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A system which exhibits antiferromagnetic order in the thermodynamic limit will, generically,

have a symmetric ground state when the volume is finite. In this case the leading size dependence of
various observables is controlled by soft magnons. The precise form of the finite-size corrections is

worked out, and it is claimed that the expressions so obtained will be useful for the analysis of re-

sults obtained by Monte Carlo simulations or by exact diagonalization.

I. INTRODUCTION

Spontaneous symmetry breaking plays a central role in
the physics of large systems. The basic characteristics of
this phenomenon remain unchanged, although applica-
tions vary from energy scales of order 10 eV in the
context of magnetism, to energy scales of order 10 eV in
the context of grand unification. In many cases all the
low-energy and low, momentum properties of a system
are fixed, up to a few parameters, by the pattern of break-
ing a continuous symmetry. These few parameters con-
stitute all that is left dependent on the microscopic dy-
narnics. Different microscopic systems which have iden-
tical values for these parameters would be indistinguish-
able in the low-energy, low-momentum regime.

In this paper we shall be mainly concerned with two-
dimensional quantum-spin models defined on a square
lattice. We assume that the ground state exhibits antifer-
romagnetic order and that the staggered magnetization is
not a constant of motion. The relevance of such systems
to the physics of materials which exhibit high-
temperature superconductivity has been extensively dis-
cussed in the literature before. '

The large-distance, long-time behavior of all these sys-
tems is described, up to a normalization, by a nonlinear
sigma model in three Euclidean dimensions. At zero
temperature this model has two unknown parameters
which have to be extracted from the microscopic phys-
ics. To relate the predictions of such an effective theory
to low-energy, low-momenta properties of the original
model one additional parameter is needed. We thus con-
centrate on three parameters: Two appear in the effective
Euclidean action and the third relates the physical stag-
gered magnetization, as felt by scattered neutrons for ex-
arnple, to the expectation value of the order parameter in
the effective model. All our work is at zero temperature.
The effects of small temperatures can be incorporated
later; we do not expect additional microscopic informa-
tion to be necessary for the description of the leading
effects.

The first step is to give precise microscopic definitions
of the parameters. Subsequently we address the practical
question of how to calculate these parameters from a
given microscopic Hamiltonian. Since it would be un-
realistic to expect the microscopic model to be exactly

soluble, and judging from the experience with the 2D
Heisenberg antiferromagnet, good and reliable approxi-
mation methods may not be available due to the absence
of a small expansion parameter, we concentrate here on
"safe" numerical techniques. Although we have mainly
exact diagonalization in mind, much of what we have to
say is relevant for properly interpreting Monte Carlo data
as well.

The major obstacle to the employment of numerical
methods is the relative smallness of the systems investi-
gated. Our main observation is that the leading size
dependence of the observables of these systems is
governed by the same three parameters we discussed be-
fore and is universal otherwise. We suggest therefore the
following strategy for investigating sma11 systems.

First assume that spontaneous symmetry breakdown
would occur if the system were infinite. Using the com-
plete arsenal of our understanding of the physics of this

phenomenon we derive the form of the finite-size contri-
butions to the ground-state average of the staggered mag-
netization squared, and also the leading effects on the
low-lying spectrum. These formulas predict a definite
form of the finite-size effects (shape and volume depen-
dence). The numerical values of the corrections also de-
pend on the three parameters we discussed above. Once
the correct finite-size dependence is numerically ob-
served, one can conclude that the original assumption
about the occurrence of spontaneous symmetry breaking
in the infinite system is indeed correct. Moreover one
can extract numerical values for the three parameters of
interest.

Although our derivations are not fully rigourous we
believe that our finite-size formulas are exact. In this pa-
per we focus on obtaining these formulas. On the basis of
preliminary investigations we can state that we have good
reasons to believe that the finite-size formulas will prove
to be of practical use in the interpretation of numerical
data on Heisenberg antiferromagnetics obtained either by
exact diagonalization or by Monte Carlo simulations.
We shall provide a simple explanation for why such
asymptotic formulas might work for even the smallest
systems imaginab1e. As our formulas are universal their
use is by no means limited to pure spin models.

The importance of a correct treatment of finite-size
effects in this context was realized first by Huse and by
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Reger and Young. " Some qualitative ideas have been
presented recently by Gross, Sanchez-Velasco, and Sig-
gia. Our own work presented below has been done in-
dependently of theirs following analogous developments
in high-energy physics. We have been informed that D.
Fisher is also working on similar questions but know no
details about the work.

