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Magnetic dimensional resonances in Fe3O4 spheres
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A series of new magnetic resonances were observed in magnetite (Fe304) spheres in microwave

magnetotransmission experiments, as follows. Microwaves (32—37 GHz) traveling in a cylindrical

waveguide were incident on a small magnetite sphere suspended at the center of the guide. The

waveguide passed axially through a superconducting solenoid, whose field could be varied from 0 to
6 T. The waves were circularly polarized in the plane perpendicular to the applied field. The exper-

iments were performed at 5 K. The transmitted microwave power was measured as a function of
the field. In addition to ferromagnetic resonances, new size-dependent resonances were observed,

and were studied as a function of sphere diameter and microwave frequency. The behavior of the

new resonances cannot be explained in terms of ordinary Walker modes. The dependence of these

resonances on frequency and size is quite dramatic, showing a linear relation between the variables

(Bo-Bg )
' and (cod), where Bo is the field at which the resonance occurs, B~ is the ferromagnetic

resonance field for a given microwave frequency co, and d is the sphere diameter. The strength of
the observed effect holds promise for application in nonreciprocal microwave devices.

I. INTRODUCTION

Magnetite (Fe30&) belongs to the family of ferrites,
which have a wide spectrum of applications. Studying
the various properties of magnetite is therefore not only
important in its own right, but bears on the understand-
ing of the characteristics which ferrites have in common.
Quite surprisingly, the magnetic properties of magnetite
have not been studied in great detail. Magnetic reso-
nance phenomena in this material have been investigated
by Bickford' and others in the late 1950s and early 1960s.
However, the early studies on magnetite in the areas of
heat capacity and phase transitions have proved to be
contradictory. This is due almost entirely to the poor
quality of the crystals used, and especially due to the lack
of control of the stoichiometry of the samples. In this
connection it is important to note that recently a new ap-
proach to crystal growth of Fe304 via skull melting has
yielded large single crystals of high purity. Further-
more, reliable techniques for annealing Fe304 crystals
have been perfected, leading to a high degree of
stoichiometry control. ' The availability of samples of
such improved quality motivated us to undertake a new
series of experiments on magnetic resonance phenomena
in this material.

We have studied magnetic resonances in Fe304 spheres

by microwave magnetotransmission experiments, to be
described below. In this process, we have observed a new

type of resonance that could not be described in terms of
either the ferromagnetic resonance or rnagnetostatic
(Walker) modes, which are the only magnetomicrowave
resonance phenomena studied in ferrites so far. A typical
transmission spectrum is shown in Fig. 1. We notice
that, along with several weak, narrow resonances at

lower fields, the spectrum is dominated by a broad ab-
sorption line in the high-field region. It is the broad reso-
nance which is new, and which we wish to concentrate on
in the present paper. A striking feature observed in the
case of the broad resonance is its strong dependence upon
the sphere size and the frequency of the incident mi-
crowaves. In order to gain both a qualitative and a quan-
titative picture of this phenomenon, we have made a sys-
tematic study of the behavior of the resonance as a func-
tion of sphere size and microwave frequency. Based on
earlier studies of dimensional resonances in anisotropic
magnetoplasma spheres by Galeener and Furdyna, " by
Galeener, ' and by Dixon and Furdyna, ' ' we have
developed a simple phenomenological theory to describe
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FIG. 1. A typical microwave transmission spectrum as a
function of magnetic field for an Fe304 sphere, 1.6 mrn in diam-

eter, at a microwave frequency of 35 CxHz in ferromagnetic-
resonance-active (FRA) configuration.
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the observed dimension-related resonances in Fe304.
This approach has been successful in describing the size
and frequency dependences of the resonances. In addi-
tion, we were able to obtain by these means fairly good
estimates for various material parameters.

In the next section, we brieAy present the basic back-
ground needed for describing the interaction of mi-
crowaves with a magnetically anisotropic sphere. We
then describe the experimental arrangement used in this
investigation. Finally, we discuss the results which we
have obtained, and relate them to the phenomenological
formulation of dimensional resonances.

II. THEORETICAL BACKGROUND

where y is the gyromagnetic ratio, pp is the permeability
of vacuum, Hp is the external dc magnetic field, Mp is the
magnetization, and N, N, and N, are the demagnetizing
factors in the x, y, and z directions, respectively (corre-
sponding to the three principal axes of the ellipsoid). A
sphere is a special and very important case, where

N =N =N, =
—,
'

Then Eq. (1) reduces to

~=)'PoHo =~o .

