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Pressure and temperature effects on the one dimensional (1D) and higher-dimensionality correla-
tions associated with the ferroelectric and antiferroelectric phase transitions in cesium dihydrogen
phosphate were studied by means of the !*3Cs nuclear magnetic resonance (NMR) spin-lattice relax-
ation time T;. We measured T at 6.5 MHz at temperatures down to the ferroelectric (FE) Curie
point T at 1 bar and at 1.5 and 3.0 kbar, down to the triple point T,=124.6 K at 3.3 kbar, and
down to the antiferroelectric (AFE) Néel point Ty at 3.6 kbar. With decreasing temperature, T
first decreases exponentially due to 1D fluctuations associated with the J, interactions in disordered
hydrogen-bonded chains running along b. As the temperature falls further, T, then decreases
linearly as the J, interaction between these chains in hydrogen-bonded planes comes into play.
From these results and the known pressure derivatives of T and Ty, we calculated pressure depen-
dences for J,, J,, and for the interplanar interaction J,. At 3.3 kbar J, changes sign, so the plane
stacking becomes AFE instead of FE. Above 8.9 kbar, where J, extrapolates to zero, a new AFE
phase with a checkerboard arrangement of FE b chains is predicted.

I. INTRODUCTION

Cesium dihydrogen phosphate (CDP) is a hydrogen-
bonded crystal with highly anisotropic interactions which
lead to strong one-dimensional correlations over a wide
temperature range above its phase transition tempera-
ture. It is paraelectric (PE) at room temperature and un-
dergoes a ferroelectric (FE) phase transition at 153 K.!
In addition, dielectric? and neutron-diffraction measure-
ments® at high pressure have revealed a third antifer-
roelectric (AFE) phase at pressures above 3.3 kbar and
temperatures less than 125 K.

In the paraelectric phase CDP is monoclinic (P2,/m)
with two formula units per unit cell. Cesium atoms and
PO, groups are centered on mirror planes perpendicular
to the b axis at the fractional coordinates y =1 and 3.
Phosphate groups are linked together by hydrogen bonds
of two inequivalent types; hydrogens in bonds approxi-
mately parallel to the ¢ axis are ordered at off-center sites
in the hydrogen bond, while hydrogens linking phosphate
groups in zig-zag chains along the b axis are positionally
disordered in double-minimum potential wells. Thus PO,
groups are linked by a square network of hydrogen bonds
producing a series of b-c planes separated by cesium
atoms. In the ferroelectric phase b-chain hydrogens* or-
der in one of the two off-center sites in the O—H - - - O
bonds while the positions of hydrogens in ¢ axis H bonds
are unaffected. This hydrogen ordering is accompanied
by a shift of Cs* and PO}~ groups along the b axis which
yields a spontaneous polarization along b. In the
pressure-induced AFE phase the structure doubles along
the a axis due to antiferroelectric stacking of FE ordered
b-c planes.’ This AFE phase structure has also been ob-
served for CsD,PO,.°

Neutron-diffraction experiments>® have shown strong
quasielastic scattering in narrow reciprocal space planes
perpendicular to the ferroelectric b axis on approaching
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Tc. This shows that the correlations associated with fer-
roelectric ordering are strongly one dimensional along
the b-axis hydrogen bonds. The interactions between ad-
jacent b-axis chains linked by c-axis hydrogen bonds are
weaker by about a factor of 100 and correlations in the a
direction are weaker still. Also, correlations along a and
¢ decrease rapidly with increasing temperature above T
while the b-axis correlations are apparent as much as 50
K above T.

In addition to the neutron-scattering experiments,>®
evidence for long-range correlations has been observed in
dielectric susceptibility,”® electron paramagnetic reso-
nance (EPR),’ and nuclear magnetic resonance !0~ 13
(NMR) experiments. The NMR work includes 3!P, 170,
deuteron, and '3*Cs resonance studies.

This report begins with a description of our apparatus
and experimental method, continues with presentation of
experimental results and their analysis, and concludes
with a discussion of the results including a prediction of a
new AFE phase with checkerboard-chain ordering at
pressures above 8.9 kbar.

II. EXPERIMENT

The experimental arrangement consists of a Varian
electromagnet having a 13-cm gap which accommodates
a high-pressure, low-temperature apparatus described
elsewhere.!®!7 Briefly, it consists of a beryllium-copper
high-pressure vessel surrounded by an evacuated liquid-
nitrogen-cooled dewar. The pressure vessel is surrounded
by a copper thermal radiation shield, and both vessel and
shield have separate heaters and temperature controls
which provide long-term thermal stability of +2 mK.
The high-pressure medium was helium gas which was
pressurized as high as 3.6 kbar with long-term stability
limited by a helium leak causing a pressure-loss rate of 2
bar/h at 3.6 kbar.

