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We present a theoretical study of magnetostatic excitations in ferromagnetic and antiferromag-
netic films and in superlattices composed of alternating layers of such materials with paramagnetic
and nonmagnetic substances. The motivation for this study is the possibility of observation of these
modes of motion in slabs and superlattices of diluted magnetic semiconductors by inelastic light
scattering. We classify the excitations in films as "bulklike" and "surfacelike. " Periodic excitations
propagating along the growth axis of a superlattice occur which can be classified as "pure bulk"
modes if the magnetization of the media behaves sinusoidally in each layer; as "pure interface"
modes if they propagate along the boundary separating adjacent layers while their amplitudes decay
exponentially within each medium and as "bulk-interface" modes when a behavior occurs having
"bulk" character in one medium and "surface" character in the other. We give an analysis of the
dispersion relations of these modes and the ranges within which their frequencies lie.

I. INTRODUCTION

In addition to the ordinary spin-wave excitations in
bulk magnetic crystals there also exist surface modes of
magnetization in finite structures. The amplitude of
these excitations decays exponentially from the surface of
the material toward the interior. Damon and Eshbach'
have studied such modes in ferromagnetic slabs in the
magnetostatic limit. Since their work appeared, consid-
erable interest in surface magnetostatic modes has been
stimulated by the possibility of fabricating superlattices
formed by alternating layers of two different magnetic
materials. Camley, Rahman, and Mills and Griinberg
and Mika investigated the spin-wave spectra of semi-
infinite and infinite stacks of ferromagnetic slabs magnet-
ized at right angles to the growth axis and separated by
nonmagnetic gaps. This work was extended by Camley
and Cot tarn to slabs of antiferromagnetic materials
separated by nonmagnetic gaps and to ferromagnetic-
nonmagnetic superlattices when the magnetization lies
along the axis of the structure.

These studies are directly applicable to metallic mag-
netic structures. These collective excitations have been
observed in the Brillouin spectra due to magnons in
Mo/Ni superlattices by Grimsditch et al. and by Schull-
er and Grimsditch. In this paper we focus on excitations
which are significant for magnetic semiconductors. In
order to provide appropriate background, we review
some of the properties of these materials. We study spin
waves in diluted magnetic semiconductors (DMS's). The
properties of these materials have been reviewed by Fur-
dyna.

A typical example of a DMS is Cd& Mn„Te which
can form homogeneous solid solutions for Mn atomic
concentrations, x, ranging from 0 to 0.75. Cd& Mn Te
crystallizes in the zinc-blende structure for 0 ~ x (0.75 in

which, at random cation sites, Cd is replaced by Mn
atoms. For x (0.17, Cd& „Mn Te is paramagnetic for
all temperatures. If x )0. 17 there is a magnetically or-
dered phase due to antiferromagnetic coupling between
neighboring Mn + ions below a critical temperature
T, (x). For example, Cd, Mn„Te with x =0.75 is in an
antiferromagnetic phase below 40 K. The magnetic exci-
tations of these materials can be investigated using Ra-
man scattering. "' These investigations constitute the
motivation for this work.

A Raman scattering study in superlattices of diluted
magnetic semiconductors was carried out by Suh et aI. '

That work was concerned with scattering by acoustic and
optical phonons as well as by magnetic excitations. Only
the paramagnetic spin-Aip excitation was observed even
at liquid-He temperatures in a superlattice composed of
alternating layers of Cdp 89Mnp»Te and Cdp 5pMnp 5pTe
in which one of the components is expected to exhibit a
magnetically ordered phase. This was taken as an indica-
tion that the magnetically ordered phase had not been at-
tained.

One of the purposes of this paper is to investigate the
nature of the magnetostatic modes in superlattices of
magnetic semiconductors such as those of Ref. 13. We
discuss the possible magnetic excitations in the cases in
which the applied magnetic field Hp is either parallel to
or perpendicular to the axis of the superlattice z. The
sample is assumed to be formed by a series of alternating
layers of antiferromagnetic material separated by
paramagnetic or nonmagnetic gaps. For simplicity we
take the axis of easy magnetization to be parallel to or
perpendicular to the growth axis, z, of the superlattice.
In addition, in each case we take Hp along the axis of
magnetization.

In order to understand the nature of the magnetostatic
modes in magnetic superlattices, we first study such
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modes in ferromagnetic and antiferromagnetic slabs.
This is done in Sec. II. We classify the slab modes as
"bulk" and ",surface" modes depending on whether their
amplitudes are periodic or decaying along the normal to
the slab. When Ho is along the normal z to the plane sur-
face of the film there are no surface modes while if Ho is
perpendicular to z then both bulk and surface excitations
are present.

Section III deals with the magnetostatic modes in su-
perlattices following the work of Rodriguez, Camacho,
and Quiroga. ' In Sec. IV we discuss the application to
the two cases of superlattices of antiferromagnetic semi-
conductors separated by gaps of paramagnetic or non-
magnetic materials. We also investigated ferromagnetic-
nonmagnetic superlattices.

We classify the magnetostatic modes in these superlat-
tices as: (i) "pure bulk" modes, (ii) "pure interface"
modes, and (iii) "bulk-interface" modes. In the first the
magnetization is a trigonometric function of the com-
ponent of the wave vector along the superlattice axis. In
the second, the magnetization decays in both types of lay-
ers. Finally in the third the modes behave like bulk
modes in one type of layer and as surface modes in the
other.

—V P+4vrV m=0 . (2.4)

—i~m=yMOXh+ymXH, .