(2)

(3)

This is the ferromagnetic resonance condition for a
sphere.

Magnetostatic modes are associated with modes of os-
cillation of an assembly of spins in which the spin phase
varies throughout the sample, and are excited when the rf
magnetic field is inhomogeneous at the sample. These
modes have been observed by White and co-workers' '
and Dillon. ' The conditions for excitation of these
modes have been solved by Walker. ' ' For spheres, the
resonance conditions are as follows:

There are two principal resonances that have been ob-
served in ferrites, namely, the ferromagnetic resonance
and magnetostatic modes. Ferromagnetic resonance in
ellipsoidal samples is given by the well-known Kittel con-
dition, "
co =ypoI [Ho+ (N N, )Mo—][Ho+ (N, N, )Mo] I

'—

in the nature of a correction to the main resonance condi-
tion. ' The size dependence which we observe, on the
other hand, is so large that it can no longer be dealt with
as a perturbation to the ferromagnetic resonance, and so
a new approach is necessary. In fact, we observe reso-
nance harmonics, whereas in previous work only a smaH
shift of the original ferromagnetic resonance was ob-
served. We shall presently examine the observed behav-
ior in terms of dimensional resonances in spheres, begin-
ning with isotropic spheres.

A. Dimensional resonances
in an isotropic medium

Dimensional resonances will occur in a bounded speci-
men when a certain relationship exists between the wave-
length inside the sample and the size of the sample, giv-
ing rise to internal multiple rejections which construc-
tively interfere to give a high concentration of elec-
tromagnetic energy within the sample. This effect is
analogous to the more familiar phenomenon of Fabry-
Perot interference in plane parallel slabs and films involv-
ing multiple reAections.

Such effects can be rigorously formulated for a dielec-
tric sphere. The solution to the problem of the interac-
tion of a plane electromagnetic wave with a uniform iso-
tropic dielectric sphere was first obtained by Mie.
The solution consists of expanding the incident, scat-
tered, and interior waves in a well-defined infinite series
of electric and magnetic vector waves, with appropriate
weighting factors. For example, the weighting factors for
the scattered waves (also known as scattering coefficients)
are denoted by 's„and s„, where the presuperscript indi-
cates the electric (e) or magnetic (m) character of the
wave, and n =1,2, 3, . . . gives the multipole order of the
wave. Thus, n =1 corresponds to dipole waves, n =2 to
quadrupole waves, and so on. The weighting factors for
the three species of waves mentioned above are deter-
mined by matching the interior and exterior waves at the
sphere surface by use of the isotropic boundary condi-
tions for the rf electric (E) and magnetic (H) fields.

The extinction cross section, X„„is defined as the ratio
of the sum of the absorbed and scattered power to the in-
cident power, and can be expressed in terms of 's„and
s„as follows:

set 1: co=ypp H +Mp

(4)

X,„,= g (2n+ 1)[Re('s„)+Re( s„)],
kp „

set 2: m=ypp H;+Mp

where H; is the internal dc magnetic field, and m are in-
tegers 1,2,3, . . . .

The two types of resonances described in Eqs. (1)—(4)
depend on the shape, but neither of the resonances de-
pends on the size of the sample. Small shifts with size
have indeed been observed in the case of ferromagnetic
resonance, the origin of such shifts lying in the propaga-
tion effects (i.e., the fact that the wavelength is finite
within the sample medium), but so far this effect has been

where kp is the wave number of the incident wave.
When the size of the sphere is small compared to the

outside wavelength of the incident wave, the sphere is
said to be in the dipole limit. This is expressed by the
condition

kpa «1,
where a is the radius of the sphere. In this limit, the
quadrupole (n =2), octopole (n=3), and higher-order
contributions can be neglected relative to the dipole
(n =1) term. Also, for small spheres, we can neglect the
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K —K +1K

where a and f3 are the phase and attenuation coefficients,
respectively. When Eq. (6) holds, the expressions for 's„
and s„can then be expressed in terms of K and k,

[(n + 1 bc+ n]j„(z)—zj„,(z )

2n +1 n(v —1j)„(z)+zj„ i(z )

'2
272

X '
(k a)"+'

(2n )!

(2n +1)j„(z)—zj„,(z)
S

2n +1 zj„,(z )

2
2t1 f

x '
(k )'"+'

(2n )!