The plan of the paper is as follows: Since we would
like to exploit as much as possible the approximate rela-
tivistic invariance of the soft magnon sector we start our
paper (Sec. II) with a brief but self-contained review of
the physics of a fully relativistic (2+1)-dimensional field
theory. We then proceed to the case of interest and
show how approximate relativistic invariance leads us to
specific limiting forms for some matrix elements (Sec.
III). The unknown constants in these formulas are the
relevant low-energy parameters we are interested in.
Next we relate the staggered magnetization to these pa-
rameters (Sec. IV). We employ a method of proof which
is familiar in the context of the techniques reviewed in
Sec. II. In Sec. V we present a finite-size theorem giving
the leading asymptotic correction to the ground state ex-
pectation value of the square of the finite-volume stag-
gered magnetization. We then proceed in Sec. VI to
study the finite-size effects on the low-lying spectrum of
the system. This is the first instance that the overall scale
of the Hamiltonian is of importance. In Sec. VII we sum-
marize our results. The Appendix contains a calculation
of the universal shape dependence of the asymptotic
correction presented in Sec. V. There we also show that
the spin wave expansion for the nearest-neighbor antifer-
romagnet seems to indicate that the asymptotic formulas
are strikingly effective numerically, even for very small
systems.

II. RELATIVISTIC PION PHYSICS

Since the order parameter is not a constant of motion,
hydrodynamic considerations lead us to expect a linear
dispersion for soft spin waves. This is known to be true
in the spin wave expansion and is very likely correct to
any order in this expansion. The linearity of the disper-
sion means that at large distances and large times the sys-
tem has an approximate relativistic invariance. The
relevant group is the 2+ 1 Lorentz group, whose algebra
is the same as that of SL(2,R). By analytically continuing
to imaginary times the invariance group becomes SO(3)
and the two-dimensional relativistic quantum field theory
becomes a classical Euclidean three-dimensional one.

Spontaneous symmetry breaking has been studied ex-
tensively in the framework of relativistic quantum field
theory. This will prove to be useful for our investiga-
tions so we would 1ike to briefly review the definitions of
the the low-energy, low-momentum parameters there.
For conciseness we discuss a definite model, the O(3)
2+ 1 linear sigma model. The Minkowsky action is given
by

The parameters and fields are unrenormalized. The
theory can be renormalized and has a limit free of any ul-

traviolet divergences. The three-component renormal-
ized scalar field N develops (in some regime) a nonzero
expectation value and spontaneous breakdown occurs.
The SO(3) group is broken down to SO(2)—=U(1). Since
two generators are broken one expects a doubly degen-
erate spectrum of pions with zero mass. The velocity of
light is always set to unity.

The charges generating the global SO(3) are Q:
tQ, Q']= "Q' (2)

Relativistic invariance and the global symmetry imply
the existence of local three-vector currents J„(x)that are
conserved,

8"J„(x)=0,
and satisfy Q = J d x JD(x, t), with dQ /dt =0 as a re-

sult of (3).
The action of the Q's on the renormalized N's is given

by

(3)

[Q,@~j=ie ir4r . (4)

The occurrence of spontaneous symmetry breakdown
means that only Q is a "good" operator in the Hilbert
space: Q' are not, because they generate rotations in
isospin space which try to change the direction of the
vacuum. The local currents J„'are acceptable, however,
as long as we do not integrate over all space. Clearly
they create the pion states when acting on the vacuum.
The constant f is defined by

&olJ„'(x)lm'(k)) =if exp( —ik x)5'Jk

There p takes the values 0,1,2, and k.x=kpxp k.x with
ka= lkl. Relativistic invariance, analyticity, and group
theory fix the structure of (6) up to the diinensional con-
stant f. f is one of the parameters we shall be interested
in later.

The normalization of the field N is usually fixed by
some convention. Once this is done one has

&01~'(x)l~'(k) & =Z5"exp( —ik.x) .

Again, up to the constant Z, the structure of (7) is fixed
by general considerations.

Note that Eq. (2) fixes the overall normalization of the
currents Jbut the normalization of the field N is not fixed

by (4).
The symmetry is spontaneously broken in some regime

of couplings. One chooses traditionally the breaking to
single out the third direction in isospace and writes
4=(m, rr ), wh. ere m' (i = 1,2) are the two pion fields which
create Goldstone particles.

The scatterings of soft pions are governed by one ener-

gy scale, the pion constant f. It is defined as follows: Let
la'(q) ) be pion one-particle states of three-momentum q.
Masslessness implies qa= lql . The relativistic normali-
zation is chosen such that the projection on the one-
particle pion space has the relativistic invariant phase-
space measure 2d q5(q )e(q0) =d q/lql:

&m'(q)lir'(q')) =(2n. ) 5" lql5 (q —q') .
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Current algebra techniques then lead to the following
formula:

III. THE IDENTIFICATION
OF I.OW-ENERGY PARAMETERS

Both in the relativistic framework and in that of classi-
cal statistical physics finite-size effects for systems which
would undergo spontaneous breaking for infinite volumes
have been investigated recently. It is these developments
which we are going to exploit below. Before doing that
we would like to introduce our parameters without going
to the infinite ultraviolet cutoff' limit (zero lattice spac-
ings). Here we follow Ref. 6.