Equation (2.5) can be written as

m=Ph,

(2.5)

where g is the susceptibility tensor. Outside the film,
V' /=0 while inside

Bh; Bh
g (1+4vry, ,

.),= —g 4~y, ,

(2.7)

The boundary conditions require the continuity of P and
of

b, = — —g 4vry„
BP BPBz, Bx;

(2.8)

at z =0 and z =d.
Solutions for the scalar potential of the form

The magnetization M evolves in time according to the
Bloch equation of motion, M=yMXH. Keeping only
linear time-varying terms,

II. MAGNKTOSTATIC MODES
IN FERROMAGNETIC AND

ANTIFERROMAGNETIC FILMS
P =g(z)e (2.9)

H=H +he (2.1)

and

M=M +me (2.2)

Here h and b =h+4mm also obey the equations of mag-
netostatics and, hence, h can be derived from a magnetic
scalar potential P defined by

An electromagnetic mode in a magnetic material is
said to be magnetostatic if its frequency v is small com-
pared to u /A, where 1, is its wavelength and v its phase ve-
locity. Under such conditions, the relevant Maxwell
equations are the equations of magnetostatics, namely
V'XH=O, V' 8=0, where H is the intensity of the mag-
netic field and B=H+4~M the magnetic induction. But
these fields vary in time because of the precession of the
magnetization M in an external magnetic field.

We take the z axis of a Cartesian coordinate system
along the normal to the surface of the film which we sup-
pose to extend to infinity in the x and y directions. The
material of the slab is contained in the region 0 ~z ~ d, d
being its thickness.

The fields H and M can be written as sums of time-
independent and time-dependent components in the form

~e'~'+Be '~' 0~z ~ d,
g(z)= Ce ', z)d,

De ', z&0

where g g =g +g and

Q = [I xxqx +I yyqy ] pzz'

(2.10)

(2.11)

with p,-, =1+4';,. Application of the boundary condi-
tions shows that waves of the type (2.9) exist when

tanQd = 2qiQp„[ qi ——Q p„
+(4~)(y, q +g, q ) j

(2.12)

We can now classify the magnetic modes according to
whether or not their amplitudes decay exponentially
along the z direction. If Q is real, the excitation is "bulk-
like, " while if Q is imaginary (Q &0), it decreases ex-
ponentially along the normal to the film and we call it a
"surface wave. " Now we consider the cases of ferromag-
netic and antiferromagnetic slabs.

(2.3) A. Ferromagnetic slab

The quantities H,- and Mo are the magnetic field inside
the slab and the saturation magnetization of the system in
this field. The field H, =Ho+HD where Ho and, HD are
the applied and demagnetizing fields, respectively.

In terms of P the magnetostatic equations reduce to

We consider first a ferromagnetic slab and the two
cases in which the applied field is perpendicular to and
parallel to the surface of the film.

(i) Ho parallel to z. Here the nonvanishing components
of g are
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and

=MoH, [H; —(co/y) ] (2.13) l.5

=iM0(ro/y )[H; (co—ly ) ] (2.14)

The dispersion relation (2.12) for magnetostatic waves be-
comes I.3

tan Qd = —2Qqi ( q i —Q )

However, from Eqs. (2.11), (2.13), and (2.14)

Q = qipxx .

(2.15)

(2.16)

l.2

The dispersion relation is obtained solving these equa-
tions for Q and qi as functions of the angular frequency.
Bulklike waves are obtained when Q is real, i.e., when
iu, &0 which requires H; & co/~y ~

& QHoH;. The exter-
nally applied field Ho differs from H; by the demagnetiz-
ing field, i.e., H;=Ho —4mMo. For bulklike modes the
dispersion relation reads

qid=( —p )
' arctan[ —2( —p )'~ (1+@ ) '] .

(2.17)

Figures 1 and 2 give the frequency expressed in dimen-
sionless form A=co/4~~y~Mo as a function of qid and

Qd, respectively. In these graphs we took Ho=40 kG
and 4~Mo=20 kG. We note that there is an infinity of
bulk waves in which the values of q~d for different fre-

quencies differ by integral multiples of rr( —p „)
The corresponding values of Qd differ by integral multi-

plies of ~. We note that qjd tends to zero for all modes
in the lower limit of the range of 0, namely H;/4mMo
(equal to unity in the numerical example shown in Fig. 1).
As 0 approaches the upper limit to its range, namely

QHoH; /4~Mo, the corresponding values of q~d tend to

I.5

l.4

I.O
0

FIG. 2. The reduced frequency A for the same situation as in

Fig. 1 but as a function of gd. We note that 0 is periodic in Qd
with period ~.

infinity. There are no surface waves because, if Q =iQ' is
purely imaginary, then, Eq. (2.15) implies that

tanh(Q'd) = —2Q'qi(q &~ +Q '~) (2.18)

which can have no solution in Q' except Q'=0.
(ii) Ho perpendicular to z. We take the x axis parallel

to Ho in the plane of the slab. Here the nonvanishing
components of Pare

and

=y„=MoHo [H o
—(co/y )~] (2.19)

y~, = —y,~ =iMO(co/y )[Ho —(co/y) ] (2.20)

It is convenient to define the frequencies co, =
~ y ~Ho and

co~= iyi(Ho8o)' = iyi [Ho(Ho+4mMo)]'

The latter is the frequency for long wavelengths 2m/q~.
The expressions for p = I+4m.g and 4m', in terms of
these frequencies are

602 CO
2 2

(2.21)

I.2
and

2 2
CO(

4~Xzy —
&

CO 6) i
(2.22)

I.O 0 IO 20 30 40 50

We obtain these expressions from Eqs. (2.5) and (2.6)
recalling that in this geometry there is no demagnetizing
field parallel to the surface of the slab. The condition for
the existence of magnetostatic modes is now

FICi. 1. The reduced frequency A=co/4vr~y ~Mo as a function
of q&d for "bulklike" waves in a ferromagnetic slab. The exter-
nal magnetic field, normal to the slab, is taken equal to 40 kG
and the saturation magnetization is such that Ho/4~MO =2.

tanQd = —2p»Qq, [q&+(4~y,~q~)
—(p»Q) ]

with

(2.23)
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2

Q'= —q'—
3' (2.24)

2.5

We designate by 0 the an le betw
and the d'

ng e etween the magnetic field
e 1rection of pro a ationp g

'
n of the wave in the plane

e s a, i.e., q =q~cosO, q =q~sin6. Then, E s.
(2.23) a d (2.24) are writt i the fo

2.4

tanQd2pyy(Q /qz)[1+(4vry, sin0)

—(v„Q/qi)'] ' (2.25)
2.2

(2.26)(Q/q~) = —sin 0—p 'cos 0 .

