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We study the criticality at the isotropic limit of the S = 2, antiferromagnetic, XXZ chain on ap-

proach from the Ising side. Long series are developed for the longitudinal and transverse correla-
tion sums or structure factors S„and S+ around the Ising limit. Their extrapolation indicates a
divergence as the critical point is approached, with two different powers, a result quite unexpected if
one employs a naive scaling argument since the critical correlations are isotropic and there is only
one correlation length, g. An analytical calculation is presented, in which this paradox is resolved

and the numerical results are confirmed.

I. INTRODUCTION

Quantum spin chains have been of special theoretical
interest owing to their exact solvability and also because
they map onto various two-dimensional classical models
and (1+1)-dimensional field theories. ' A vast number of
analytical and numerical results have been obtained
which have proven useful in our general understanding of
phase transitions and critical phenomena in addition to
being relevant to several experimental systems. The
S =

—,
' antiferromagnetic Heisenberg chain, whose exact

ground-state energy was first obtained by Bethe and
Hulthen several decades ago, is one of the simplest of
these models which is exactly solvable in many respects.
It is known that in the ground state there is no sublattice
magnetization and the spin-spin correlations decay alge-
braically. However, the complete asymptotic form of the
spin-spin correlations is not known. More precisely, the
correlations are known to decay in leading order like 1/r,
but possible logarithmic correction factors which have
been anticipated are not known exactly. Qne of the aims
of this paper is to obtain the form of the leading logarith-
mic correction.

The Hamiltonian for the XXZ chain is

H = g [b,S,'S,'+, +(S,"S,+, +SySs+, )],
where the spins may be taken as Pauli spin matrices. In
this paper we shall concentrate on the behavior of the
correlation sums or antiferromagnetic structure factors

(1.2)

(1.3)

At the Heisenberg point, i.e., at 6=1, the Hamiltonian is
isotropic in spin space and the two structure factors are

Also, the correlation length typically diverges on ap-
proach to criticality as

g-(5 —1) (6~1+) . (1.6)

These would imply that the structure factors should
diverge with an exponent (1—q)v. In the present prob-
lern g = 1 and v is infinite, since the correlation length has
an essential singularity. ' Hence, the exponent for the
divergence of the structure factors depends on the nature
of the essential singularity w'hich characterizes the diver--

gence of the correlation length. From the exact solu-
tions, ' one knows

g-exp[m /(b, —1)' ] .

Substituting this form into Eq. (1.4) we get
ex [m/(5 —1} ]

More interestingly, however, multiplicative logarithmic
corrections directly modify this exponent. Suppose we
assume

identical apart from a factor of 2. But for b,&1, they are
clearly di8'erent. We find that as 6 approaches unity
from above, these two correlation sums diverge with
di6'erent exponents. This is quite contrary to normal ex-
pectations. Its proper explanation requires a careful
study of the spin-spin correlations close to criticality.
Naive scaling arguments would suggest

S.„(S)-f '( —1)"&S'(0)S (r)),dr, (1.4)

where ab stands for zz or + —,g(b, ) is the correlation
length, and the subscript c refers to correlations at criti-
cality, '6, =1. Since the critical point is isotropic, the
correlations are isotropic. Hence, one expects the two ex-
ponents to be the same. Let us develop the argument in
further detail. Correlations at criticality are expected to
decay as a power law, namely,
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( —1)"(S'(0)S (r)), —(1nr) /r, (1.9) u"= 1.1+0.1, o.+ =0.75+0.15, (2.4)

II. SERIES EXPANSION FOR THE S =
2 XXZ CHAIN

We wish to obtain power series expansions for the lon-
gitudinal and transverse correlation sums around the Is-
ing limit. Such expansions, in powers of y =1/b„have
been obtained before for the ground-state energy, eo, and
the sublattice magnetization, m, but only to sixth order.
We have obtained expansions for eo, m ~, and S„ to order

and for S+ to order 5 by the method
developed by Singh, Gelfand, and Huse. The expansion
for S„in powers of x =( I/6) is

S„=4x +4x +4. '75x +5.125x +5.2813x

+5.3516x +5.4287x +5.4761x

+5.5881x +5.5612x ' +5.8508x "+.. . , (2.1)

where the coefficients are correct to five significant digits.
The expansion for S+ in powers of y =1/6 is, likewise,

S+ ——1+2y+y2+0. 5y3+y4+0. 875y5

+0.8125y +0.78125y +0.73438y

+0.69531y +0.65625y'

+0.66602y "+0.64941y ' + (2.2)

As discussed, the critical point is at 6, = 1. Let us denote
the deviation from criticality by t =6—1. We expect the
correlation sums diverge as

ZZ +-S„-t, S+ -t (2.3)

Given this assumption of power-law divergence as t ~0,
the series may be analyzed by biased Dlog Pade and inho-
mogeneous differential approximants. The critical point
is set at x =1. A list of exponent estimates for the two
cases is given in Tables I—IV. Based on these we estimate
the exponents to be

then one finds that the structure factor diverges with an
exponent ( I+A, )/2 in place of —,'. However, as long as the
correlations at criticality are isotropic and there is only
one correlation length in the problem, the transverse and
longitudinal correlation sums should apparently diverge
with the same exponent. In the rest of the paper we shall
show that the situation is more complicated. The pres-
ence of marginal variables invalidates a naive application
of scaling arguments. We shall take recourse to sine-
Gordon field theory to resolve the issue.