We imagine having a general local Hamiltonian defined
on an infinite square lattice with sites denoted by x and
directions (1,2) by iu, :

&=Ig(S, S„+„)+J2g (S S„+„+)+ . (9)

where

[S;,Si']=a„~»Sr,
S =—'x 4

(10)

We assume that the couplings in H are such that spon-
taneous breakdown will occur with the simplest antifer-
romagentic order:

(ols„'Io)=( —1) " z,
where Ilxll —=xi+&2

This means that in our model not only was the global
internal symmetry broken but also the lattice translation
group was broken to the even subgroup [translations by
a=(a„a2) with a, +a2 even]. This introduces some
complications which one avoids as follows: Introduce the
Holstein-Primakoff transformation from the spin vari-
ables to bosonic creation annihilation operators subjected
to a constraint:

&ol~lo&=fz .

Z shall be our second parameter. A sum rule analogous
to Eq. (8) will be derived later on, giving the relation be-
tween our parameters and the average staggered magneti-
zation.

The third parameter we need has to do with the fact
that the velocity of light, which has been set to unity
above, has a physical meaning in the application we have
in mind. It is worthwhile to keep in mind that the first
two parameters depend only on the ground state (and
therefore are insensitive to a scaling up or down of the
Hamiltonian), while c, the velocity of the sound, is a spec-
tral property which does scale with the Hamiltonian.

S„=(S,+), S =( —1)II II( —n )

It is easy to see that when expressed in terms of the a' s,
& is still translationally invariant, and (11) is now

(oln„lo)=-,' —t . (13)

(()Is+ Ik) g ik.x+~ i(k+Ti x

&ols-lk&=a e'""—a
(16)

where k-x=k, x, +k2x2. The one-magnon states are nor-
~u db &klk'&=(2 )'&'(k —k')
There must be a degeneracy in the one-magnon sector

rcffecting the unbroken U(1). Since the degeneracy must
be compatible with halving the Brillouin zone and the
latter is obtained by identifying k with k+T, we expect
that there exists a unitary operator V which satisfies

[ V, H] =0 and Vlk) ~ Ik+T). We shall argue now that

V=exp[ —(i~/2)Q] .

Therefore we have now full translational invariance; what
we have lost is the explicit SO(3) invariance of H. In par-
ticular the unbroken U(1) is less obvious now. One
should note that our translations, generated by U„with

Upa~ Up a~ +p

are not the same as the natural translations associated
with H when written in terms of the spin operators. Nev-
ertheless products of even numbers of U„aregenerating
translations for the S variables too.

Since [&,U„]=0 we can diagonalize & and U„simul-
taneously, and eigenstates of U„are labeled by a crystal
momentum k„with Ik„l& m. :

U„lk&=e' ~lk& . (15)

We assume our infinite system was approached by con-
sidering a sequence of finite systems having a total even
number of sites. Hence we may consider the operator
Q =g (

—l)ll*lln, which commutes with H and has zero
ground-state expectation value. However, if we insist in
diagonalizing the U„swe cannot diagonalize Q too, be-
cause U„QU = —Q. Q is the generator of the unbroken
U(1).

In our language Goldstone's theorem does not promise
two degenerate magnon states per momentum but only
one. The doubling of magnon states will occur by the ex-
pected halving of the Brillouin zone. The magnon states
are defined as those states giving a pole to (1/& —z)Pk
where I'i, projects on total momentum k. The location of
the pole is at ek and we expect ek=clkl for k —+0 and
ek=c Ik —Tl for k~ T=(m., m. ). We are only interested in
the magnon states of very low energy. Using (12) and
translational invariance we can write

S,—=S '+iS
It is easy to see that V commutes with all even transla-
tions. Vdoes not commute with odd translations. How-
ever V is an element of the unbroken U(1) group and the
one-magnon subspace provides a representation of this
group. Therefore V maps one-magnon states into linear
combinations of one-magnon states. In conclusion
(kl Vlk') may be nonzero only for k —k'=0 or T, and in

(12)

[a,a ]=5, [a,a ]=0,

1+( 1 ) llxll 1 —
(
—1 ) llxllS+= +1—n a + a„+1 n, , —
2
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vlk & =~ Ik)+b Ik+T),
vlk+ T) =a'Ik ) +b'Ik+ T) .

(18)

Using the commutation relations of V and U„one can
show that

the invariant subspace spanned by a given I k ) and

I
k+ T ) V is represented by

Ai, i~2lkl' as k 0 . (24)

The vr-fiel piece of (22) is obtained when the amplitudes
multiplied by co' go to a constant as k~T. %'e are led
therefore to

now implies that the J„pieceof (22) is hidden in the am-
plitude which vanishes as k ~0. We conclude that
co„' A„should go as lkl as k~o.

v" lk & =~ Ik & b lk+T &

Vtlk+T&='lk& —b lk+» .
(19) Ki

Ai, ~ as k —+T. (25)