The frequenc ran e
takes lac

y ge for wh1ch propagation at 1 0
p ce is given by the requirement

an ang e

2. 1

2.0 '

0

or

0& —p„&coi 0

2
co,2(0) =—co,cos 0+co2sin 0 (co~ (co~~.

(2.27)

(2.28)

FIG.~ 4. The reduced fre uenc
ofFi . 3

q ency 0 for the ferromagnetic slab
o ig. as a function of Qd for 0=0 and rr/ .
of the slab.

an 7T'/4. Hp in the plane

This restrictionon seems to have been overlooked b revi-
ous workers in this field. In Fi s. a
unct1on Oft f q~ and Q for various choices of the angle 0.

If Q =iQ', Q') 0, we obtain the condition for the sur-

face modes, namely,

tanhQ'd =(Q'/q~ )(co —
c)y )[co — (0)]

(Q'/q~) =[co —co„(0)](co~—co~
2 )

(2.31)

(2.32)

tanhQ'& = —2p y ( Q'/q, )[ 1+(4~y, sin0)'

+(s„Q'/qi)'] ',
and

(2.29)

where

2 g0)= —,'co, + —,'cozcos 0+(co&/2', )sin 0

=—2', + —,'(co~/co, ) co,~(0) . (2.33)

(Q'/q, )'=sin'0+@ 'cos'0

Thhese equations can be rewritten in the form

(2.30)

gating on the plane of the 1 b
o sur ace modes ro a-The conditions for the existence of f

e s a are that the right-hand
p pa-

2.5
2, 52

2.4 2.50—

2.3
Q 2.48

2.2

2. f

2.46

2.00 50

2.44
0.0 0.2 0.4

I

0.6
)

0.8

FIG. 3. T~ . The reduced frequency 0, as a function of d
two values of the angle 0 b t H
eters correspondin to th

e etween Hp and . Num
on ing to the ferromagnetic slab in Fi . 1. The

magnetic field is in the plane of the slab.

FICi. 5. Th e reduced frequency as a functio
face" waves in a f

a unction of q~d for "sur-
in a erromagnetic slab. The aram

Fi 1 —4 Tll ree different an les 0 b
q~ have been selected. H

g between Hp and
ec e . p in the plane of the slab. No

surface" waves exist for 0=0
ote that no
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2.50

2.49

/2
fields since M =M1+ M2 is small. Neglecting terms of
second order in m;(i =1,2) and h, Eqs. (2.36) and (2.1)
with H; =Ho yield

—~corn, = yMp X h &HE X m2
2.48

Q 2.47

2.46

Tr/12

and

y(Ho+He+Ha ) Xm,

m2 yMoXh+yHz Xm

—y(Ho —H~ —H„)Xm2,

(2.38)

(2.39)

2.45 where we define the exchange field as HE =A,M0. Form-
ing m, +m2 with the aid of Eqs. (2.38) and (2.39) and
eliminating m, —m2 we obtain the total magnetization

mi+m2=XLh+yTHp Xh, (2.40)

FIG. 6. The reduced frequency as a function of Q'd for the
conditions of Fig. 5.

2y2MoH~(co2 co+co )—
(co —co+ )(co —co )

(2.41)

where the longitudinal and transverse magnetic suscepti-
bilities yL and gT are

side of Eq. (2.31) lie between 0 and 1 and that of Eq.
(2.32) be positive. These requirements are satisfied if (1)
co —co,2(0) and co —co2 have the same sign, (2) co —

co2

and co —co ( 0) have opposite signs, and (3)
2MMIsinO & coi +co&sin O. For example, for O=O there are
no surface waves while for O=~/2 there are surface
waves propagating on the plane of the slab, for frequen-
cies such that

and

with

4I.~y'II o~oII
(CO' —CO+ )(CO' —CO' )

CO=+k~y~H +o~y~(H~+2II„HE)'

(2.42)

(2.43)

co2 (co ( ( co i +co2 ) /2 co i (2.34)

For arbitrary angles O surface waves exist only for
sinO) co, /co2 and their frequencies are in the range

co2 (co ((coi+co2sin 0)/(2coisin0) .

co„=~y ~(8~M,H, )'~2,

and the permeability

(2.44)

It is convenient to introduce the angular frequency co&

defined by

No propagating modes exist for co &co2. Figures 5 and 6
show the reduced frequency of "surface" modes as func-
tions of qid and Qd, respectively. The calculations are
carried out for three difFerent values of O.

B. Antiferromagnetic slab

(
2 2 )( 2 2

)

p 1 +477+I
(co co+ )(co co )

where

cT + —
&

( co ~ +co+ +co )

(2.45)

BM, 2 =yMi 2X(H —AM2 1+H~ ), (2.36)

where A, M, (A,M2) is the exchange field due to magnetic
ions of type 1 (2) on ions of type 2 (1). For simplicity we
shall take the externally applied magnetic field Ho paral-
lel to H~. The partial magnetizations are of the form

M1 2 ™0™1 2e (2.37)

In an antiferromagnet the magnetic ions are classified
into two classes with opposite preferential orientations.
We label them by subindices 1 and 2 so that, e.g., their
contributions to the magnetization are M, and M2, re-
spectively. We consider a uniaxial antiferromagnet with
an anisotropy field H~. The equations of motion for
these quantities are

l COCO~(CO+ CO )
+T 2 2 2 2

(CO CO+ )(CO CO )
(2.47)

The equations for the scalar magnetic potential and the
boundary conditions yield, of course, the results in (2.11)
and (2.12) which we now apply to the special cases of Ho
parallel to and perpendicular to the axis of the slab (z
axis).

