give an inelastic shoulder at the zone
boundary, but much less intense than that one produced
by three pole approximation. However the question as to
whether this peak is really present in the experimental
data has, in our opinion, no unambiguous answer because
there is no reason to accept the peak in the experimental
data at E = 1 meV as a true peak and reject a similar peak
at E =0.3 meV.

As we already noted in Sec. IV A, the behavior of re-
1axation function for EuS at T=T, and small q is the
same as obtained for EuO, and this is shown in Fig. 6.
For larger wave vectors new important features appear,
because the relaxation functions show a strong depen-
dence on the direction of q. This effect is a direct conse-
quence of the competing exchange interactions of EuS
and can be observed in Fig. 7 for wave vectors at the zone
boundary along the three principal directions for
T =1.08T, . New experiments are required to verify our
finding at to test the quantitative reliability of our solu-
tion, but some preliminary results ' ' seem to be in
agreement with our prediction.

Finally, in Fig. 7 we present some results for the spec-
trum of longitudinal fluctuations in the presence of an ap-
plied magnetic field H=100 G. The magnetization in-
duced by such field at T = 1.08T, is sufBciently small that
the effect of the applied field can be treated perturbative-
ly; in this framework, retaining only first order terms in
((S') /S), the static susceptibilities are assumed to be un-
changed in respect to the isotropic case. As it is apparent
from the figure, the effect of such magnetic field on the
spectrum shape in the paramagnetic region is negligible,
the only contribution being the appearance of a small in-
elastic peak at a frequency which practically coincides
with the RPA frequency of spin wave co .

V. CONCLUSION

We have used the mode-coupling theory to study the
spin correlations of real Heisenberg ferromagnets EuO
and EuS in all paramagnetic phase and across the entire
Brillouin zone. For the critical temperatures and wave
vectors, the spectral shapes are not, of course, dependent
on the details of the exchange interaction, so that the
same results are found for EuO and EuS. While they
reproduce the results of the renormalization group ap-
proach and the neutron-scattering data available for
EuO, the relaxation function measured by neutron spin
echo is not recovered; an exponential decay is obtained
in the hydrodynamic regime, but the latter is not in
agreement with a dynamic scaling with z =2.5, and it
would imply a mismatch of about 1% between the criti-
cal temperature and the experimental temperature for the
wave vector considered in Ref. 2. However, very recent
calculations have pointed out that the inclusion of the
dipolar interaction in the mode-coupling equations is able
to reproduce the exponential decay observed in spin-echo
experiment with the correct scaling. These results have
been confirmed in Ref. 38.

The theory seems to work rather well to explain a lot
of different features between EuO and EuS for intermedi-
ate and zone boundary wave vectors in the paramagnetic
region. The comparison with spin dynamics simulation
appears satisfactory, taking into account the accuracy of
the latter. Finally, the effects of a small applied magnetic
field are shown to be negligible, considering also that they
are smaller in EuO than in EuS and that they decrease as
the temperature increases.
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(S+,S:kSk ) = —i ( [S+,S:kSk ] )
—2tT

II(Xq" —k
—Xk) . (Al)

The quantity on the left-hand side can also be computed
by using the equation of motion for spin operators (2.5)
and decoupling four operator scalar products in the same
way that we proceed in deriving the equation of motion
(2.17); this gives

(Sq+, S kSk q ) = icuq(Sq+—,S kSq k )

+2iJqk Tykyq (A2)

Comparing (Al) with (A2) for q =0 we have (Jok =0):

~ (So S kSk ), —
(S')
2 T+0

where use has been made of the equality

Qq =
~

=~q —
~ g Jqk(Sk+Sq „,S:,),&s'&

Xq 2yq

(A3)

(A4)
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which is obtained in a similar way to (A3), evaluating
(Sq+,S:q) in the two different ways and comparing the
results. Equation (A3) shows clearly that correlations
among three operators are essential to consider the an-

isotropy of the system.
Furthermore from (Al), (A2), (A4), and (2.14b) we ob-

tain

1
Jqk =

~~ii
(S'&

Nyk 2XTXqXkÃq

(Sq+,—S:kSk q ) g Jqk'(Sk+Sq k. , S:q )
4T+q+k +q —k

and likewise, starting from (S',S:kSk ),

(A5)