Imposing unitarity we obtain that in the [ Ik), lk+T) I

space Vis represented by

V=

Since Q is an integral quantum number, the eigenval-
ues of V must be +I, +i. The one-magnon space should
contain states with Q =+1, so V cannot be proportional
to the unit matrix (b =0). Combining these requirements
we conclude that a =0 and b=e'~. Going back to (19)
we obtain Vlk) =e'~lk+T& and V Ik+T) = —e'~lk)
leading to P=+im/2 or b. =+i By .redefining (if neces-
sary) V via a sign change in Q we finally conclude

ei, =coi,-c Ikl as k~o . (26)

IV. THK STAGGERED MAGNKTIXATIQN

Although we have not proven rigourously the function-
al dependences in (24) and (25) they hold in the spin wave
approximation and we believe them to be exact. Equa-
tions (24) and (25) replace Eqs. (6) and (7). The two pa-
rameters ~, and a2 replace f and Z. They do not depend
on the overall scale of H. The derivation of (22) from (16)
replaced the group theoretical 6 factors in Eqs. (6) and
(7).

The third parameter is c defined by

vlk&=ilk+T&,

v'Ik+T&= —ilk& .
(20)

The purpose here is to derive the analogue of Eq. (8).
This will give the staggered magnetization in terms of ~&

and K2'

We start from l

V therefore unitarily implements the expected degen-
eracy in the one-magnon spectrum. Diagonalizing V and
all the even translations would give two degenerate mag-
non states with momenta taking values in the halved Bril-
louin zone. Using the commutation relations between V
and S—,

[S+,S ]=2S 5„y. (27)

We take the ground-state expectation value of (27), then
sum over y and insert a complete set of intermediate
states:

VS„+—V =+iS+—, (21)
d k„

2g( —1)ll ll=g g f "
[&OIS+ln ) &n IS lo)

(2n )y tl

we can derive a kinematical relationship between the am-
plitudes in (16) ( Ai, = Bi,+z):— —&ols; In & & n Is+ lo&] .

&()IS+Ik) = A ik x+A i(ek T+) x (22) (28)

It is worthwhile to compare (22) to (6) and (7). Clearly
we do not have exact relativistic invariance and the
equivalents of the parameters f and Z should be obtained
from the limiting behavior of Ai, as k~0 and as k~ T.
There are two points to remember now: (1) Our states
are not relativistically normalized, and (2) the local field
representing the current J„is the same as the local field

representing the fields m.. The normalization issue is easi-
ly resolved: In order to be compatible with (5) we choose

1/2

Here In ) = lk„;p„)is a state of total crystal momentum
k„,and p" is a complete set of other quantum numbers.

Using the basic form of S+—we can exploit translational
invariance to write

&OIS+ln ) = A e' x+B e""+»" (29)

(30)

Upon insertion in (28) we obtain

4= —,
' g f d k„I(A „*B„+B„*A„)[5(k„)+5(k„+T)]].

4.

The second point deserves a little more discussion: S—
really gives us the zero component of J„(x)(iM =0) be-
cause their sum over all sites give us the "broken"
charges. The other components of J (the space com-
ponents) can be obtained by calculating dS2/dt from H
and imposing the local conservation law (3). Equation (6) 4——

—,( hm + hm )( Ai, Ai, + z-+ Ai,*+z Ai, ) .
k~O k~T

(31)

Very much in the spirit of soft pion physics we expect
only the one-magnon states to have su%cient phase space
(contained in the matrix elements A„and B„)to over-
come the 6 functions and contribute to the integral. We
get
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Choosing the phases of the states lk & so that the A„are
real, we end up with

S=—2 lim(Ak Al, +T) .
k~O

Using (29) and (25) we have

g = 2ICilC2

(32)

(33)

V. THE FINITE-SIZE THEOREM

Until now we were working strictly in the infinite-
volurne limit. Now we consider our model defined on a
rectangular region of a two-dimensional square lattice.
The sides of the rectangle are L, and L2 in lattice units.
Both L, and L2 are taken to be even, and periodic
boundary conditions are imposed. Another case is dis-
cussed at the end of this section. We define L:—LiL2
and concentrate on the following quantity:

ML =
G~x ~L —1

ols„splo&& . (34)

and this is the formula we were after. We believe that it
is exact.

example, although the staggered magnetization of the
one-dimensional spin chain would suffer from infrared
divergences in the spin wave expansion, global invariants
would not. ' In the equivalent classical case (now in
two-dimensions) this infrared finiteness is known to hold
to any order in the spin wave expansion. ' It is very
plausible to expect the same to be true in the quantum
one-dimensional case. When we go to higher dimensions,
only the momenta summed over change but not the
structure of the higher-order corrections in the spin wave
expansion. Smaller phase space at low momenta wi11

soften the infrared divergences, and by power counting,
we expect a quantity that was infrared finite in d=1 to
approach its infinite-volume limit faster than 1/L in
d =2. Note only do we expect this to hold to any order in
the spin wave expansion; we expect this to be an exact re-
sult unspoiled by nonperturbative corrections.