(8)

where z =ka and j„(z) is the spherical Bessel function of
order n It is easi. ly shown that, owing to Eq. (6), the
dominant contributions to Eq. (8) are from the n = 1 (i.e.,
dipole) terms.

In the limit of low losses, j„(z) can be expanded as fol-
lows:

j„(z) =j„(x)+iyj„'(x ),
where x =aa, y =pa ((x, and the prime on j„(x)

denotes a derivative with respect to the argument. From
Eq. (8), the resonance condition for magnetic dipole reso-
nances is then

xjo(x) —y Jo(x)=0,
which for f3 «a becomes simply

jo(x) =0 .

(10a)

(10b)

Similar expressions can be obtained for electric dipole
resonances. For small losses and large K', it is observed
that the conditions at which the electric and magnetic di-
mensional resonances occur are adequately given by"'

aa =E
for the electric dimensional resonances, and

o.a =M

scattering cross section, so that the extinction and ab-
sorption cross sections are nearly equal.

Equation (6) does not imply that the radius of the
sphere a is small compared to the internal wavelength.
Indeed, for large values of the dielectric constant (and/or
magnetic permeability), the inequality ka ) 1 may be
satisfied simultaneously with Eq. (6), where k is the wave
number within the medium from which the sphere is
made. In that case, electric or magnetic dimensional res-
onances will occur whenever 's„or s„diverge, giving
rise to maxima in the absorbed power.

In general, the internal wave number k and the dielec-
tric constant of the sphere medium K are complex, and
can be expressed in terms of their real and imaginary
parts as follows:

k =a+i f3,

for the magnetic dimensional resonances, where E and
M correspond to the zeros of j, (x ) and jo(x ), respec-
tively. Since jo(x) and j,(x) each have a multiplicity of
zeros, there is a series of solutions. These are identified
by the index m. Physically, the difTerent values of m may
be approximately regarded as "harmonics, " i.e., as the
number of wavelengths "fitting" within the sphere diame-
ter.

B. Dimensional resonances
on gyrotropic spheres

0 0

0 K 0 (12)

0 0

where K+=K«+EK&y describes the dielectric response of
the plasma to the two circular polarizations in the x-y
plane (i.e., in the plane transverse to the dc magnetic field

Bo), and ir„describes the response of the plasma to
E.rllBo.

Dixon and Furdyna showed that when the sphere is ex-
cited by one of the independent modes (corresponding to
the subscript +, —,or zz), Mie-type relations still hold.
In particular, for excitation by one of the circular polar-
izations transverse to Bo, the resonance condition is given
by

Re(k+a ) =G, (13)

where k+ and k correspond to the wave numbers of the
+ and —circularly polarized excitations in the infinite
plasma medium, respectively, and 6& is a constant. In
the specific case of a magnetized plasma, 6, is equal to
&m (m —1/2)n for the major magnetic dimensional reso-
nances, and to &m(m+ 1/2)m for the major electric di-

The interaction of a plane electromagnetic wave with a
gyrotropic sphere is a complicated problem, with no
known solutions in closed analytic form. The main
difficulty arises from the fact that in a gyrotropic medium
the dielectric constant (or the permeability) is a tensor in-
stead of a scalar, and consequently Maxwell's equations
are no longer separable in spherical coordinates. Ford
and Werner solved the problem numerically for a gyro-
tropic dielectric sphere of arbitrary size, along the lines of
the Mie theory. The Mie solutions could then be re-
trieved from the general Ford-Werner formulation by re-
placing the dielectric tensor by a scalar.

Using the Ford-Werner formulation as a point of
departure, Dixon and Furdyna developed a phenomeno-
logical approach which gives an approximate but rather
satisfactory analytical description of the dimensional res-
onances in gyrotropic plasma spheres in the dipole limit.
In the section below we shall extend their approach to
the present gyromagnetic case.

