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The nature of holons, and in particular, their statistics, are studied in the context of a two-
dimensional quantum hard-core dimer gas. This model has been shown to embody the low-energy

physics of the short-ranged resonating-valence-bond state.
energetic considerations, the holons either bind a half flux quantum of “statistical flux,

We find that, depending on detailed
” in which

case they are fermions, or they are free, in which case they are bosons. The exchange energy is
shown to favor a fermionic hole while the hole kinetic energy (which generally exceeds the ex-
change energy) favors bosonic holes. Finally, it is shown that even in the bosonic case, flux

quantization is in units of hc/2e.

I. INTRODUCTION

The notion' 73 that quasiparticles with unusual quan-
tum numbers (e.g., fractional charge) and unusual statis-
tics (e.g., fractional statistics) can describe the low-energy
excitations of two-dimensional quantum systems has
played an important role in understanding the fractional
quantum Hall effect,? and more recently has been invoked
in the context of high-temperature superconductivity.3~!!
In particular, in Ref. 3 it was suggested that in a system
with a short-ranged resonating-valence-bond (RVB)
ground state, the quasiparticles created on doping are
charge e, spin-0 holons satisfying Bose statistics. While
the reverse charge spin relation of the quasiparticle is
unambiguous, and indeed is a rather general consequence
of singlet pairing,'? the statistics of the quasiparticles is a
subtle issue. The subtlety arises because in two dimen-
sions, statistics are a matter of convenience; the statistics
of a particle can be changed at will by attaching a partial
flux quantum of “statistical flux” to each particle.! At
best, one particular choice of statistics is natural if it elim-
inates all long-range pieces of the particle kinetic energy.
Partly for this reason, the assignment of statistics has
proven to be highly controversial; in Refs. 4-8 the holons
were identified as bosons, in Ref. 9 as half-fermions, and
in Refs. 10 and 11 as fermions. The important point here
is that even when there exists an unambiguous natural
choice for the statistics of the low-energy quasiparticles,
that choice can change depending on detailed energetic
considerations which determine whether a particle will or
will not bind a flux. Indeed, Read and Chakraborty”
have pointed out that exactly this issue arises in the con-
text of the spinons and holons in a short-ranged RVB
state.

In this paper we will analyze a simple model of a short-
ranged RVB superconductor, the quantum hard-core di-
mer gas,” in which the statistics of the holon can be under-
stood completely. (By inference, the statistics of the spi-
non can be understood in the same way, although there
are a variety of technical issues which make the case of
the spinon more complicated.) We find that the two-
dimensional dimer model has vortex excitations which
carry one half flux quantum of statistical flux; the purely
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magnetic interactions in the model cause a bare holon to
bind a vortex, thereby turning it into a fermion. These
conclusions are in agreement with the results of Chakra-
borty and Read!! based on an analysis of the nearest-
neighbor RVB state with phases chosen to satisfy the
Marshall'? sign rule. However, we find that the holon ki-
netic energy causes the holon to unbind from the vortex
leaving a bare (i.e., bosonic) holon as the low-energy
quasiparticle. Moreover, we argue that in three dimen-
sions and higher, where statistics are robust, the holon is
always a boson. Finally, we show that the presence of vor-
tex excitations leads to electromagnetic flux quantization
in units of hc/2e, even when the ground state is a Bose
condensate of charge e bosons.

II. THE MODEL

Recently, it has been shown that there is a class of mod-
els'* whose ground state and low-lying excited states lie in
the subspace spanned by the nearest-neighbor valence-
bond states. These models are described by a Hamiltoni-
an which is the sum of the so-called Klein Hamiltonian, !>
Hg, plus any of a broad class of perturbing Hamiltonians,
H'. The ground-state manifold of Hy is the subspace
Qnnve spanned by the nearest-neighbor valence-bond
states. We treat H' using degenerate perturbation which
amounts to projecting H' into Qnnve. In another paper?®
we do this for a representative H' which is the sum of a
nearest-neighbor antiferromagnetic Heisenberg interac-
tion plus a holon kinetic energy; however, none of our
main results depend sensitively on the exact nature of the
perturbation. Since the states in Qnnvp are clearly in
one-to-one correspondence with the states of a hard-core
dimer gas, by simply orthogonalizing the valence-bond
states the system can be mapped onto a hard-core quan-
tum dimer gas on a lattice. Roughly, a dimer represents a
valence bond. The nonorthogonality of the valence-bond
states is represented exactly by the presence of longer-
range interactions in the dimer Hamiltonian; the fact that
the valence-bond states are, in a sense, nearly orthogonal
is reflected in the fact that the dimer Hamiltonian H g, is
short ranged (in the sense of exponentially falling).
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The details of the derivation of the hard-core dimer
model from the perturbed Klein model are discussed in
Ref. 5; we sketch the procedure here. First, we must
define a phase convention for valence-bond states. We
have adopted the convention that a valence-bond between
sites i and j is created by