The above claim implies that if x (q) has singularities
of such a nature that replacing X, by x(k, ) in the calcula-
tion of MI and then taking the infinite-volume limit in-
duces corrections of order 1/L; then we may, to leading
order, neglect corrections which come about because X,
is not equal to x(k, ). In other words we have, up to and
including order 1/L corrections,

Momentum space is now discrete with k,
=2m(s, /L i,sz/L2). We introduce a Fourier decomposi-
tion of the two point-function:

1 1 3 1 1
(37)

ik, x

,(ols„s,lo&, = ', y
O~s ~L —i s

(35)

We assume that in the infinite-L limit spontaneous
symmetry breakdown occurs. Therefore we should
separate the s = T term from the sum:

The main point here is that in the last term all the finite-
size dependence is explicit, as the function x (q) has no
size dependence left. x(q) is a property of the infinite
volume model. x(q) has a singularity at q=T, as we
know from the analysis of the infinite-volume case:
x(q)-xplq Tl, q~T. —

It is this singularity which gives all the leading finite-
size corrections in (37). We get

Setting x=(0,0) we get

L XT d k 1 a(p ) logi'L

(21T) x (k) xpL
(38)

1 1 1

L~XT L,@z X,

which leads to

(36b)

( 1)II IIL(olS .Splo&1 = 3+
x 0 L 4

(36c)

We wish now to make the following claim: Suppose we
calculate X, and let L, 2~~ with a fixed ratio, also
changing s such that k, is kept fixed at a value q. q is as-
sumed to differ from 0 and T. The claim is the X, ap-
proaches a limit x (q) and that the corrections are vanish-
ing faster than 1/L. At most we expect them to go as
logrL/L .

This claim is similar to a property conjectured to hold
for the classical nonlinear sigma model in three dirnen-
sions. The basis of it is the fact that global invariants
[like the left-hand side of (36) after Fourier transforma-
tion] have the property that they are less infrared singu-
lar in the spin wave expansion than other quantities. For

a(p )= lim
L~ oo

L, =Lp

L, =rp-'
d k 1

P ~ k„&2' (2~)2 f (k)
(39)

Going back now to (38) we easily identify

d k 14' = lim ML= —,
'—

I. ' (2~)2 x(k) (40)

and by (33) 4 also equals 41c,lcz. All that is left to do is to
identify xo. This can be done at L = ~, where we have
from (35)

The shape function a(p ) is universal and defined as fol-
lows: Let f(k) be a periodic function of k„(under
k„~k„+2m)We assume . that f(k) ~ 0 everywhere and
that f is smooth everywhere except at k = T, where it,

also vanishes; f(k)/lk —Tl~1 as k~T. f does not
vanish anywhere else in the first Brillouin zone. Then
a(p ) is well defined by

1 ~ 1

L', ,f(k, )
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&o~s„s,~o& =( —1)II"II@'+j (2')' x (k)

For large x we get the following asymptotics

( —1)II*II&0/s. s, /0& -z'+ ' ' +
2m-x, ix[

(41)
calculated in the Appendix and the slope we extracted
'from the data of Reger and Young we were able to ob-
tain an estimate of ~1 which agreed well with the value
obtained to leading order in the spin wave expansion of
the Heisenberg antiferromagnet.

VI. THE LQYV-LYING SPECTRUM
(42)

We use now S„SO=S„S0+—,
' [S„+So+S„SO] and insert

intermediate states, assuming as usual that the only the
one-magnon states are needed for leading large distance
asymptotics. This leads to the identification

1 —2lC
Xp

Our final finite-size formula is given by

2=3— 1 1 1 1—3—
L &X- L &.(k) (48)

For L~ao we have

We proceed to find a way to extract the sound velocity
c from a finite-size effect. For too-small systems it is im-
practical to get in the low-momentum regime and see the
linear dispersion for the magnons directly. We shall
present a method we expect to work better in practice.

In the previous section we established

~2 4~2~2 2~2 A(P ) +g log L
L L2 (44) 1X&- as L

4L x1x2
(49)

J

with a(p ) defined in (39). In the Appendix we show how
to calculate a(p ) in an e%cient way.

The restriction to periodic boundary conditions has
forced L1 and L2 to be even separately. While it is obvi-
ous that the absence of frustration in a finite volume
would require that L1L2 be even we should be able to
deal with a case where Li is even (say) and L2 is odd.
This can be done by using skewed periodic boundary con-
ditions. These boundary conditions are defined by writ-
ing the two-dimensional system in a notation appropriate
for a one-dimensional chain with periodic boundary con-
dition. For the nearest-neighbor case we would write

For any value of s&T one can replace X, +z by
x (k, + r ) but for s = T this would be incorrect. Motivated
by the expected form in a relativistic theory we use the
following approximation for X:

X, +r=[x (k, +T)+Xr]'
(50)ik x

(
—1)II II 0 S„SO0&= .

L [x (k, +T)+X ]'

L L —1
I 2&=J g (S; S;+)+S;.S;+I ) . (45', &Ol( —i)II"IIS„(r)S,(0)iO&,

E' =0

We expect this approximation to be acceptable for large
values of ~x~; for those we can use x(k, +T)~xo~k, ~.