The basic elements of the Dixon-Furdyna approach to
the interaction of a plane electromagnetic wave with a
spherical plasma in an external dc magnetic field are as
follows. The dielectric tensor K for an infinite magnetized
plasma from which the sphere is made has the form
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mensional resonances. The empirical resonance condi-
tions are therefore

m~(~0+ m) T2

(coo+co) T2+1
Re(k+a ) =&m(m+1/2)vr

for the electric dimensional resonances, and (14)

2
Q)M T2

(coo+co) T~+1
Re(k+a ) =&m (m —I /2)~

for the magnetic dimensional resonances. The results of
Dixon and Furdyna are supported by exact numerical
calculations employing the full Ford and Werner solution
for the gyrotropic sphere. '

C. Dimensional resonances in Fe304

The spheres used in our experiments were sufficiently
small to be in the dipole limit (ka ((1). Using the same
qualitative approach as that of Dixon and Furdyna, we
surmise that, in the case of an incident circularly polar-
ized plane wave on a sphere made of a magnetically an-
isotropic medium, a series of dipole resonances will occur
determined by the conditions

Re(k+a ) =G,

Re(k a ) =H,
(15)

where the + and —subscripts refer, respectively, to the
ferromagnetic-resonance-active (FRA) and ferromagnet-
ic-resonance-inactive (FRI) circular polarizations trans-
verse to Bo, the subscript 1 on 6 and H indicates dipole
excitation, and m is an index indicating harmonics (i.e.,
how many standing wave antinodes are contained in the
internal resonant field pattern).

Note that the empirical resonance conditions of Dixon
and Furdyna given by Eq. (14)—i.e., the specific values
of 6, —emerged from the specific mathematical prop-
erties of the dielectric tensor ~ for a magnetized plasma.
In extending this approach to the gyromagnetic case, we
have assumed the fovm of Eq. (13), but we regard Gi
and H& in Eq. (15) as unknown constants (except that
G i2 )G i i, etc. , as for the plasma case).

In the present case, the medium is described by an iso-
tropic dielectric constant K of the order of 15, and a gyro-
tropic magnetic permeability tensor p, which can be writ-
ten as

where coo=ypoHo, AM =ypoMO, T2 is the transverse re-
laxation time, Ho is the applied magnetic field, Mo is the
saturation magnetization, and y ( =ge /2m ) is the
gyromagnetic ratio.

For fields much higher than the ferromagnetic reso-
nance field, i.e. , for coo))co, and for (coo co)T—2 ))1, in-
verting Eq. (17) yields

~M
1+y+ = 1+ 46) c

KCO d
(19)

where BR is the ferromagnetic resonance field corre-
sponding to co, and expressing ~o and cuM in terms of the
applied magnetic field and saturation magnetization, re-
spectively, we arrive at the resonance condition in the fol-
lowing form:

1

Bo B
462) c2

1

KpoM

1

poMO
(21)

The unknown parameters in our problem are Mo 6&
BR, and ~, and the variable parameters are ~ and d.
From the above equation we see immediately that (i) the
magnetic field Bo corresponding to a dimensional reso-
nance varies nonlinearly with co for a fixed d (and non-
linearly with d for a fixed co), according to

4G, c2 2

Bo =BR +poMO 2 ~
1 (22)

KCO d

(ii) a plot of (Bo—Bi, )
' versus (~d) should be a

straight line, with a slope equal to 4G, c /~poMO, and
an intercept equal to (poMo) '.—Equation (21) will be
the point of departure for analyzing our experimental re-
sults.

where d =2a is the sphere diameter. The above equation
can be rewritten in terms of the fields. Writing co, the an-
gular frequency of the microwaves, in the form

CO
—/BR

p+ 0 0

p, = 0 p 0

0 0 po

(16)
III. EXPERIMENT

Re(1+y )'~ =G
c

(17)

The expressions for the real (y+) and imaginary (g+)
parts of g+ are given by the Bloch equations,

where p+= pa(l+Z+), and p+ is the dynamic magnetic
susceptibility corresponding to the two circularly polar-
ized normal modes of propagation (FRA and FRI) for
the medium from which the sphere is made. Equation
(15) for the FRA mode can then be written as

A. Microwave spectrometer

The microwave spectrometer employed in this study
has been described previously. The Fe304 spheres were
placed between two pieces of tape and suspended in a cir-
cular waveguide passing axially through the bore of a 60-
kG superconducting solenoid. In all of our experiments,
we used circularly polarized microwaves. The microwave
power transmitted past the Fe304 spheres was measured
as a function of the dc magnetic field Bo. The experi-
ments were carried out between 32 and 37 GHz.
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B. Sample preparation

Single crystals of Fe304 of very high purity were grown
at Purdue University by the skull melter process. All
the samples used in our experiments were stoichiometric.
The spherical samples were prepared using an Enraf
Nonius sphere grinder, as follows. Small irregular Fe304
samples were placed inside the grinder, and air was blown
tangentially through a number of channels. This swirled
the pieces against the abrasive walls of the sample
chamber, grinding them into spheres. The sphere diame-
ter was measured by a traveling microscope. A single
sphere was then placed between two pieces of tape, and
placed inside the sample holder on the axis of the super-
conducting magnet, as described above.