(i) Ho parallel to z. In this case p„=l, p =p~~=p
and the only nonvanishing transverse components of the
magnetic susceptibility are p&y pyx +T We find

+—,'[co„+2co„(co+—co ) +(co+ —co ) ]' . (2.46)

The transverse susceptibility is expressed in a similar way
as

where Mp is parallel to H~. We neglect demagnetizing Q pqi (2.48)
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and 14.20

tangd= —2gq~(qj —Q )

Propagating bulk modes exist if

g 2 (co' —o + )(co' —o' )

q2 (
2 ~2 )(~2 ~2 )

(2.49)

(2.50)
14.15

Since

(2.51) 4.40—

their allowed frequencies occur in the ranges

N (N(0 (2.52)

and

CO+ ( CO (CT+ (2.53)

4.35
0 10

Figures 7 and 8 show the dispersion of these modes as a
function of q~ and Q, respectively. The frequency is ex-
pressed in the dimensionless form ~/co~ and we have
selected, for convenience, HO=60 kG, Hz=200 kG,
H„=30 kG, and Mo =0.2 kG. These parameters are ap-
propriate for Cd, ,Mn„Te (x =0.7). We note that we
use a theory valid for uniaxial antiferrornagnets even in
the case of a cubic material. As in the case of a fer-
romagnetic material there are no surface modes in this
geometrical arrangement.

(ii) Ho perpendicular to z. This case has been con-
sidered by Stamps and Camley. ' Taking the x axis along
Ho, Eq. (2.11) yields

(Q/q~) = —sin 0—p 'cos 0

where

cr+(0) =
—,'(co„sin 0+co++co )

—,
' [ co „sin 0+ 2co q ( co+ —co ) sin 0

+ (
2 2 )2]1/2 (2.55)

Equation (2.12) becomes

tanQd = —2p( Q/qz )[1+(4vryrsin0)~ —(pg/qz )~]

(2.56)

FIG. 8. The frequency co as a function of Qd under condi-
tions identical to those of Fig. 7.

[co —o +.(0) ][co —cr (0)]
(~2 ~2 )(~2 ~2 )

(2.54)
after use is made of pzz pyy p~ pxx l +yz &T, and

y,„=0. The angle formed by Ho and q~ is denoted by 0.
The condition for the existence of bulk modes is

14.20
(co' —cu+ )(~'—cu' ) (—tan 0.(~' —cr+ )(~'—cr' )

(2.57)

I 4. 15

4.40—

We note that co (o (0)(o. (co+ &o.+(0) (o.+ and
deduce that the allowed frequencies of these modes are in
the ranges cr (0) (co (o and o +(0) & co (o +. The
latter two ranges collapse to single values when 0=~/2.
Figures 9 and 10 show dispersion relations of the bulk
modes for four values of 0 as functions of qzd and Qd.
From Eq. (2.56) we obtain

tangd = — 1—2Q Q

gg

4.35
0 IO

1

20

co„sin 0

(co —o + )(co —a )
(2.58)

FIG. 7. The frequency co (expressed in terms of the dimen-
sionless quantity co/~& ) as a function of q&d for the antiferro-
magnetic "bulk" modes. Ho is normal to the plane of the slab.
The following parameters were used: Ho =60 kG, H~ =200 kG,
H~ =30 kG, and Mo =0.2 kG.

with the aid of Eqs. (2.45) and (2.47).
We can solve Eq. (2.54) for co as a function of (Q/p~ )

and 0. Substitution of the result thus obtained in Eq.
(2.58) yields a transcendental equation connecting Qd and
q~d and 0.

We now discuss the special cases in which Ho=0 for
all angles and of Ho&0 for 0=0 or ~/2. If Ho=0, then
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I 4. I 8,

14.I 6
(2.62)

and

Use of Fqs. (2.58) and (2.59) and of the inequalities
(2.60) shows that, given 0 and qt, we find Q by solving
the transcendental equations

Qd Qqtcos 0
tan

Q +qfsin 0

Qd Q +qtsin 0
tan

Qqtcos 0
(2.63)

4.38

4.36
0

I

IO 20 30

=~M = 1y 1(H,'+2H„HE)
the frequency of antiferromagnetic spin waves in the long

2 = 2wavelength limit. Also, in this hmit rr + (0)=
AM

+co sin 0 and o (0)=re~. Equation (2.54) reduces tocog s

CO~ + CO ~ CO
2

(2.59)

This condition restricts the frequency of the allowed bulk
modes to the range

(tuM+co„sin 0)' ~ co ~ (aM+co )' (2.60)

From Eq. (2.59) we obtain

FIG. 9. The frequency of "bulk" modes as a function of q, d
for an antiferromagnetic slab. Ho is in the plane of the slab.
Material parameters as in Fig. 7. The angle 0 between Ho and

q~ is 0 or ~/4.
For H &0 we consider the extreme cases 0=0 and0

0=~/2. If 0=0 the allowed frequency ranges become
co &cu & o. and co+ &co &0.+. The relation between q~
and Qis

qt/Q =tan( —,'Qd) (2.65)

or

qt/Q = —cot( —,'Qd), (2.66)

where Qd is selected so that the right-hand sides of these
equations are positive. The frequencies of the magneto-
static modes are

co —— co+ +67 +co ~ cos2 ) 2 2 2 2Qd

+—' (co+ —ro ) +2'„(co+—co ) cos2 2 2 2 2 2Qd
2

]. /2

The solutions of Eqs. (2.62) and (2.63) verify the condi-
tions 0~tan( —,'Qd) ~ qt/Q and tan( —,'Qd) ~ —(Q/qz), re-
spectively. A schematic graphical solution of these equa-
tions is shown in Fig. 11. We observe that the solutions
become Qd =nm (n integer) for large values of Qd and
hence, for large n, there are modes of frequency

ro =to +co~ —co&[1+(nor/qzd) ] 'cos 0 . (2.64)

co =coM+coq —tu„[l+(Q/qt) ] 'cos 0 . (2.61) 4 4Qd
+cog cos (2.67)

14, I8 IO

l4. I6

3 l4. I4
3

-5 I—

IO

-IO
0

Qd/2

FICi. 10. Same as Fig. 9 but with co as a function of Qd.
FIG. 11. Graphical solu. tions of Eqs. (2.62) and (2.63) for