The sample was cut from an optically clear single crys-
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tal grown by slow evaporation from an aqueous solution
of Cs,CO; and P,0s. It was mounted with the b axis
parallel to the applied static magnetic field H, and the ¢
axis parallel to the NMR field H,. At this orientation
the quadrupolar splitting collapses,'* so the NMR
response consists of a single Zeeman line with a well-
defined spin-lattice relaxation time (7', ).

The NMR spectrometer was operated at a fixed fre-
quency of 6.5 MHz which corresponds to a field of 1.1639
T for 133Cs nuclei. To measure the spin-lattice relaxation
time T, the spin system was first saturated by a comb of
90° pulses, and then after a waiting time 7 the response to
a 90° pulse was observed. The free induction decay after
the pulse was digitized and the response amplitude I at a
suitable delay after the end of the 40-usec dead time was
noted, and compared to the amplitude I, for long 7. A
semilogarithmic plot of I,-I against 7 yielded straight
lines, indicating a single relaxation time T;.

Most of our 7', measurements were made from 220 K
down to 2° or 3° above the ferroelectric or antiferroelec-
tric transition temperature, which ranged from 153 K at
1 bar to 123 K at 3.6 kbar. These measurements were
made at five hydrostatic pressures, namely 1 bar and 1.5,
3.0, 3.3, and 3.6 kbar. The paraelectric-ferroelectric-
antiferroelectric triple point occurs at 3.3 kbar and 124
K, approximately. Therefore, we were able to observe
the behavior when approaching both the ferroelectric and
antiferroelectric phases as well as when approaching the
triple point.

The relaxation rate (T; !) versus temperature (7T) re-
sults are presented in Fig. 1 for the above pressures. To
aid comparison, T is plotted against T for all five pres-
sures in Fig. 2. In general terms, at each pressure T; de-
creases with temperature in a similar way. At higher
temperatures the 7T'; behavior corresponds nearly to that
expected for proton intrabond fluctuations in a strictly
1D Ising chain with FE coupling between protons. At
lower temperature, T, exhibits a Curie-Weiss form extra-
polating to zero T'; at the ordering temperature for the
2D-coupled hydrogen-bonded planes. Detailed discus-
sion of these phenomena and of the indirect evidence for
a narrow third temperature regime dominated by the
weak interplanar interaction is given in the following two
sections.

III. THEORY

The interpretation of these results is made within the
framework of a theory presented by Blinc, LoZar, Topi¢,
and Zumer (abbreviated here as BLTZ).!> In this theory
the strongest interaction, which is the FE coupling in the
ordering chains, is treated exactly. The intermediate-
strength interaction between such chains within a
hydrogen-bonded plane, and the weakest interaction
which is between such planes, are treated in the mean-
field approximation. We correct some misprints in the
BLTZ equations. Also, we extend their mean-field
analysis of the two weaker interactions, which they per-
formed numerically without separating the effects of
these two interactions, to show that the intermediate in-
teraction causes Curie-Weiss—type dependence of T'; on
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T —Tc,p, while the weakest interaction gives a depen-
dence varying as (T —T¢)!'/? in a narrow temperature
range just above T.

The BLTZ theory has its roots in the wave-vector-
dependent susceptibility for the pure 1D Ising model
developed by Suzuki and Kubo,'® and the static behavior
including the phase transition for a system of weakly cou-
pled 1D chains studied by Scalapino et al.'® Zumer?
combined those two approaches to obtain the ¢-
dependent susceptibility for the weakly coupled system.
BLTZ introduced anisotropy into the interchain interac-
tions and calculated quadrupolar spin-lattice relaxation
from the ac dielectric susceptibility using the
fluctuation-dissipation theorem. In each case, the intra-
chain interactions were treated exactly and the interchain
interactions in the mean-field approximation.