Going now to unequal times we have

The nomenclature "skewed periodic boundary condi-
tions" becomes clear if we write

Ek x ECOI
S

1 e

L 2 [~2(k + T)+X2 ]I/2 (51)

l =X1+L1X2

0&x1 +L1 —1,
0+X2 ~L2 —1,

leading to

(46)

—1L —1
1 2&=J g g (S(„x).S(„+,x )+S(x, ,x, ) S(x, , x, +))) ~

xl =0 x2=0

co), =c(k~ for k&0 (51) is adequate for large ~x
~

and large
t. Relativistic invariance, however, now forces

( 2k2+X2 ))/2
X0

(52)

Xz. plays the role of a mass and (52) is simply the famous
relation E=(m c +p c )'/. This should be interpreted
to mean that one magnon states have an effective mass in
finite volumes given by (Planck's constant has been set to
unity throughout, h /2m = 1):

S =S(xl,x2) (xl,x2+L2) & (47) X~
me@ =

X0C
(53)

S =S(xl +L 1,x2) (x l, x2+1)

Working out the momentum space associated with these
boundary conditions one can convince oneself that for-
mula (44) still holds. There is no frustration for L2 odd
because only spins separated by an odd number of bonds
are coupled in (45).

Before closing we should address the question of
whether (44) works in practice. Using the value of a(l )

cX~
hE =m, ~c =

Xp

C

2L 2K2
(54)

Since there are two such one-magnon states with Q =+1
we have identified two low-lying states at momentum T.

The energy of a zero momentum one magnon state is
then separated from the ground state by a gap hE given
by
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However, in a finite volume the ground state is a singlet
with respect to the total magnetization and all the states
must have integral magnetization because of the evenness
of the number of lattice sites. So we are forced to con-
clude that we have identified a triplet which is the
lowest-lying excited state in our system. The energy gap
is given by Eq. (54). The third member of the triplet has
Q =0 and is not excited when g (

—1 )'S acts on the
ground state.

We now approach the problem of identifying the
lowest portion of the spectrum in the finite box from a
different point of view. ' " In a very large box the
lowest-lying spectrum of the system, assuming spontane-
ous symmetry breaking at infinite volume, must represent
the slow precession of the order parameter in time. This
precession freezes at infinite volume and it has been ar-
gued a long time ago already that the levels participating
in the precesion are separated from the ground state by
gaps going like the inverse volume. '

The tower of low-lying states (all are below the softest
magnon of nonzero momentum) collapse onto the ground
state where the volume is taken to infinity. Since we need
to produce in this limit a continuous infinity of states dis-
tinguished by different orientations of a global order pa-
rameter (a classical variable in the limit) the tower must
contain an infinite number of finite dimensional represen-
tations of the SO(3) global symmetry group.

We seek now an effective Hamiltonian &,tr which de-
scribes this tower of states. &,tr governs the time devel-
opment of the global order parameter, in our case the
staggered magnetization. We can imagine getting &,tr by
iterating a renormalization group transformation which
integrates out all spin modes with momentum different
from T. The Axed point which controls the form of &,s.
must be the same which controls the nonlinear sigma
model viewed as a quantum system. " This implies that
&,s has the following form:

conventional picture of spontaneous symmetry breaking
with antiferromagnetic long-range order is assumed to
occur at infinite volume.

What are the properties of the tower of states we
would expect to hold approximately? Since the magni-
tude of g—:g ( —1)~~"~~S(x) is expected to Auctuate much
faster than the orientation it can be taken as fixed at its
average for time scales of the order L . So only the
orientation of P,g is a dynamical variable and L is the
conjugate momentum. The wave functions should there-
fore be given by

(P)= Y( (f)F(g') .

For very large volumes we ought to have

F(g )=&(P' s') .—

(57)

(58)

Let us calculate the distribution of P for the ground
state:

as expected. For the I=1 state we take the m=1 corn-
ponent to get

(61)

leading to

(62)

This leads to

&(g')dg'=~ Id'p5(g' 4'—)

=A'dg' Jdg dg'6((g') +(1( ) —4'+(P')')

=~8((1'')' —+') . (5

In particular we find

(60)

&,tr=yL +Es,
[L,L~]=it ~rLr .

(55a) (63)

The single relevant unknown in &,s. is the parameter y.
The spectrum of &,z is given by

EI =yl(1+1)+E, l =0, 1,2, . . . (55b)

C&,s. E= L-
4L, a~

Therefore, if we know already ~2 and identify a few
lower I states in a finite system, we can obtain the last of
our parameters, namely c.

The triplet state has been seen already by Tang and
Hirsch. ' Their interpretation of the state is different
from ours. As is clear from our discussion in this paper,
this state is, in our opinion, entirely expected if the most

with a degeneracy of 2l+1 per level. E~ is the ground-
state energy. Comparing with (54) we get, using I =0 and
I =1,

C

4L2 2

in good agreement with the measurement of Tang and
Hirsch. '

This supports our feeling that we understand well thy
finite-size effects in the systems under consideration and
that even very small systems may provide us with accu-
rate and detailed information about the infinite-volume
limit.