FRA
d = l.6mm
T= 5 K

(~) f =3S.O GHz

l2

(b) f = 34.0 GHz

IV. RESULTS AND INTERPRETATION

For a given sphere size, magnetotransmission was stud-
ied at a series of microwave frequencies. We started with
a sphere of diameter 1.6 mm and recorded the transmis-
sion spectra as a function of magnetic field for the follow-
ing microwave frequencies: 32.4, 33.0, 33.5, 34.0, 34.4,
35.0, 35.5, and 36.0 GHz. At each frequency, the spec-
trum was obtained for both the FRA and FRI polariza-
tions. The above procedure was repeated for three arbi-
trary orientations of the sphere, to check for possible an-
isotropy (crystallographic or geometrical). The sphere
was then ground to a smaller size, and the above pro-
cedure repeated. This was done for a series of sizes. The
successive diameters at which the spheres were studied
were 1.6, 1.4, 1.2, 1.1, 1.0, 0.9, 0.8, and 0.7 mm. The tem-
perature was maintained at 5 K for all the measurements.

As mentioned earlier, our aim was to gain an under-
standing of the dominant resonance shown in Fig. 1, i.e.,
its dependence on sphere diameter and on frequency, as
well as to determine what material parameters could be
extracted from such resonances. It was dificult to make
a detailed analysis of the closely spaced resonances in the
low-field region of the spectrum, since they did not show
a systematic size or frequency dependence. Also, their
positions depend upon the orientation of the sphere. In
this paper we shall therefore focus our attention only on
the broad resonances occurring at higher fields.

Z,'

O
V)
V)

V)

CL
( c) f = 52.4 GHz

0
0 l.0 2.0 3.0 4.0 5.0 6.0

MAGNETIC FIELD ( T )

FIG. 2. Variation of the position of the M» dimensional res-
onance with incident microwave frequency, for a fixed sphere
diameter. Curve (a) is the transmitted power of circularly polar-
ized microwaves for a 1.6-mm sphere at 35 GHz, curve (b) is for
34 GHz, and curve (c) corresponds to 32.4 GHz. All data are
taken at 5 K.

A. Resonances in the FRA configuration

We have observed two-dimensional resonances in the
FRA (or +) configuration. From our phenomenological
model, this corresponds to

Re(k+a)=G, , m =1,2,
where the index m indicates the resonance "harmonic, "
as explained earlier. The dimensional resonance corre-
sponding to m =2 (designated M&2 in Figs. 2 and 3) was
observed for sphere diameters equal to 1.6, 1.4, and 1.2
mm. As illustrated in Figs. 2 and 3, the resonance
showed a rather dramatic size and frequency dependence.
From Fig. 2 we observe that for a sphere of diameter 1.6
mm, the M, 2 resonance shifted from nearly 50 to 28 kG
(almost a factor of 2) when the frequency was reduced

from 35 to 32.4 GHz (less than 10%). Figure 3 shows the
absorption spectra at a fixed frequency of 35 GHz for
three spheres of diameters: 1.6, 1.4, and 1.2 mm. Once
again we observe a very significant shift in the resonance
field with only a small decrease in sphere size —the reso-
nance shifted from 60 to 26 kG (nearly a factor of 2)
when the sphere diameter was reduced by only 13%.
When the sphere was further ground to 1.2 mm in diame-
ter, the M&2 resonance shifted to still lower fields, eventu-
ally becoming one of the sharp resonances in the low-field
region as the microwave frequency was reduced, as
shown in Fig. 4(a).

As the M, z resonance of the 1.2-mm sphere merged
with the low-field lines when the frequency was de-
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FIG. 4. Transmitted microwave power as a function of mag-
netic field for a 1.2-mrn sphere at 35 and 32.4 GHz. Curve (a)
shows the M» resonance in the immediate vicinity of narrow
lines in the low-field region. As M» merges with these lines
when the frequency is lowered, a new dimensional resonance,
M», appears near 45 kG, as shown in curve (b).