The BLTZ theory begins with the assumption that the
dominant mechanism for spin-lattice relaxation is the in-
teraction of the nuclear electric quadrupole moment with
the fluctuating electric field gradient (efg). This assump-
tion appears to be correct over the temperature ranges
covered in our experiments. It is further assumed that
the quadrupolar interaction is small compared to the Zee-
man interaction of the nuclear magnetic dipole moment
with the applied magnetic field H,. Under these assump-
tions the inverse spin-lattice relaxation time 1/T; for

quadrupolar relaxation of nuclei having spin I (I =7 for
133Cs) and quadrupole moment Q is given by
e‘Q? 21+3
—_—_—— =7 Y J(l)(a))+4.f(2)(2 )1, 1
T, 40% 12(21—1)[ @] W

in which the spectral density of the autocorrelation func-
tion for the fluctuating efg tensor at the **Cs site is

T®(@)= [ 7 (7R(0)V =R(1))explikot)dt . @)

Here the following notation is used in terms of efg com-
ponents for a system with the z axis along the applied
magnetic field H:

yE=y +iv,, , a
yER=1y, )EiV,, )
2 xx YY

In Egs. (1) and (2), the average efg components contribute
nothing to the relaxation, so in Eq. (3) we need only the
magnitudes of the fluctuations about these averages.

These ﬂuctuatlons result mostly from atomic displace-
ments within a ‘“‘source radius” of perhaps 5 A around
the Cs nucleus, caused by proton motlons in the disor-
dered chains. Each Cs nucleus is within 5 A of two disor-
dered H-bonded chains belonging to the same H-bonded
plane. We assume that the fluctuation correlation length
is greater than the source radius, so the efg at a given Cs
nucleus at a given instant approximates its static value in-
side a FE domain. (From the neutron-scattering study of
Frazer et al.,?! this assumption is good over a wide tem-
perature range for the intrachain b correlations, and from
their Fig. 6 may be good for 5 or 10 K above T for the ¢
correlations between chains in the same H-bonded plane.)
Accordingly, we choose for the magnitude of the fluctua-
tions half of the difference between the two efg’s deter-
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mined by Kanda and Fujimara'# for the two FE domains
in the FE phase. This assumption differs somewhat from
that of BLTZ, who used the difference between the efg
for one FE domain type and the efg for the PE phase.

In the BLTZ development, Eq. (2) is then Fourier
transformed, the random phase approximation is made,
and the shortness of the efg source radius is invoked so
that V;“= V", which leads to

JNe)=(VL+V2)je),

Here j(w) is a sum over Fourier components, which fol-
lowing Topi¢ et al.'? is related to the imaginary part of
the pseudo-one-dimensional Ising model wave-number-
dependent susceptibility,

. _ 1 . — 2T 7]
](a))—ﬁ ‘?’q(“’)“C—J\r%X (w,q) . (5)

Her-e C is the Curie-Weiss constant for the dielectric be-
havior, N is the number of mobile protons, g is the wave

4) vector, and a factor of 2 missing in BLTZ is inserted.
J2Q20)=[1(V, — Y, Y2+ ny 1/ Qw) . The BLTZ analysis for the susceptibility follows that of
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FIG. 1. Critical component of the spin-lattice relaxation rate for *3*Cs in CsH,PO, as a function of temperature, at pressures of (a)

1 bar, (b) 1.5 kbar, (c) 3.0 kbar, (d) 3.3 kbar, and (e) 3.6 kbar.
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FIG. 2. Temperature dependence of the critical portion of
133Cs spin-lattice relaxation time T in CsH,PO, for pressures of
1 bar, circles (BLTZ data shown by diamonds), 1.5 kbar
(squares), 3 kbar (triangles), 3.3 kbar (stars), and 3.6 kbar (penta-
gons). Predictions of Egs. (18) and (27) are indicated by solid
lines. Dashed line portions correspond to an extrapolation of
the 2D expression of Eq. (21). The line for 3.3 kbar is omitted
for clarity.

Zumer,® ignoring tunneling which seems to have no ma-
jor effect, treating intrachain interactions exactly via the
one-dimensional Ising model, and treating the much
weaker interchain interactions in the mean field. The
Hamiltonian for the jth chain with z (z =4 for CDP) ad-
jacent chains then is

z
Hy==3 Vopivripijt B Jpmpijendpiy | O
] m=

where J,, is the J, interaction for nearest proton neigh-
bors in the disordered chains running along b, J, » isthe J;
interaction which is (J,+J,.)/2 (nearly J_ /2 because
J, <<J.),?! and the p’s are pseudospins *1 representing
disordered proton positions.