The tower of states is a generic feature for any system
which undergoes spontaneous symmetry breakdown and
has a nonconserved global order parameter. The special
feature here is that if one employs the definition of
translations which is naturally associated with the spin
operators the order parameter carries momentum T.
Since in a finite volume spontaneous breakdown does not
occur, this momentum is a good quantum number
without halving the Brillouin zone. Therefore we know
that the states of the tower at level I will carry momen-
tum IT. In other words even I states have zero momen-
turn while odd I states have a total momentum equal to T.

Another way to estimate c is to consider the size
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dependence of the ground-state energy E, in the finite
volume. Since the tower of states are spaced at gaps of
order 1/L they would contribute shifts of order 1/L to
the ground-state energy. As we shall see later the zero-
point energies of the magnons give a shift of O(1/L) and
therefore a leading contribution. We have two magnons
per state of reduced momentum i() (p and i() + T identified).
The zero-point contribution is a Casimir energ'y given by

d k
11m = T cop ~I ~

2I. ' —" '
( ( -(2~)'

(64)

In (64) we went back to using the full Brillouin zone and
therefore we have only one magnon per state.

Consider now a function f as defined above, Eq. (39).
We define

P(p )= lim —L g f(k )
1

L~oo 2
Ll =Lp

L~ =Lp

d k
0&k„&~(2~)2

(k)

(65)

P(p ) is easily calculated by the same methods as those of
I

the Appendix. For example,

I3(1)= —0.719 . (66)

For p = 1 we can compare with the measurement of Gross
et al. In their normalization the coefficient of the L,
term is —9. 14+0.05. This gives c=6.36+0.03.

Judging by their absolute value of the energies we con-
clude that their numbers really correspond to J=4.
Oguchi's spin wave analysis' would give, for J=4

c =4(/2(1+0. 158+ . ) =6.55 . (68)

The agreement is quite good.
We are not sure whether (67) is indeed an exact result

theoretically. In practice we see that it works quite well.

VII. SUMMARY

Let us summarize the main results. Using the
Holstein-Primakoff variables the momentum is defined in
such a way that translational invariance is not broken by
antiferromagnetic order. Working at infinite volume we
define the parameters K„K2,and c:

Remembering the factor of 2 needed because cuI, vanishes
twice (unlike f) we obtain

EL ELgL l. gL + 2cp( 2)

(0/S.'lk ) =
~k ~1/2eikx i el(k+T)x k 0K2 1/2

eikx+~ ~k T~
1 2/ei(k +T)x k T

(69a)

c/kJ, k O,
c/k Tf(, k—

One has then (still at infinite volume)

2K)K2

( —1)(~ (((ops„s,/0&-@2+ ' )+o
fx/2

(69b)

as x ~oo.
Hence K&, K2 are closely related to the stiffness p, .

Equations (69a) and (69b) give the precise definition of
the constants Ki, K2 and c as parameters characterizing
the infinite volume systems. It is customary to represent
the low-momentum and low-energy behavior of a system
with Goldstone bosons by an effective Lagrangian. To
leading order in the momenta and frequencies the
response of the original system to slowly varying and
slowly Auctuating external sources is.given by coupling
the same sources to the effective Lagrangian and solving
the associated Euler-Lagrange equations. To this order,
by definition, loop corrections coming from the effective
Lagrangian are not be included. Therefore, the parame-
ters in the effective Lagrangian include all the renormal-

ization effects of the original, microscopic Hamiltonian.
The effective Lagrangian is written in terms of a unit-

length three-component vector field n(x). This field has
two degrees of freedom representing the magnons. In
standard notation, at zero temperature the effective La-
grangian is given by

T

L= 'Jdr y——'(a, n)2 —y(n(x) —n(x+„))2 . (7O)
X

c

The Auctuations in the original staggered magnetization
(connected correlations) can be identified, at low energy
and momentum, within the rule described above, with
those of Q(x). There is a normalization factor in this
correspondence with ( —1)(( ~S mapping into z' Q(x).
This leads to i(z=2p, and )~, =z/(8p, ). The parameter c
in L is identical to that in Eq. (69a).

Consider now the system with the same Hamiltonian
as above but now defined on a finite rectangular L, XL2
lattice with periodic (even L i, even L2) or skewed period-
ic (even L, , odd L2) boundary conditions. For
I, I 2

—+~ with L, /L2=p fixed and p &0,~, one has
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the following asymptotic formulas:

g (
—I)~~ ~~, (0(S„S,(0),

L]L2 „b,
+2 za(P ) glo~(LL )

L L&L2
as L] 2

—+~,

(71)

with a(p ) calculated in the Appendix. The lowest excit-
ed states of the system in the box have the following spec-
trum (and degeneracies g& =21+1):

E1 =Es+ 2 21(l+I) .
4L v2

(72)

Here Eg is the ground-state energy and L =L &L2. Us-
ing the normal" definition of momentum the states at
level l carry momentum T or 0 depending on whether I is
even or odd.