0=m/6 and qid =0.5.
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when Q is obtained from the solution of Eq. (2.65). If Q
is obtained from Eq. (2.66) the expression for co is the
same as in (2.67) except that cos(Qd/2) is replaced by
sin(Qd/2). Both signs in Eq. (2.67) are allowed since,
when cos (Qd/2) and sin (Qd/2) range from 0 to 1, the
corresponding frequency intervals are co &co&o. and
co+ &co & o. + for the lower and upper signs, respectively.
When Ho&0 and O=m/2, since o+(m/2) =o+, we find

(Q/qi ) = —1 and there are no bulk modes.
The conditions for the existence of surface modes

(Q =iQ') are

=sin 0+p 'cos 0

These equations require that (1)

[co —o +(0)][co —o. (0)]

(
2 ~2 )(~2 ~2 )

both be negative, and (2)

2

0&(co —cr )(o+ —co ) 1+ &co~sin 0 .
q~

[co o+(—0)][co o. (—0)]
(

2 2
)( 2 2

)

t

tanhQ'd =—

(2.68)

The first condition limits the range of allowed frequencies
for surface modes to the interval o. (co ( o. +(0) (er+.

As in the previous case of bulk modes, we now consid-
er the special cases in which Ho=0 and 0 is arbitrary and
Ho&0 for 0=0 or n/2.

When Ho=0 Eqs. (2.68) and (2.69) become

co ~ sin~o

(
2 2

)( 2 ~2 )

~ —cuM —co~s&n 02 2 2 2 2

qg
2 — 2 — 2

CO COM CO g
(2.70)

(2.69)

2Q'
tanhQ'd =—

~i (~ —~M) +(~ —~M —~A)(~ —~M —~A»n 0)
(2.71)

We note that surface modes can only occur in this case for frequencies co such that co & co~ +co z or
co (coM+m„sin 0. If co ) coM+co~, it follows from Eq. (2.71) that tanhQ'd/Q'd would be negative and, hence, this
range of frequencies is inaccessible to surface modes when Ho=0. If co & coM+coz sin 0, tanhQ'd/Q'd is positive only
if m & AM. Thus, the allowed frequency interval for surface waves in the absence of an externally applied magnetic field
is given by co~ &e~ & (co~+co„sin 0)'

Eliminating Q'/qz from Eqs. (2.70) and (2.71) we find four solutions for co as a function of 0 and Q'd. However, only
two of these are in the allowed frequency range. They are

co =coM+2co„sin OI 1+sin 0+[cos 0+4sin Ocoth (Q'd/2)]'~ I (2.72)

and

co =
A@M +2' ~ sin 0 [ I + sin 0+ [cos 0+4 sin 0 tanh ( Q 'd /2 ) ]' (2.73)

For example, for very large values of Q'd both branches
(2.72) and (2.73) tend to the limit (2.75)

cu =e~M+co~sin 0(1+sin 0) (2.74)
and

When Q'd =0 we find the limits co = coM and
cu =co~+~~sin 0. In Fig. 12 we display m/~~ as a
function of 0 for two values of Q'd, namely 0.2 and 10.0
for an antiferromagnet whose parameters are those of
Cd, „Mn Te (x =0.70). These have already been listed
in this paper (see Fig. 7). Figure 13 shows co/co& for the
two surface modes as a function of Q'd for various values
of 0. We note that when 0=0, Q'=0 and the resulting
motion is indistinguishable from a bulk magnetostatic ex-
citation.

When 80&0 and 0=0,

tanhQ'd= —2Q'qi(qi+Q' ) (2.76)

(co —0+)(co —cr )= —(co~/2) (1 —e '
) . (2.77)

%'e conclude that the frequencies of the allowed modes
lie in the interval o. & co & o + and are given by

Thus, these modes only occur when Q'=0 and, clearly,
their frequencies are those of the long wavelength antifer-
romagnetic spin-wave excitations, m+ and co

When Ho&0 and 0=sr/2, we find Q'=qi and
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9.25 = 9.25

9.20
0

I

l5
I I

30 45

8 (deg)

I

60
I

75 90 9.20
0

FIG. 12. Frequency of surface modes for an antiferromagnet-
ic slab as a function of 0, the angle between H& and q~, when
HO=0 for two values of Q'd. Material parameters as in Fig. 7.

FIG. 14. Frequencies of the surface modes for an antiferro-
magnetic slab as functions of q, d for Ho =0 and 0.2 kG for
0=~/2. Parameters and geometrical arrangement as in Fig. 12.

~2 —I
(

2 +~2 + 2
)

+—,'[ (co+ —co ) +2'„(co+—co )

4 &x ]1/2 (2.78)

co =A@M+ —,'re~(1+e '
) .

—
q&d (2.79)

Figure 14 shows these frequencies as functions of q~d for
Hp =0 and Hp =0 2 kG for the numerical example men-
tioned above.

9.35

In particular, when Hp=0, these frequencies are ex-
pressed by the relation

III. MAGNETOSTATIC MODES IN SUPERLATTICKS

In this section, we consider a superlattice formed by al-
ternating layers of two magnetic materials which we label
by the indices 1 and 2. Their thicknesses are denoted by
d, and d2. An example of such a superlattice of the di-
luted magnetic semiconductor Cd, „Mn„Te can be
designated by the symbol Cd, , Mn Te/Cd, „Mn„Te

1 1 2 2

where x& and xz are the atomic concentrations of mag-
netic ions in the layers 1 and 2, respectively. We take a
Cartesian coordinate system whose z axis is along the
direction of growth of the superlattice.

The equation governing the behavior of the scalar mag-
netic potential P is given by Eq. (2.7). We must bear in
mind that in each layer of the superlattice the quantity
1+4',; takes on values characteristic of the material for
that particular layer.

The boundary conditions require the continuity of P
and of b, . It is enough to specify the boundary condi-
tions at two successive interfaces and use the Bloch con-
dition

9.30 P(x,y, z+d)=e ' P(x,y, z),
where

(3.1)

d —d)+d2 (3.2)

9.25 is the superperiod along the axis of the superlattice.
The solutions of Eq. (2.7) in our case are of the form

9.20
0

FIG. 13. Frequency of surface modes for an antiferromagnet-
ic slab as a function of Q'd for several values of 0. Parameters
and geometrical arrangement as in Fig. 12.