The plan of the paper is as follows: In Sec. II we shaH
discuss series expansions and their analyses for the struc-
ture factors and estimate the exponents for their diver-
gences. This is how the paradox was discovered. In Sec.
III we introduce the appropriate bosonic field theory that
describes criticality in these systems and obtain the loga-
rithmic corrections to the 1/r decay of correlations at
criticality. By a careful consideration of the correlations
close to, but not at, criticality, we shall explain the origin
of two different exponents. Our conclusions are summa-
rized in Sec. IV.

which values seem quite distinct.

III. RENORMALIZATION4 ROUP ANALYSIS

In this section we introduce the appropriate field
theory that describes criticality in these systems and car-
ry out a renormalization-group analysis of the problem.
Following the standard steps of Jordan-Wigner transfor-
mation and bosonization, one can map the XXZ model on
to the following sine-Gordon Hamiltonian (for a recent
treatment of the steps involved see Sachdev and Shan-
kar )

H = ,' f dx [-II'+(dy/dx)'

—aoAocos[(16m /Ko)' P]] . (3.1)

Here P is the boson field and II its conjugate momentum
while Ko and ao are smooth and monotonic functions of
6 in the region of interest and Ao is the momentum
cutoff. The correlation functions we need for the struc-
ture factors are

l (&Ep ) 0(R) 1 (7TKp ) 0(0)
G+ (R)= e

where

8(x)= f - II(x')dx'

(3.2)

(3.3)

The behavior of this theory under renormalization is
well known. Let us define scaled variables

xo=4/Ko —2, and yo=2ao~ .

Then the renormalization-group flow equations are

dy dx
dZ= y dZ= y

(3.5)

(3.6)

where Z =ln(A/Ao) is the length rescaling factor. The
fixed point is at x*=y*=0, or %*=2 and a*=0. The
flows are shown schematically in Fig. 1. The physical
manifold is depicted by the dashed line. The Heisenberg
point, A, must lie on the separatrix C given by x =y.
Any point on this separatrix flows into the fixed point O.
To the right of C is the XY ordered region, which flows
into the fixed line. To the left is the Ising-like region
which ultimately flows to strong coupling under renor-
malization.

Let us begin by computing the asymptotic decay of
spin-spin correlations at the Heisenberg point A. On the
separatrix we can parametrize the flows by

x =y =g/m, (3.7)

so that dg/dz = —g /~. The Callan-Symanzik equation
expresses the critical correlation function as'

and

G„(R)=4(cos[(4~/ICo)' P(R)]cos[(4n./Ko)' P(0)]) .

(3.4)
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TABLE I. Estimates of o.,"from biased Dlog Pade approximants: M and N are the orders of the po-
lynomials in the numerator and denominator, respectively.

1.38
1.28
1.09
1.00
1.06
1.06
1.20
0.91
1.12

1.30
1.46
0.93
1.03
1.06
1.06
1.10
1.12

1.04
1.07
1.13
1.05
1.04
1.26
1.14

1.06
1.02
1.09
1.09
1.09
1.12

1.07
1.08
1.09
1.09
1.09

1.08
1.11
1.09
1.09

1.09
1.09
1.10

1.09
1.09

TABLE II. Estimates of o,"from biased inhomogeneous differential approximants [0/M;N], with a
constant-background term: N and M are the orders of the polynomials multiplying the derivative of the
series and the series, respectively (Ref. 6).

1.38
0.89
1.00
1.01
1.06
1.00
1.34
1.41

1.10
1.04
1.05
1.05
1.05
1.05
0.89

1.06
1.02
1.05
1.05
1.06
1.08

1.02
1.02
1.09
1.10
1.04

1.04
1.10
1.09
1.09

1.10
1.10
1.10

1.09
1.10

1.05

TABLE III. Estimates of 0.,+ from biased Dlog Pade approximants as in Table I. An asterisk indi-

cates an approximant with y,+ &0.5 or y,+ ) 1.0.