bj = —=Geleli +efiel), 0

where c,-’; creates an electron of spin s on site i. A
valence-bond state is created by the set of b, correspond-
ing to a dimer configuration ¢. The valence-bond states
can be orthogonalized by the method of Lowdin, '® and we
define a “dimer” state to be the member of the resulting
orthonormal set corresponding to dimer configuration c.
The matrix elements of the Hg;m, are then the matrix ele-
ments of H' between dimer states. We have shown that
for short-ranged perturbations, only short-ranged terms in
Hgim are important; so for simplicity, we will consider a
model consisting of only the shortest-range term of each
type. We do not expect other terms in the dimer Hamil-
tonian to affect our conclusions. Therefore, we consider
the model represented below:

Hym=H;+H,+Hr, )
a,=r2 (=) (1] +he |

221 =>XE={E1 1 PRY | |1 I
Hp=J'Y [|i'-_!> <l +H.c.] , @

Hr== Z[[ AN =] +re [+ (] ) o]
(5)

where the sums in Eq. (3) run over all plaquettes, the sum
in Eq. (4) over the neighborhood of each hole, and the
first sum in Eq. (5) runs over all triplets of nearest-
neighbor sites, while the second sum is over nearest-
neighbor pairs of sites. The matrix elements of a bra con-
taining a particular local dimer configuration with an ar-
bitrary dimer state ket is zero unless the two dimer
configurations match, in which case it is one. In Egs.
(3)-(5), a bar represents a dimer and a dot represents an
empty site or bare holon. The first two terms, H; and H,,
are purely magnetic in origin and so are proportional to
the exchange coupling; the final term Hr arises from elec-
tron hopping between sites. For a nearest-neighbor anti-
ferromagnetic exchange interaction, we expect J and J'
both to be positive; we shall see that this favors a ground-
state superposition of dimer states with the relative phases
that are expected on the basis of the Marshall rule.'’!?
For a sufficiently frustrated magnetic system it is possible
for the ground state to violate the Marshall rule, i.e., it is
also reasonable to consider the model with J and J' nega-
tive. In contrast, the pure hopping Hamiltonian always
favors a k =0 state, so ¢ is always expected to be positive.
Thus the hole kinetic energy favors a totally symmetric
superposition of dimer states and for positive J and J', the
doped system is somewhat frustrated. It is useful to in-
clude the longer-range interaction J' in the Hamiltonian

even though we except it to be small compared to J, since
without it the purely magnetic part of the Hamiltonian
has a conserved winding number [defined in Ref. 4(b)]
about each hole and thus H; is block diagonal. The
“pinwheel operator” in Eq. (4) removes this unphysical
aspect of the static-hole model. The various terms in the
dimer Hamiltonian can be interpreted as a pure dimer ki-
netic energy (J), a dimer potential energy (¥), a holon ki-
netic energy (¢), and a holon-holon repulsion (V).

III. STATISTICS OF THE HOLONS IN THE
2D MODEL

An arbitrary state |y) in the dimer Hilbert space can
be represented as a liner combination of dimer states |¢)
with specified amplitude 4. and phase 6.,

ly) =X e |0, 6)
c

6,

where ¢ specifies a dimer configuration (including, impli-
citly, the locations of the holes). For a finite-size system,
if there is a choice of phases which makes the expectation
value of all off-diagonal matrix elements of the Hamil-
tonian negative (i.e., if the system is unfrustrated), then
the ground-state wave function has those phases. In many
cases, it is convenient to define a phase field a(/) which
lives on the links / of the lattice such that

.= all). )
l€c
Notice that in the absence of the hole kinetic energy there
is a gauge invariance, analogous to the U(1) gauge sym-
metry discussed by Baskaran and Anderson'’ for the
Heisenberg model, such that all energies are invariant un-
der

a(l)—=a()+xR)+x(R"), ®)

where R and R’ are the lattice sites on either end of link /,
and y(R) is an arbitrary function of R. Indeed, we'® have
recently shown that the dimer model defined above is
equivalent to compact lattice quantum electrodynamics
(QED), and even in the presence of dynamical holes the
model can be made gauge invariant by defining a new field
#(R) =| ¢(R) | e®® agsociated with the holons such that