(3.3)

where the subindices 1 or 2 are for the layers denoted by
1 or 2, respectively. The wave vectors Q& 2 are given by

(3.4)

The boundary conditions applied to Eq. (3.3) and use of
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the Bloch theorem (3.1) yield four homogeneous linear
equations in A1, 81, A2, and 82 which have a nontrivial
solution only if

(ii) Ho parallel to x. Here we have p'' )=p(„'2)=)M) 2,
p„=1, g(' '=0, while g(,' )=g, z. The expression (3.6)
becomes

cos(q, d) = cos(Q, d, )cos(gzdz)

f s—1n( g, d, )sin(Qzdz ),
where

(3.&)

and

p)g, +izzgz —16~ (y) —yz) q»

2p, ,pzg)Q2
(3.12)

(3.13)
f —

I (+(1)g )2+( (2)g )2

—16 '[(X(."—X(.'.) )q. +(X(.,"—X(,")q, ]'I

x (2p'„")M,",'Q)Q2 ) (3.6)

2 = 2
Q), z P)zq 1. . (3.8)

Four types of modes propagating with real q~ can exist
depending on the signs of Q, and Qz. If Q, z & 0 we have
"pure bulk" modes. These occur in the frequency inter-
vals for which both p& and p2 are negative. We observe
that f ~ 1 so that Eq. (3.6) can be written as

%"e consider the cases in which Ho is directed either
parallel to or perpendicular to the axis of the superlattice.

(i) Ho parallel to z. In this case )L(,(,' ' = 1,
(1,2) (1,2) d ~z(1,2) z/(1, 2) 0Pxx Pyy P1,2& an Xzx ~zy

1+ 2 (3.7)
2Q)Q2

Equations (3.4) become

(3.14)

f =[V'+i '+16~'(X X)')/2—i V (3.15)

is a function of. the frequency alone. We can only have
"pure interface" modes. In addition, Eq. (3.5) becomes

cos(q, d)= cosh(q d, )cosh(q dz)

+f sinh(q d, )sinh(q dz) . (3.16)

Formula (3.16) is an implicit equation yielding the fre-
quency co as a function of q and q, . Note that when

f ~ 0 there are no real solutions for q, d.
Whenq =0,

Since we envisage light scattering experiments in which
the wave vector q~ is determined by the geometrical ar-
rangement, and since it is dificult to consider general
values of q~, we study the cases in which q or qy van-
ishes.

Ifq =0,

cos( qzd ) cos( Q )d 1
+Q zd2 )

(f —1)sin(—Q, d, )sin(Qzdz) . (3.9)
and

Q), 2= q /i ),2 (3.17)

Since cos(q, d) lies between —1 and 1, not all frequencies
for which p, and )Mz are negative need be allowed. If Q,
and Qz are both negative, denoting Q, z =iQ', z, we have

cos(q, d) = cosh(Q', d, )cosh(Qzdz

f=
()M) Q)+Pzg 2 )(2)M))uzg)gz )

=( I+~ )/21~,

with

(3.18)

+f sinh(Q', d, )sinh(Qzdz) (3.10) (3.19)

cos(q, d) = cos(Q, d1)cosh(gzdz)

Q1
—Qz' .

sin(g, d, )sinh(Qzdz )
2Q)Qz

(3.11)

which may imply an additional restriction on the fre-
quency depending on the value of q, d. The expression
for pz is identical to that in Eq. {2.21) except that co) and
coz are replaced by (o') =

l y l (Ho —4rrMO( '
) and

coz= ly i[HO(HO 4~M'0 ')]' . Here —Mo ' is the magneti-
zation in the paramagnetic regions.

while f =(Q', +Qz )/2Q', Qz ~ 1. No solutions are pos-
sible since the right-hand side of Eq. (3.10) exceeds unity.
Thus, in this case, no "pure interface" modes exist.

There remains the cases in which Q1 and Qz are of
different signs. Here, we can take, e.g., Q, )0 and

Qz (0. Such modes, which we call "bulk-interface"
waves, exist in the frequency ranges in which p, & 0 and
p2&0. We write

which yields no solutions. This is expected since the
same behavior was noted for surface modes in a single
slab (see Sec. II). In general, such waves exist for an arbi-
trary angle 9=arctan(q»/q„). For "bulk-interface"
modes, e g , )M, &0 and. p. z&0 an«=i)r'=i(l)L()l/pz)'
we have

cos(qzd)= cos(g, d, )cosh(gzdz)

1 —w'
sin(g, d, )sinh(gzdz) .

2K
(3.20)

As before the quantity f depends only on the frequency
and is real if IM1 and p2 have the same signs, i.e., for "pure
bulk" and "pure interface" modes. It is purely imaginary
for "bulk-interface" waves.

For the "pure interface" modes we have

cos(q, d) = cosh(g', d, )cosh(Qzdz )

1+K+»»(Q', d))»»(Qzdz)
2K
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In a similar way, or uf r "pure bulk" modes we obtain

cos(yazd)= cos(Q)d) )cos(Q2d2)

sin(Q, d, )sin(Q~d2) .
2K

(3.21)

l4. l6

l4. l4

q d=I.O
q d~=05

IV. EXAMPLES OF MAGNETOSTATIC MODES
IN SUP ERLATTICES

In this section, we consider a few app
'

lications of the
formalism deve ope ind 1 d in Sec. III to superlattices com-
posed of different magnetic materials.