10

2
3
4
5

6

8
9
10

0.75
0.84
0.85
0.77
0.74
0.64
0.63
0.67
0.74

0.87
0.85
0.84
0.69
0.80
0.63
0.64
0.60

0.84
0.88
0.79
0.97

)fC

0.67

0.76
0.76

)fC

0.84
0.71

0.76
0.76

)fC

0.74

0.67
0.69
0.71
0.72

0.70
0.88
0.73

0.72
0.73

0.73

TABLE IV. Estimates of cr, from biased inhomogeneous differential approximants [0/M;X]. An
asterisk indicates an approximant with y,+ &0.5 or y,+ ) 1.0.

2
3
4
5
6

9

0.78
0.84
0.82
0.75
0.70
0.64
0.65
0.70

0.86
0.83
0.87

)fC

0.65
0.64

0.81
0.53

0.59

0.69

0.76

0.79

0.72
0.55

0.54

0.69
0.70
0.71

0.71
0.75

0.72
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C

0

us, however, verify that this is so, both as a check on the
calculation and to pave the way for later discussions.

In the O(g) computation of G„ the interaction term
comes in. Indeed, if it did not, the fact that the P s in
(3.4) are multiplied by (4m/K)'~, where K comes in the
denominator, rather than in the numerator as for G+
implies that as J moves away from K*=2 (i.e., g moves
away from g =0) the 0 (g) contribution of y„would be
the negative of that of y+ . Hence implying that G„
would have the (InR)'~ in the denominator if we used
free-field theory. But we will see that interactions turn
this around. Using Eq. (3.10), a short calculation, correct
to 0 (g), yields

FIG. 1. Renormalization-group Aow diagram for the sine-
Ciordon field theory. G„(R,g, A) = 1 — ln(AR )

1

RA 2'

1nR
G,b(R, go) =exp — y,&[g (z)]dz G,&( l,g (R)),

0

(3.8)

2
g R

4n' x 'IR —x I'

(3.14)

where

y, i, (g)=din(ZG )/din(A), (3.9)

ZG being the prefactor which renormalizes G,b multi-
ab

plicatively.
To obtain the leading logarithmic correction we need

y,b(g) only to order g. To compute this, it suffices to
know that in the free-field measure, one has

(IIe ' ' ) =5 g a,. exp g lnA~x; —xj ~

l J 2~

G+ (R,g, A)= 1
+ 'g'

(R A)i —g/2m

1 —g /2m

0
G+ (R,g, Ao), (3.11)

so that using (3.9) we have

y+ =1—g/2m. +O(g ) . (3.12)

Notice that the entire g dependence of G+, and hence
of y+, comes from the (mX)'~ term which multiplies
the 8's in (3.2); Substituting this into Eq. (3.8) we get

(lnR )'
G+ (R,go)= [1+O(g(R))] .

R
(3.13)

This calculation thus yields the leading logarithmic
correction to the 1/r decay of the correlation function up
to O(g (R) ), which goes as 1/lnR.

We know that G„should have similar behavior. Let

(3.10)

and similarly for a string of factors e'~ . (A mixed string
vanishes unless the a; and P; separately add up to zero. )

Consider first G+ (A), to order g in the interaction.
We can ignore the interaction by virtue of the 5 function
in Eq. (3.10). The free-field integration gives, to order g,

where the second term comes from the g dependence of K
implied by (3.5)—(3.9), as in the case of G+, but the
third term comes from the g dependence of the interac-
tion a. The ln(AR) piece of the integral in the third term
is found to have a coefficient g/m, which reverses the sign
of the second term so restoring the rotational invariance
along C, i.e., y„=y+ =1—g/2~.

If we now integrate G,b(R, t =0) up to the correlation
length g(t) =e~~+'', we find that

s+ -s -t-'".
This is in agreement with our earlier conclusion for o.+

but not with o" in (2.4). Since the critical theory is rota-
tionally invariant and there is only one correlation length
how can different powers possibly emerge? This is the
paradox we now wish to resolve.

The answer lies in the behavior of the correlation func-
tions close to but not at criticality. Here the two correla-
tion functions have different behavior. Consider a point
B in Fig. 1 on the physical manifold, away from A by an
amount t =6—1. Let us integrate the Aow out to B'
which has t —1. During the Aow along BD one follows
close to the separatrix C, where the correlations are iso-
tropic. However for the second half of the journey, along
DB' the correlations, even along C', are not necessarily
isotropic. The precise balance between the interactions a
and K that exists on C does not exist on C'. More pre-
cisely, we have, y„=y+ on C because the o. term re-
versed the sign of the second term in Eq. (3.14). When a
is positive and g is negative, however, the two terms have
the same sign and thus y„&y+ . Before we make this
precise and also compute the power-law divergences for
the correlation sums, let us go back to the arguments in
the introductory sections and see what modifications are
needed to accommodate the correct answer within the
scaling ansatz.