.= al)+ X a(R), 9)
l€c REc¢
where the second sum is over all unoccupied sites (occu-
pied by holons); under a gauge transformation, a still
transforms as in Eq. (8), and

p(R)— ¢p(R)ex®) (10)

Because of the gauge invariance of the model, the relevant
information about 6, can be summarized by specifying the
distribution of a flux in the system; we refer to this as
“statistical flux.” For J positive, the off-diagonal matrix
elements of H; are all negative if there is a half-integer
flux quantum through each plaquette. If in addition J' is
positive, and if we introduce an additional half flux-
quantum distributed in an arbitrary fashion through the
four plaquettes which surround each holon, then all the



matrix elements of H,. are negative as well. As discussed
by Lederer and Takahashi'® in the context of the Hub-
bard model, this choice of phase corresponds to the so-
called “s+id” state.?® Thus, in the absence of the holon
kinetic energy, the effect of H;. is to cause each holon to
bind a half flux quantum of statistical flux.

The holon number (topological charge*®) couples to
the statistical gauge-field in the same way as electromag-
netic charge couples to the electromagnetic gauge field,
which follows from Eq. (10). To see this explicitly, imag-
ine that there is a half integer flux quantum through the
plaquette at the origin. We work in a singular gauge in
which there is a Dirac sting running along the positive y
axis, which is to say a(/) = for the column of links which
cross the string, and a (/) =0 for all other links as shown
in Fig. 1(a). Thus, the phase can be expressed as e’
=(—1)" where n. is the number of dimers which cross
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FIG. 1. A vortex excitation at the origin (marked by an x)
with a Dirac sting lying along the positive y axis. Shown are
representative dimer configurations (dimers are represented by
bars and a holon by a dot) and information about the phases
with which they enter the sum in Eq. (6). There is one half-
quantum of statistical flux through each plaquette and an addi-
tional half flux quantum through the marked plaquette. Thus,
a(l) =g for all the links that are cut by the string. In (a) there
are no dimers crossing the Dirac string, while after the holon
crosses the string [in (b)] there is one.
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the y axis at positive y. As shown in Fig. 1(b), when a
holon moves past the string, the number of dimers cross-
ing the string changes by * 1. In other words, if a holon
makes a closed orbit around the flux quantum, the wave
function changes sign; this is just the Aharonov-Bohm
phase corresponding to a half flux quantum.

Since all the bare particles in the theory are bosons, i.e.,
dimers which consist of a tightly bound electron pair, it is
clear that the bare holon is a boson,* and this can be
checked directly. Thus, in the usual wayl(“) of two-
dimensional systems, a holon-fluxoid bound state can be
treated either as a boson, in which case the bosons interact
via a long-ranged gauge force, or, more simply, as a weak-
ly interacting fermion. This conclusion reproduces, in the
context of the hard-core dimer model, the earlier con-
clusions of Read and Chakraborty.!! However, we see at
once that the statistics of the low-energy state (quasiparti-
cle) of the holon is determined by energetic considera-
tions. If J' were negative, then the bare holon would have
lower energy by order of | J'| than the holon-fluxoid pair;
as a result the holon would be a boson. More to the point,
in the presence of a nonzero holon kinetic energy, the
holon will be a boson, even for positive J', so long as
t>J'. This follows from the fact that repeated holon hop-
ing generates an effective coupling between the dimer
states connected by the pinwheel operator as shown in Fig.
2; the holon kinetic energy is minimized if all dimer states
which differ by the rearrangements of dimers in the vicini-
ty of the holon enter with equal phases. (In the Appendix
we estimate the critical value of the ratio of ¢ to J' at
which the unbinding transition occurs.) Again, this is
consistent with the results of Lederer and Takahashi'®
who found in the context of the short-ranged RVB state in
the Hubbard model that the holon kinetic energy is mini-
mized if the superposition is locally “s-like” in the neigh-
borhood of each holon. Since we expect physically that

o |

FIG. 2. An effective pinwheel operation can be generated by
repeated action of the holon kinetic energy.
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t>J', the holons will generally be bosonic.