From the susceptibility expression developed by BLTZ
they obtain two expressions for j(w) in their Eq. (26).
The first is correct but the second should be

j(w)=%7'0F siny
T

o NN o

where D, E, F, and y are defined below. We also define
three new variables a, b, and f, which are more con-
venient for the following integrations:

D(x,y)=1—2z'BJ,F(1+a) '(cosx +a cosy)

dx dy dz
V)—E cosz]2+(an'o

5. O

=1—b(cosx +acosy) ,
a=J,/J.<<1, (8)
E =tanh(2B8J,)=1—a, a=1—tanh(28J,), 9)
F=2exp(—2BJ,), f=1,Fsiny ,
p=1/kT, T>T., (10)

and v is the monoclinic angle of 72.3°.
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Upon integrating over z and neglecting w7, which is
small for the frequency used in the temperature range
studied, we obtain

. 2 . 77  D(x,y)dxdy
(w)=—T1,F sin .
J 77.2 OF fo fO [DZ(x,y)___EZ]ZVZ
The D (x,y) factor can be set to unity because b << 1 for
all T> T¢. The expression [D*(x,y)— E?] can be broken
into two subfactors,

(11)

(12)
(13)

using the fact that (2—a)>>b for all T> T. Then j(w)
becomes

. 2 T
]((x))z 7,7,2(2_fa)3/2 fO fO

D(x,y)—E =a —b(cosx +acosy) ,
D(x,y)+E=2—a —b(cosx +acosy)~2—a ,

dx dy
[a —b(cosx +acosy)]?’?

(14)

Integration over x yields
4f
(2 —a)3?
A
y )a acosy)
(15)

]((z))z

Here I represents a complete elliptic integral of the
second kind. Both in the argument of I and in another
factor,

(a+b—bacosy)~(a+b), (16)
so the expression for j(w) can be simplified to
. 4fI[2b/(a +b)] ™ dy
j(@)= 7(2—a)**a+b)""> Y0 a—b—bacosy
(17)

The final integration over y produces the expression

4fI[2b/(a +b)]
m(2—a)**[(a +b)a—b +ba)a—b—ba)]'?

(18)

](w)z

This expression is valid over the entire temperature range
above T within the approximations listed above. We
now examine its predictions in four temperature regimes
above T.. These are the noncritical regime above room
temperature, the 1D regime below room temperature but
well above T, the 2D region extending to within a few
degrees of T, and the 3D region in the last degree or two
above T¢. We note that Morosov and Sigov?? discussed
the importance of the 1D, 2D, and 3D correlation re-
gions for CsH,PO, also, but in connection with dielectric
permittivity.

In the noncritical regime the temperature is too high to
allow correlations even of the protons in H-bonded
chains running along b. In this regime, 1>>(1—a)>>b
>>ab, the argument of I approaches 0 so I approaches
/2, and Eq. (18) becomes
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j((l))hi_T"z4’TOsin')/ . (19)

Here kT >>J, >>J, >>J,, and there is no significant tem-
perature dependence predicted for j(w) or for the spin-
lattice relaxation rate 7.

In the 1D regime we have 1>>a >>b >>ab, which
yields

(22{3 -~ Lrosiny exp(4BJ,) . (20)
Physically this means that relaxation is governed by the
Boltzmann factor for populations of (HPO,,H;PO,) de-
fect pairs. The effective diffusion of these defects by
means of b-chain proton intrabond transfer causes the re-
laxation. As the temperature drops, the correlation time
becomes longer because the defect population drops, and
in the rapid-motion regime this increases the relaxation
rate which is proportional to j(w). The relaxation rate
according to Eq. (20) would become infinite at absolute
zero (the ordering temperature for the 1D Ising model), if
Eq. (20) were valid down to that temperature.

In the 2D regime the inequality order becomes
1>>a >>(a —b)>>ab, so the argument of I, and I itself,
approach 1 because a +b =2b. Then j(w) becomes

j(w)lD’z

: S

(@)yp=—""F7F—""77, (21)
SOy 172 —b)
where the critical behavior is in the (a —b)™!' factor
which can be expanded to give the temperature depen-
dence (T —T¢,p)~ !. The Curie-Weiss temperature T¢,p
for this 2D regime is found from the implicit relation

2J, /kTcop=—In[z'J, /(1+a)kTcp] - (22)

This regime is recognized in the data by a straight por-
tion of the T'; versus T plot.