3
3

4.38—

q~d~= O. I

q~d~= 0.05

A. Antiferromagnetic-paramagnetic superlattices

%'e consider here the example in which the layers cor-
d' t the subindex 1 are in an antiferromagneticresponding to e su

'

roma netichase while those corresponding to 2 are ferromag
W te that in the latter case theor paramagnetic. e no e

d'ff between co and m& is extremely1 small.i erence 2

exist if both"Pure bulk" modes with Ho parallel to z exis i o
ative. These quantities are given byp& and p2 are nega ive.

s " ure bulk"Eqs. (2.45) and (2.21), respectively. Thus, "pure u
modes exist on y in e1 in the region of overlap of the ranges

The second set of inequalities cannot be sa is e
hile the first is satisfied under rather severe

restrictions epe
' t depending on the intensity o e app

'

ma neticfield. However, since in the paramagmagnetic e . o
d modesase co' ~ co&, this essentially restricts the allowed m

to those whose frequency is ly I
... i.e., e pa

excitation. For a sample of Cdp&9 Mn Te which is
1 'd-helium temperatures we estimate

~2&ly I
=59 56 kG when (co', /[y ~

)=59.12 kG. 1 co, is
&co & o. even this mode is forbid-outside the range co (co cr

. W t that co' increases with increasing Hp w l e
co decreases and that co', is in the range co &co &o. or

''H +2H H )' — There exists also anHp larger than I&
er limit to Hp beyond which "pure bulk" modes can-upper imit to p e

not be present, namely, when co', )o. . or e p

and M =0.2 kG) there are no "pure bulk" modes. ow-p

f r other situations they may be present.ever, oro er
h n &0 and ~cz) 0"Bulk-interface" modes occur w-en p,

h )0 and p &0. In the first case co&su', orand when p, ) an p~
67 ) c02, w ic imph' h irn lies practically no restriction, an

& o. . In the second situation we& co & o. or u+ & co & o.+.
are restricted to the small range co& & co & co& and we must

r co) o. . We note
that this range is complementary to t at o e "to that of the "pure

a roximately thebulk" modes so that an excitation at app
frequency cu', is always present. 'gFi ure 15 shows the fre-

f h "b lk-interface" modes for the parameters
used above as a function of q, d for several values o q~

first case above are
la ed. We observe that for increasing value of qjd2disp aye . e 0 s

Fi ure 16 shows thethe allowed range of q, d changes. igure
dispersion relation or ef th second case above in which co

lies in the extremely narrow range co& & co & coz.
We consider now the magnetostatic modes when Hp is

parallel to x, i.e., perpendicular to the axis of the super-

1 'f
~ &0. In that case the allowedinterface" modes on y i

solutions ie in wo1' '
t o extremely narrow ranges o requenc

for the numerical example considered ere.

4.84

4.83 q~dq= I.O

q d=05

4.82

4.8 l

0

q~d2= O. I

q~d~= 0.05

qz

FIG. 16. Frequency of the "bulk-interface" modes occurring
hen the frequency lies in the narrow ra g

geometrical features and numerical parameters as 'g.as in Fi . 15.

4.56
0

q cl

FIG. 15. Frequency of the "bulk-interfaceface" modes as a func-
tion of q, or an an

',d f tiferromagnetic-paramagnetic supsu erlattice.
medof d have been selected. We have assume

hthat the antiferromagnetic and pararn g
'

1 yrarna netic layers contain e
same magnetic ions ut a eb that they occur in different concentra-
tions. This means t a eh t th gyromagnetic ratio is the same or
both layers. e ic neTh th k sses of the antiferromagnetic an

and d, res ectively. The followingparamagnetic layers are
&

an
=60 kG,parameters were use id in the numerical calculation: p =6

~ ~=200 kG, Hq =„=30 kG M =0.2 kG and the magnetizationp+E
at li uid-helium tempera-in ethe paramagnetic layer is 0.07 kG at iqui - e

'

nds to H aralleltures. e ge. Th ometrical arrangement correspon p p
0to the axis o e uf th superlattice and, for simplicity, o

(sample SL3 in Ref. 13.)
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l4. l 8

l4. l6

4.37—
0

q„da= 0.05
q„d =O. l

q„d,= 0.5
qxd~= I.O

co, & co (co& and, hence, no "pure bulk" modes.
"Bulk-interface" modes occur in two cases: (i)

p, , (O,p2) 0, and (ii) p, )O, p2&0. In case (i) the fre-
quency of the modes is restricted to one of the ranges
co & co & a and co+ & co & o + and must lie outside
co, &~(co&, this latter condition implying no practical
limitation for paramagnetic layers. In case (ii),
~, (~ (co& and the frequency must lie in one of the three
intervals m(co, o &co&co+, and co) o+. Thus, again,
we expect a mode of approximate frequency co&. Figure
17 corresponds to case (i). It shows the frequencies of the
two "bulk-interface" modes for p& (0 and p2) 0 as func-
tions of q, d for various values of q dz. The numerical
parameters are the same as those used in the previous ex-
amples. Figure 18 shows the frequency as a function of
q, d for various values of q d2 corresponding to case (ii).

FIG. 17. Frequency of "bulk-interface" modes when HOIIx
and q~ =0 as a function of q, d for several values of q d2. Nu-
merical parameters as in Fig. 15.

Hp 60 kG, for the example already mentioned, the fre-
quencies of the allowed modes are given by co/~~ =4.39
and =14.16 and do not appreciably change when q d2
ranges from 0.05 to 1.0. These frequencies are approxi-
mately equal to o. and o.+, respectively.

When q =0, "pure bulk" modes appear if p& and p2
are negative. The conditions on the frequency are identi-
cal to those of "pure bulk" modes when Ho is parallel to
z, namely, these magnetic excitations exist whenever
there is overlap between the ranges u] & ~ & co2 and
co &~(o. . Ordinarily this implies that, if a mode ex-
ists, its frequency is approximately ~&. For the Inaterial
parameters used in our examples and Ho=60 kCx, there
is no overlap between the intervals m (co(o. and

B. Antiferromagnetic-nonmagnetic superlattices

f —1+1~4( 2 2
)
—

1( 2 2
)
—1 (4.1)

Now f (0 requires co to lie in the interval o. &co&o+.
In addition,

The modes discussed above may also exist in semicon-
ducting superlattices made of alternating antiferromag-
netic (1) and nonmagnetic (2) layers. An example is
Cd& Mn Te/CdTe (x )0. 17).