It is worth commenting briefly on the statistics of the
spinons. Spinons are not present in the hard-core dimer
model per se, since the model presupposes a gap in the
spin excitation spectrum, and deals only with excitations
at energies less than the spin gap.® Moreover, if we allow
a finite density of spinon excitations, we are no longer
guaranteed that the different valence-bond states are
linearly independent; indeed the set of states consisting of
nearest-neighbor valence-bonds plus unpaired spins is
clearly overcomplete. However, at dilute spinon density,
we can treat a spinon as a holon with an electron bound to
it. Clearly, such a particle has electromagnetic charge 0
and spin 3. It also carries the same topological charge as
the holon, so it couples in an identical fashion to the sta-
tistical gauge field. Thus, a bare spinon is a fermion while
a spinon-fluxoid pair is a boson. Unlike the holon, howev-
er, the spinon kinetic energy is neither large compared
with J and J', nor is it clear whether it favors local s-like
or s +id-like symmetry. It seems natural, as suggested in
Refs. 10 and 11, that the spinon will bind a fluxoid and
hence will be bosonic, but this presumably depends on the
degree of frustration in the model. At any rate, since
whenever the short-ranged RVB analysis is applicable
there must be a gap to the spinon states, we are never in-
terested in the low-temperature properties of a dense spi-
non gas, and so the statistics of the spinons is not of pri-
mary importance.

IV. SPIN, QUASISTATISTICS RELATION

In three dimensions, statistics are more robust than in
two; we cannot simply change the statistics of the particles
by adding a pure gauge field to the system as was the case
in two dimensions. This suggests that the statistics can be
determined on more fundamental ground. The spin-
statistics theorem of relativistic quantum mechanics is
such a connection. Unfortunately, its proof relies on
Lorentz invariance. In the class of problems we are in-
terested in, the spin is an internal quantum number of the
bare particles of the problem, the electrons; it is not neces-
sarily connected to any of the space-time symmetries of
the system. The question we are interested in answering
is; if the low-energy excitations of a collection of electrons
have a quasiparticle description, are these quasiparticles
required to have a particular spin (quasiparticle) statistics
relation? In general, the answer must necessarily be that
they do not. However, in three dimensions in particular, it
is often the case that there is a connection between the
spin and spatial rotational symmetries of the wave func-
tion. It is easy to see that if a two-quasiparticle wave
function has any axis of symmetry such that it is invariant
under a 180° rotation of both spin and space, then the
quasiparticles must be bosons if they have integer spin and
fermions if they have half-integer spin. This follows im-
mediately from the fact that such a transformation inter-
changes the two quasiparticles. A rotation by 180° of two
half integer spins produces a minus sign which, for an in-
variant wave function, must be canceled by a factor of — 1
per exchange. Similarly, for integer spin, the exchange

factor must be +1. Based on this argument, we feel that
it is likely (though not proven) that in higher dimensions,
the holons will be bosons and the spinons will be fermions.

V. FLUX QUANTIZATION

An issue of general importance is the issue of flux
quantization in systems with quasiparticles with fractional
charge and/or statistics. It was argued in Ref. 21 that,
quite generally, charge fractionalization will not produce
any effect on the Aharonov-Bohm periodicity of observ-
able quantities in a non-simply-connected system, since
the quasiparticle wave functions will be multivalued in
just such a way as to leave the flux quantum unchanged.
The issues of flux quantization and the effects of statistical
transmutation are somewhat more subtle since they ad-
dress issues of macroscopic phase coherence. Arguments
similar in spirit to those in Ref. 21 were presented in Refs.
4(b) and 22 to demonstrate that in the present model, the
reverse charge-statistics relations of the holons will not
alter the fact that flux quantization will occur in units of
hc/2e. Indeed, it can almost be argued on general
grounds?? that if the only bare charged particles are fer-
mions with charge e, then flux quantization will always
occur in units of Ac/2ne where n is an integer.

On the other hand, Wilzcek'® has shown that in two
dimensions there is no way to distinguish a charge e boson
from a charge e fermion bound to a half flux quantum.
Yet there is no doubt that at zero temperature, a system
of charge e bosons can condense into a superfluid state
with flux quantum hc/e.