Before the temperature drops to T¢,p the system goes
over into the 3D regime characterized by 1>>a
>>(a —b +ab)>>(a —b —ab). Then in addition to the
approximations made in the 2D regime, we can also set
a —b +ab ~2ab, and we obtain

; S
J wb[2a(a —b—ab)]'”? :
The last factor when expanded gives critical temperature
dependence (T——TC)_” 2, where T is the actual transi-
tion temperature which is slightly above T.,p and is
given by the implicit relation
2J, /kTc=—1n(z'J, /kT¢) . (24)
Because much of our T'; data is in crossover regions
between the above regimes, we use the general expression
in Eq. (17) for j(w). Since we are in the fast-motion re-
gime, j(w) actually has no dependence on frequency w, so

j(2w)=j(w) in Eq. (4). Then the spectral density factor
in Eq. (1) becomes

[J(l)(a))+4.](2)(2a))]
=[VL+VL+(V =V, ) +4V] lj(w) . (25

According to Kanda and Fujimura,'* the only efg tensor
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components at the **Cs site which change upon domain
reversal in the FE phase of CDP are

eQV,/h=eQV, /h==17.6 kHz ,

eQV, . /h=eQV,, /h==+12.5 kHz ,

(26)

where the primed coordinates represent crystal axes and
the unprimed coordinates represent laboratory system
axes for our measurements in which the static magnetic
field H, was along z, corresponding to the crystal y’ or b
axis.

From the discussion following Eq. (3), the above num-
bers divided by eQ /h are squared to provide V2, and Vyzz
in Eq. (25), and the other V;; in that equation vanish.
Then, using I =1 for '*3Cs, Eq. (1) becomes

1/T,=2.87X10"s ?j(w) . 27)

Although we do not use Egs. (28)-(33) of BLTZ, it is
helpful for anyone using that approach to note the fol-
lowing corrections. In Eq. (29), C should be D. In Egs.
(30a) and (30b), B should be E. In Eq. (31), Q“ should be
Q?2, # should be 7, A" and 4 should be squared, and
the A4{ factor should be multiplied by 4. Equation (33)
should contain the factor 4siny /147 found in Eq. (31).
The expression appearing in Eq. (33) was mistakenly di-
vided by I*= % and the siny factor was omitted.

IV. DATA ANALYSIS

There are four fitting parameters which could be used
in comparing predictions of Egs. (18) and (27) to T, re-
sults. These are the inverse attempt frequency 7, which
is assumed independent of temperature and pressure, and
the three interaction energies J,, J,, and J. which are as-
sumed to have linear dependence on hydrostatic pressure
but to be independent of temperature. The fitting process
requires Eq. (27) for 1/T,, Eq. (18) for j(w),
the definitions in Eqgs. (8)-(10), and the relation
J, =W, +J.)/2.

Unfortunately we did not obtain T'; data close enough
to T to observe the 3D regime where T, is proportional
to (T —T¢)!/2 Only in this regime would the relaxation
results be sensitive to a or equivalently to J,. According-
ly, we use only the 7y, J,, and J, parameters to fit the T,
data. To find J, and its pressure dependence, we use the
method of Blinc and Sa Barreto?® which relies on the
slopes dT /dp of transition temperature versus pressure
both above and below the triple-point pressure. Our
method differs from theirs only in that we use the pres-
sure dependences of both J, and J, determined from the
T, fit, whereas they implicitly assume no pressure depen-
dence for J .

The fit of T, for the parameters and their pressure
dependences given below is shown in Fig. 2. The straight
2D regime and curved 1D regime portions of the curves
are clearly seen.

The parameters and their pressure dependences found
from the T fit and from the T versus pressure curve are
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To=2.9X107 % sec ,

Jy /k=225.7 K—(6.85 K /kbar)p ,
J./k=3.80 K—(0.428 K /kbar)p ,
J,/k=0.305 K—(0.0924 K /kbar)p .

From the above fundamental parameters, several de-
rived parameters are calculated and presented below to
allow comparison with values of these parameters used
by other authors,

J,/k=2.05 K—(0.520 K /kbar)p ,
Jy /J,=110, J /J,=12.5,
T-=153.9 K, T¢,p=150.9K, at 1 bar .

These parameters are compared in Table I with some J,,
J,, and 7( values obtained by other workers.

The triple point at which the transition changes from
FE to AFE occurs at 3.30 kbar and 124.6 K from the
above parameters. At this point J, becomes negative, so
that the ferroelectrically ordered hydrogen-bonded planes
have AFE instead of FE stacking, yielding overall AFE
order.

Although we did not make any T, measurements in
the 3D region above T, we did look at the NMR spec-
trum at 152.4 K and atmospheric pressure. This temper-
ature is between the actual T and T¢,p which is the
temperature at which the 2D regime T, extrapolates to 0.
The NMR spectrum was characteristic of the FE rather
than the PE phase, indicating indirectly the presence of
the 3D regime with its square-root dependence of T, on
temperature.