We also discussed the possibility that the volume
dependence of the ground state can be used to obtain e
via the following formula:

Department of Energy, Grant No. DE-FG05-86-
ER40265 (H.N. ). Discussions with E. Abrahams, U.
Heller, and A. Ruckenstein are gratefully acknowledged.

APPENDIX

f (k)
1 ask T. (74)

We want to evaluate the leading correction to the quanti-
ty SL:

In this appendix we shall first calculate a(p ) and then
we shall try to estimate at what sizes would one have a
reasonable chance to see the asymptotic correction to
ML. The latter question will be addressed in the spin
wave expansion which, although by itself not necessarily
reliable, could very well provide a good indication for the
relative significance of finite size eA'ects. The calculation
of P(p ) will be only briefiy outlined.

Let f be a function of periodic under k„~k„+2m
which vanishes nowhere except at k = T. For any
k&T f (k) is smooth and, we have

E L E= lim ' + -P(p ),L' L-- L' L' (73) 1 1

L,Lz, T f(k, )

with P(p ) defined in (65). Good agreement between nu-
merical results and spin wave theory was observed.

k, —=2m(s, /L„sz/Lz) .
(75)
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The sum extends over 0 ~s„~L„—1. We rewrite 41 as

SL = lim
1 1 1

(7
o+ L2 [f2(k )++2]1/2 L2+

Starting from (76) and using Poisson's formula one easily
establishes (L =L,Lz)

d k 1 1 ~ d

m&0

With our information on f we derive

a(p ) =j — g' exp4~r'
p2 f7/

2

4w

2 —1
4 2 2 (78)

Employing some 6-function identities Eq. (78) can be put in the following form:
r

a(p )= ——1 —g I dte
I~O

(79)

1 1

g +2 (g +2)(g +4)Q(g ) I + —(1/2)r
&2~

The evaluation of a(p ) can be done now on a calculator. Using
—( &/2)g

1—
i/'2vr

5

(g +2)(g +4)(g +6)

(g +2)(g +4)(g +6)(g +8) (80)

we need to sum only a few terms in the expansion

a(p )= ——1 —g Q(&2~R(m))
2 1

vr 0 R(m)
R (m)=—p m)+p mz.
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Our results are

4
5
3

2
3
1

2
1

3

o(p')
—0.6208
—0.6155
—0.6124
—0.6035
—0.5675
—0.4716

We now proceed to show, using a(p ), one can replace
the calculation of the integral giving the leading spin
wave correction to 4 by the calculation of a correspond-
ing lattice momentum sum. For L, and L2 both even,
Anderson has found over 30 years ago

(82)

is the L ~ ~ limit of AL with

1
L —1

1+26,l =
L[L2 i2=0

(i1, i2 )~(0,0)
(i1,i 2)~(L1/2, L2/'2)

(1—
[—,1(c os[(2~ /L, )i, ]+cos[( lrr/L2)i2)]] ) (83)

The above sum will approach its infinite-volume limit
with a correction going like 1/QL, L2. The factor in
front of this leading correction is dift'erent from a(p ) by
a factor 2&2. The factor of 2 reflects the fact that now
we have two singularities in f(k) instead of one. The fac-
tor of &2 comes about because the integrand at infinite
volume goes as &2/~k~ as k~O and as &2/~k —T~ as
k ~T. Note that the sum is invariant under
(i1,i2)~(i1,i2)+ ,'(L, , L2) and —thus all our previous
analysis applies. We therefore obtain

d k 1

-"~- ~(2') [1—
—,'(cosk, +cosk ) ]'

f =(47r) '/ j [1—exp( r f )], — (85)

one obtains the following expression:

works surprisingly well for the smallest systems imagin-
able. If this property holds beyond the spin wave approx-
imation we have very good chances to extract the param-
eters we are interested in from the results of exact diago-
nalization methods. The numerics works similarly for
skewed periodic boundary conditions.

The calculation of P(p ) proceeds on similar lines.
Starting from the identity

+ 2&2m(p )

(LL )''
=1»3+ 2~2-(") +

(L L )1/2 (84)

P(p') =
m&0

2vrR (m—)
2vrR (m)

Q(&2rrR (m) )
R(m)

To get a feeling for how good finite volumes are on the
numerical level, we evaluate the sum giving 1+26L ex™
actly for various small boxes and compare the result to
the expression on the last line in Eq. (84) m&0

—~z'(m) 1+ 1

2mR (m)
(86)

L] L2 1+2S—
)1/2

The numerical values are

P(p')
2 2
2 4
4 4
4 5
4 6

0.5000
0.8274
0.9524
1.002
1.044

1.378
1.393
1.391
1.391
1.393

We see that the inclusion of the leading correction

4
5
3
4
2
3
1

2
1

3

—0.7186
—0.7362
—0.7482
—0.7790
—0.9113
—1.296
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