The resolution of this seeming paradox can be under-
stood along lines first suggested by Wen.” It derives from
the existence of vortex excitations which carry charge zero
and half a flux quantum. Consider the purely magnetic
model in which 7 is set equal to zero. We define the one
vortex state to be the state in which an additional half flux
quantum of statistical flux is threaded through an arbitray
plaquette, e.g., the plaquette at the origin as is Fig. 1(a).
This state is orthogonal to the ground state,'! and has an
excitation energy of order J. Note that there is no mag-
netic energy associated with the Dirac string since so long
as the holon positions are held fixed, any process which
rearranges the dimers will change the number of dimers
crossing the string by an integer multiple of 2, except only
those which involve a net circulation of dimers about the
vortex. It is the existence of these vortices which is re-
sponsible for the fact that flux quantization is in units of
he/2e.

To see this, consider the cylindrical geometry shown in
Fig. 3. We consider the periodicity of the ground-state
energy E(®) of a condensate of change-e bosons which
live on the surface of the cylinder as function of the elec-
tromagnetic flux @ through the cylinder. Clearly, E(®) is
periodic with period hc/e. However, there are two possi-
ble branches of E(®) as shown respectively in Figs. 3(a)
and 3(b). If there is no statistical flux through the
cylinder, then the energy is minimized when there is an in-
teger number of electromagnetic flux quanta through the
cylinder; if there is a half quantum of statistical flux
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FIG. 3. Geometry for the discussion of flux quantization.
Here, the electromagnetic flux through the center of the
cylinder (indicated by the arrow) is varied. In (a) there is no
net statistical flux through the cylinder, while in (b) there is half
a flux quantum of statistical flux as indicted by the presence of a
Dirac string.

through the cylinder (i.e., if there is a Dirac string that
bisects the cylinder) then the energy is minimized when
there is a half odd-integer number of electromagnetic flux
quanta through the cylinder, as shown in Fig. 4. This fol-
lows immediately from the fact that electromagnetic and
statistical flux couple to the holon current in identical
fashion. The two branches of E(®) are identical other
than the offset of their zeros, since there is no energy asso-
ciated with a Dirac string which has no ends. Were there
no vortices, the system with half a statistical flux quantum
through the cylinder could never mix with the fluxless sys-
tem, and the only observable periodicity would be in units
of hc/e. However, the presence of vortices with finite en-
ergy allows the system to tunnel from one sector to the
other by creating a vortex-antivortex pair and pulling
them off either edge of the cylinder. Thus, there is level
mixing, and the true grounds-state energy has periodicity
hc/2e, as shown in the dashed line in Fig. 4.

In the model Wilzcek considered, there are no indepen-
dent dynamical degrees of freedom corresponding to the
vortices, which is equivalent in our model to setting the
creation energy of a vortex to infinity. In that limit, but
only in that limit, the superconducting flux quantum
would be hc/e. This resolves the apparent paradox.
However, if the vortex creation energy is large but not
infinite, the mixing caused by the vortices could be small,
and it might be possible to do a “fast” experiment on
small superconducting rings and observe flux quantization
in units of Ac/e.
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APPENDIX: HOLON-FLUXOID INTERACTION

Here we wish to estimate X, the critical ratio of J'/t
such that for J'/t > X the holon will bind a half flux quan-
tum while for J'/t < X, the holon will be free. To do this,
we compute the eigenstates and eigenvalues of the dimer
Hamiltonian on the nine-site system pictured in Fig. 2,
and we assume free boundary conditions. (Only a subset
of the possible dimer configurations are pictured in the
figure; in total there are 18 dimer states for free boundary
conditions.) Of the 18 eigenstates of this Hamiltonian,
only four have nonvanishing amplitude for the two dimer
configurations with the holon on the central site. (For ex-
ample, the configuration in the upper left-hand corner of
the figure.) We will consider only these four states.

Of these four states, one of them is antisymmetric un-
der rotation by n/2. This state is the lowest-energy state
of the four for the pure magnetic Hamiltonian; its energy
is E.mi= —J', independent of the other interactions. The
other three states are symmetric under rotation. Their en-
ergies are obtained from the solution of the following cu-
bic equation:

(U —-E)QV+J—E)WV—E)
—J'J2—42QV+J—E)=0.

The lowest-energy solution of this equation is the sym-
metric ground state energy, Esym.

The antisymmetric state is the state in which there is an
extra half flux quantum associated with the holon, so the
unbinding transition occurs when E gy, =F.ni. Since the
solution of a cubic equation is awkward, and our estimate
is crude at best, we choose to evaluate E gy, for ¥V =J =0,
so
JI

2
In this approximation the critical value of J'/t =+/2/2.

J' 2 1/2
Esymz—z—— +(2t)2] .
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