V. DISCUSSION

From the above parameters and their pressure depen-
dences, we can predict that if the linear pressure-
dependence approximation holds, there will be another
triple point at 8.88 kbar and 76.7 K, where J, should go
to 0. Above this pressure, both J, and J, would be nega-
tive, so that looking along the b axis the chains would or-
der in a checkerboard AFE pattern rather than a sheet
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FIG. 3. Ordering of hydrogen bonds in CsH,PQ, in paraelec-
tric (PE) phase, ferroelectric (FE) phase, antiferroelectric (AFE
I) phase composed of two oppositely polarized planar sublat-
tices, and the postulated antiferroelectric (AFE II) phase com-
posed of two oppositely polarized checkerboard sublattices.
Known and postulated (for AFE II phase) unit-cell boundaries
are shown also.

pattern. The chain-alignment schemes for the various
known and proposed phases appear in Fig. 3. So far, the
existence of this second triple point has not been investi-
gated experimentally.

The phase diagram predicted by this linear pressure-
dependence assumption appears in Fig. 4. The pressure
dependence of T is predicted to change sign at this
higher triple point, so it should be possible to observe it
easily by dielectric means. This figure ends below the

TABLE 1. Energy parameters and correlation time from various experiments and theories, for
CsH,PO, at atmospheric pressure. Note that some entries differ by factors of 2 or 4 from those appear-
ing in the corresponding references because of differences in definitions of J, and J,.

Jy /k (K) J,/k (K) 7o (sec) Method Ref. no.
225.7 2.05 2.9%X10712 133Cs NMR This work
234 3.39 1.9%x1071 Dielectric 8

Jyp/J, =100 1.9%x10713 3P chem. shift 10
305 1.8 . Dielectric 7
250 Thermal expansion 27
287 1.9 Calorimetic 28
273 3.0 5.7Xx1071 Hyper-Raman spec. 29
265.5 3.0 dc dielectric 30

6.7X1071* ac dielectric 31
300 3 Dielectric 32
278 2.1 Calorimetric 33
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FIG. 4. Known and proposed phase diagram for CsH,PO, at
low temperature and moderate hydrostatic pressure, showing
monoclinic space groups and number Z of molecules per unit
cell. Known phase boundaries are solid lines, proposed boun-
daries are dashed lines. Phases shown are paraelectric (PE), fer-
roelectric (FE), planar antiferroelectric (AFE I), and proposed
checkerboard antiferroelectric (AFE II).

pressure of 32.9 kbar where the linear extrapolation of J,,
goes to 0, because that is too long an extrapolation to be
taken seriously.

Additional phase information appears in the work of
Rapaport, Clark, and Richter,?* who presented a high-
pressure phase diagram extending to 45 kbar but only
down to 0°C. They show an ill-defined boundary be-
tween the PE phase (their phase III) and their phase V,
which begins at 11 kbar and 150°C and which extrapo-
lates approximately to our PE-AFE II phase boundary at
the 70 K, 20 kbar point. One possibility is that in their
phase V the c-axis hydrogen bonds also become disor-
dered. Their phase I, which occurs above 503 K at 1 bar,
was recently shown by Baranov et al.? to exhibit su-
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perionic conductivity. Finally, Baranowski et al.?® re-
ported a transition at 1 bar and 380%1.5 K, in contradic-
tion to the report by Rapaport et al. that the PE phase is
stable at 1 bar up to 422 K.

We do not attempt a critical evaluation of the various
parameters presented in Table I. We simply note that
our 1-bar values for J, and J, are near the ranges found
by other workers.”%1%27733 ‘Also, the ratio J, /J, =12.5
at 1 bar is near the value of 10 found by BLTZ. Our
large value for 7 is troublesome. Perhaps the efg fluctua-
tions are considerably larger than those occurring when a
ferroelectric domain reverses, in which case a smaller and
more reasonable value of 7, would give the correct T,
magnitudes.

In conclusion, our results are in good accord with the
BLTZ theory, and provide a more complete test of that
theory than was possible based on the limited atmospher-
ic pressure data of that paper. We have extended the
BLTZ theory to show the specific behaviors associated
with the 1D, 2D, and 3D fluctuation regions. Based on
these results a second triple point where the PE phase
meets both planar and checkerboard AFE phases is pre-
dicted. We hope that someone will undertake an experi-
mental search for this triple point.
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