%'hen Ho is parallel to the axis, z, of the superlattice,
Q 1

= —piqi and Q2 = —qi(p2=1). We see immediately
that there can be no "pure bulk" modes. There are
"bulk-interface" modes when p& &0, i.e., for co & co & o.

or co+ & co & o.+. There are no "pure-interface" modes.
If Ho is parallel to the plane of the layers (Ho~~x ) we

consider the two cases q„=0 and q~=0. When q„=0,
Q12= —

ct and we only obtain "pure-interface" modes.
The quantity f defined in Eq. (3.15) must be negative in
order for the right-hand side of Eq. (3.16) to be less than
unity. In this case

4.93
(

2 2 )( 2 2)( 1 4 (4.2)

3
3

4.92

q„da= 0.05
qxd2= 0 I

r qxda=05I

so that whenever

(o+ —o ) )2'„,
we obtain "pure-interface" modes when m satisfies

2 ( 2(1( 2 + 2
) 1[( 2 2 )2 2 4 ]1/2

or

(4.3)

(4.4)

4.90
0

qxda= I.O
—,'(o. ++cr )+ —,'[(o.+ —o. ) —2'„]'» (co &o+ . (4.5)

If the quantity under the radical is negative, i.e., if

H11 = [(co~ —co )/2y]
'Iz

FIG. 18. Frequency in the range co I & co & co2 of "bulk-
interface" modes when HoIIx and q» =0 as a function of q, d for
several values of q d2. Numerical parameters as in Fig. 15.

(~& /y)
8(co„/y) +16(H~+2H„H~)

(4.6)

then the inequality (4.2) is automatically satisfied and the
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frequency of the "pure-interface" modes lies in the region
cr ( co (o +. For our example, (4.6) is satisfied for
Ho (0.33 kCr.

If q =0, Q&
= —

q /pi, and Qz= —
q . There are no

"pure bulk" modes. A simple analysis shows that there
can be no "pure interface" waves. However, "bulk-
interface" excitations occur when p &

& 0, i.e., when
&co &o. or co+ &~ &o.+. These results are con-

sistent with those obtained for a slab when the angle 0 be-
tween q~ and 80 equals zero.

C. Ferromagnetic-nonmagnetic superlattices

We consider the case of a superlattice with alternating
ferromagnetic (1) and nonmagnetic (2) layers. If Hp is
parallel to z, Qi = —piqi and Qz = —qi. We have here
no "pure bulk" modes. There are "bulk-interface" modes
when p& & 0 which requires ~& & co & cuz since
pi=(co —coz )(co —coi ) '. We remark that unlike the
paramagnetic case, co& can now be significantly different
from coi. Equation (3.5) in this case reduces to

cos(q, d) =cos[qid, ( —p, )' ]cosh(qidz )+—,'(1+@,)( —p, )
' sin[qid, ( —p, )' ]sinh(qidz ) . (4.7)

There are "pure interface" modes if p, &0 but this turns out to be inconsistent with Eq. (3.5). Therefore, only "bulk-
interface" modes are possible in this geometry.

If Hp is parallel to x we consider first q, =0. Then Q, z
= —

q so that only "pure interface" modes exist. The disper-
sion relation is obtained from

cos(q, d)=cosh(q d, )cosh(q dz)+f sinh(q d, )sinh(q dz),
where

(4.8)

CO~ +672f=(pf+ 1+16+ g)/(2p, )= co — (co —coz)2'�] (4.9)

Equations (4.8) and (4.9) can be solved for co as a function of q, and q but its expression is not particularly useful. The
range of frequencies accessible to the magnetostatic modes is restricted by Eqs. (4.8) and (4.9) to the values for which
coz (co ( [(co, +coz)/2coi]' . An additional restriction follows from the requirement that the right-hand side of Eq. (4.8)
must lie between —1 and l.

For q =0, Q, = —
q /p„and Qz= —

q . Therefore, there are no "pure bulk" modes. When p, &0, use of

cos(q, d)=cosh(q dipi ' )cosh(q„dz)+ —,'(I+p&)pi ' sinh(q dipi ' )sinh(q dz) (4.10)

establishes the nonexistence of "pure interface" modes.
Finally, . "bulk-interface" modes exist when p] & 0

which limits the frequencies to the range co, &co&cu2,
There are, of course, possible additional restrictions aris-
ing from the consequence of Eq. (3.5) applied to the
present conditions.

Our conclusions in relation to magnetic excitations in
superlattices of DMS's are summarized as follows.

(1) In an antiferromagnetic-paramagnetic superlattice
with Ho parallel to the growth axis there are three spin
excitation branches, corresponding to "bulk-interface"
modes. There are "pure bulk" modes but at magnetic
fields of 60 kG they are absent using the parameters ap-
propriate to Cdp 89Mnp»Te/Cdp zpMnp 7pTe. Pure inter-
face modes cannot occur in this geometry.

(2) When Hp is perpendicular to the axis of growth of
the superlattice we distinguish between the cases 8= m /2
(q =0) and 8=0 (q =0). In the first case, an
antiferromagnetic-paramagnetic superlattice can only ex-
hibit "pure interface" modes of which there are, for our
example, three narrow branches at frequencies approxi-
mately independent of q . One of these occurs at
co=co& =co2. In the second case we can have only "bulk-
interface" and "pure bulk" modes. There are three
branches of "bulk-interface" modes. For the example
chosen there are no "pure bulk" waves even though for

other values of the magnetic field they may be present.
(3) In the case of antiferromagnetic-nonmagnetic su-

perlattices the conclusions 1 and 2 are applicable except
that there are no "pure bulk" modes at all.

(4) For ferromagnetic-nonmagnetic superlattices the
conclusions are the same as for antiferromagnetic-
nonmagnetic superlattices except that the frequency
ranges are different.

We note that "pure bulk" modes are only possible in a
superlattice when the allowed frequency intervals of
"bulk" waves in the component layers overlap. This is
expected because such waves can propagate in both
media. When there is no overlap in the frequency ranges
of slab modes, the spin waves propagate in one medium
while their amplitudes decrease exponentially in the oth-
er. Such waves can be regarded as confined to the layer
in which they propagate. This is in close analogy to the
situation occurring in the propagation of optical phonons
in superlattices.
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