Schematically, the structure factors can be expressed as

S,b(b, ) —f G,b(b, , r)dr . (3.15)
1
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The correlation functions are expected to have the scal-
ing form

G,b(b, , r)-(lnr)'~ X,b(r/g)/r, (3.16)

where the scaling function X,b(x) depends on a single
combination of the variables r and A. The integral in Eq.
(3.15) can be split up as

f., =f:,'+f,',+f, (3.17)

For large values of its arguments, the scaling function de-
cays exponentially, corresponding to the exponential de-
cay of correlations away from criticality, namely,

yp=xz+t . (3.20)

Under renormalization via Eq. (3.6), this point fiows ac-
cordingly to

tan '(x/&t )=tan '(xol&t ) Z&—t (3.21)

or,

—Z&t, (3.22)

the form of the correlation functions away from criticali-
ty for r/g small, and carry out the integration in Eq.
(3.17).

Let the point B have coordinates xp and yp with

X(x)-e (3.18) xp

Hence, as long as the scaling function is bounded for
small and finite values of its arguments, this does not
affect the integrals and one is led to the result

where we have used the fact that &t /xo is small. This
gives

(lnr)' —dr -(in() —t
1

(3.19)
x =&t cot [&t (Z + 1/x0 ) ] . (3.23)

where we have used Eq. (1.7). If, on the other hand, the
scaling function does affect the first integration in Eq.
(3.17), we can get additional divergences. We shall find
that for r large but r/g small, the scaling function for S„
is anomalous and so the integral does pick up additional
divergences. To show this explicitly, we shall compute

Zii, =m /& t —2/x 0 . (3.24)

Let us revisit the Callan-Symanzik equation for the
noncritical case, namely,

We will eventually integrate the fIow up to B', say, where
x = —xp and y =yp. Hence, we obtain

lnR
G,b(R, go, t) =exp — y, t, [x (z),y (z) ]dz F,I, [R /g(t) ],

0
(3.25)

where, now, go = (xo+yo)/2 and t —xo —yo are the natural coordinates while F,b is a smooth function of its argument.
To lowest nontrivial order in x and y, we know from the earlier analysis (3.12) that

y+ =1—x/2 . (3.26)

We ignore the smoothly varying piece and concentrate on the prefactor

6+' (R,go, t) =—exp &t f cot[Z—&t +&t Ixo]dZ
0

(3.27)

or,

G~+' (R,go, t)=, Qsin[&t (lnR +1/xo)] .1

R~'" (3.28)

m —2+t/xp
—f dye[sin(y +&t /xo)]— (3.29)

In obtaining the prefactor we have used the fact that sin(&t Ixo)=&t Ixo, since xo is fixed and finite. We then
proceed to calculate

exP(vrl+t —2/xo )

S+ (t)- f G+ (R)dR =
1

noting that the integral is, asymptotically, just a constant.
Now, returning to Eq. (3.14), we will compute 6„. Keeping x and y as separate variables, we get to lowest order in x

and y

y„=1—y +x/2,
which on using (3.20) in general form and (3.25) gives,

(3.30)
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G„(R,go, t) =—exp f (+x + t —x /2)dz G (R /g) (3.31)

v'r
tan (lnR +1/xo)

21

Rt Qsin[V r (lnR +1/xo)]
(3.32)

Notice that for v t lnR ((~/2 both G„and G+ go as (lnR)'~ /R, but that later on their behavior is quite different.—2/xoTo compute S„(t),all that remains is to integrate G„(R,go, t) between R =1 and R =e g, which yields

v'r
tan (lnR + 1/xo)

2exP(.~/+ t —2/xo )

S„(t)= dR
Qsin[&t (lnR + 1/xo)]

(3.33)

and, shifting variables to z'=z+V'r /xo, we get

1
' ~'o tan(z'/2)

&sin z' (3.35)

Here, unlike the situation in (3.29), the integrand is singu-
lar as t~O. The singular part of the integral is readily
seen to be t ' so that we finally obtain

S„(r)=t (3.36)

This confirms and explains the numerical results quoted
earlier for two different values of o. + and o.".

Changing variables to z =&t lnR gives

~—&«&~o ta [n( z+ &t Ixo)/2]
S„(r)= dz,

Q[si n(z +V t /xo)]

(3.34)

cal point. Even though the correlations are isotropic at
criticality, and there is only one correlation length in the
problem, the two structure factors diverge with different
exponents. This result has been confirmed by an exact
renormalization-group argument. Our analysis shows
that such a behavior is a general feature of problems with
marginal variables or Kosterlitz- Thouless —type Aows.
We have also demonstrated that the mechanism for get-
ting different exponents for the longitudinal and trans-
verse correlation sums is related to the scaling function
being singular. "

Note added. After completion of this work we received
unpublished results from I. AfBeck, D. Gepner, H.
Shultz, and T. Ziman where the result (3.13) has been in-
dependently derived.
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