1

&Xq-k

1

~~l J k (A6)

To compare out integro-differential equations (2.17) with Eqs. (8.12) and (8.13) given by Kawasaki in Ref. 26, we
must consider that Kawasaki retains scalar products containing three operators, but not products among them. There-
fore, the approximation which we made, neglecting the term containing (Sk Sq k, S q) in the definition of the fiuctuat-
ing force (2.15), to obtain (2.17), is consistent; moreover, the last term in (A5) has to be neglected. Taking this into ac-
count, from (A4), (A5), and (A6), it follows that the method of decoupling gives the result derived by Kawasaki, the
various different factors X and T in some terms deriving from the different normalization constants in the definition of
S andy .

Retaining three operators scalar products, Eq. (2.18a) is unchanged, but Eq. (2.18b) becomes

Sz
g ( Jqk ) XkXq~ k

— g Jqk(Xk +X( )+ i g Jqk(Sk Sq k, S q ),
2XTy

and so Eq. (2.20) acquires at its right-hand side a new term, and reads

g Jqk(Xq —k Xq —k )(JqkXk + ~ ) i g qk(Sk Sq —k& —
q )

1 (S'&

(A7)

(A8)

We can observe that Eqs. (A3) and (A4) follow from constraints imposed on the first time derivative of dynamical
quantities for r =0, and they are able to give the static susceptibilities as function of (S'& and three operators scalar
products

1
Xq= ~+-,' g Jqk

k

(Sk Sq —k, S:q)
&s'& h +Jo —J

(A9)

Since,

Sz

2&Xo
(A10)

limk o(h /(S & ) =XXO

(Sk+Sq —k, S:q)=0
for h =0, in the isotropic case, Eqs. (A9) and (A10) become the spherical model susceptibility, which also gives a
correct value for the second time derivative for t =0 [see (2.18)]. When h+0, Eq. (A8) continues to be automatically
satisfied, since it is easy to show that it is equivalent to (A5), but inserting (A9) in (2.18a), and retaining only terms of
the first order in three operators scalar products, we have

g Jkk (Sk' Sk —k' ~ S—k )

+Jo —Jq
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which can be seen as a condition on three operators scalar products to obtain the correct value of the second moment.
Regarding the equations for the relaxation functions obtained by McLean and Blume, we must first of all observe

that they are derived applying systematically a decoupling procedure which replaces higher-order correlations with
products of all possible pairing of operators. This approximation is more natural than the decoupling (2.16), but it
forces the use explicitly of the classical Auctuation-dissipation theorem in order to close the system of equations, which
otherwise contain not only relaxation functions, but also time-dependent correlation functions. However, one can no-
tice that the classical limit of the Auctuation-dissipation theorem is in some sense implicitly contained in (2.16) (Ref. 23),
and so the two treatments are more similar than it might seem at a first sight, and indeed they give exactly the same re-
sults in the isotropic case.

On the contrary, in presence of an applied field h&0, some differences appear between the two systems of integro-
difFerential equations. In the equation by McLean and Blume for F (t), the coefficient of the linear term is simply the
RPA frequency cu, and both the longitudinal and transverse memory functions are different from those appearing in
(2.17). By requiring that the second time derivative in t =0, given by the equations by McLean and Blume, has the
correct value, the following equations can be obtained:

=1
Xq g ~qk q

—kkXk ~ g JqkXk
k k

(A12)

X', X Jqk Jq kk(Xk—+XI, ) = ~ g Jqk(xk+XJI )+ (A13)

A possible solution of these equations is

h +Jo —J
(%14)

which coincides with that of (A9) and (A10) when scalar
products involving three spin operators are neglected; in
this approximation also, the memory functions given by
the two approaches become equivalent.

Therefore, we conclude that all treatments discussed
here give the same results if we neglect the anisotropy be-
tween the static susceptibilities; this seems to be a good
approximation when the applied field h is small, owing to
the fact that, since (So+,S:kSk)~0, when 6 ~0, Eq.
(A3) shows that the difference between longitudinal and
transverse static susceptibilities in the paramagnetic
phase is of higher order in the applied field than the term
already contained in the RPA frequency ~ .
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