0
0

I I I
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FIG. 3. Variation of the position of the M» resonance with
sphere size, at a fixed frequency of 35 GHz. Curve (a) is the
transmitted power for circularly polarized microwaves for a
sphere of 1.6 mm in diameter, curve (b) is for a diameter of 1.4
mm, and curve (c) corresponds to a diameter of 1.2 mm. All
data are taken at 5 II .

creased, a new dimensional resonance M» appeared,
emerging near 60 kG for 33 GHz and moving to 45 kG at
32.4 GHz, as shown in Fig. 4(b). This resonance corre-
sponds to Re(k+ a ) =6». We continued to study the be-
havior of the M» resonance for sphere diameters equal
to 1.1, 1.0, 0.9, 0.8, and 0.7 mm. The size and frequency
dependences of the M&& resonance for the 1.1- and 1.0-
mm spheres were qualitatively similar to those displayed
by the M, 2 resonance. For smaller sizes the M» reso-
nance also merged with the sharp low-field lines. As
would be expected, the intensity of the resonance de-
creased progressively with decreasing sphere size.

In order to check that the observed M& &
resonance was

a magnetic-dipole-excited dimensional resonace, we per-
formed the following simple experiment. The 1.1-mm

sphere was mounted on top of a metal termination, and
the reAected power was measured as a function of the dc
magnetic field. The sphere was then raised by a distance
equal to one-quarter of the microwave wavelength and
the above procedure was repeated. In the first position,
where the rf magnetic field was maximum and the rf elec-
tric field was zero, the M&i resonance occurred around 28
kG at 35 GHz, as expected. In the second position,
where the rf electric field was a maximum, the intensity
of the resonance diminished considerably, and no new
resonances appeared, thereby confirming that the M

& &

resonance was a magnetic-dipole dimensional resonance.
We now test the phenomenological theory developed in

Sec. II, Eq. (21), which predicts a linear relationship be-
tween (Bc Bz )

' and (cod —
) for M» and M, 2, the two

straight lines having intercepts at —(poMo) . In plot-
ting the results, the position of the dimensional resonance
Bo was taken to be the field at which the transmitted
power was a minimum. The ferromagnetic resonance
field Bz was defined through the relation co=yB&, with
the gyromagnetic ratio y treated as a parameter to be
determined. In plotting (Bo—Bz )

' versus (cod ) for
various values of y, we found that fairly good linear fits
could be obtained for y between 1.27X10 and 1.70X10
G s for both Mii and Mi2 which correspond to g
factors between 1.5 and 1.9. The best fit occurred for
y = 1.40+0.05, as shown in Fig. 5, corresponding to
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FIG. 6. A plot of (Bo—BR) ' vs (~d) for y=1.63X10'
G 's ' and 1.36 X 10 G 's ' corresponding to the M» and
M» dimensional resonances, respectively. Note that, to achieve
a common intercept, different values of y must be used for the
two-dimensional resonances.

FIG. 5. A plot of (Bo—BR) ' vs (cod) for y=1.36X10
G 's ', for both the M» and M» dimensional resonances.
Note that the plots are linear, but do not have a common inter-
cept predicted by the phenomenological theory.

g = 1.60+0.05.
The problem with this "best fit" is that, while it sup-

ports Eq. (21) for the M» and M, z resonances taken sep-
arately, the two straight lines do not have a common in-
tercept on the (Bo B~ ) axis,—in contradiction with the
phenomenological model. In fact, even if we allow the
value of y to range outside the limits given above, to
where the plots deviate significantly from linearity, we
are not able to find a value of y for which the plots for
both resonances extrapolate to a common intercept. If,
instead, we allow the value of the parameter BR to be
different for M» and M, z, two values of y can be found
for which the plots are linear, and which have the same
intercept for both resonances, as illustrated in Fig. 6.
These values of y are approximately 1.63 X 10 and
1.36 X 10 G 's ' for M» and M, z, respectively, corre-
sponding to g factors of 1.85 and 1.54. Also, the value of
Mo determined from the intercept is between 4. 3 X 10
and 4.5X10 A/m, which is in reasonable agreement

with the value 5.06X10 A/m obtained for FeiO~ by dc
magnetization measurements of Chikazumi and others.
The values of B&, the intercepts Mo, and other parame-
ters corresponding to the two dimensional resonances are
tabulated in Table I.

We can thus summarize our results as follows. The
fact that we get excellent linear fits for the (Bo—BR )

versus (cod ) plots for each dimensional resonance sepa-
rately implies that the phenomenological theory correctly
identifies the mechanisms for the dramatic frequency and
size dependences of the resonances. On the other hand, if
we consider M» and M&z together, the best linear fits do
not intersect on the (Bo B~ ) axis, —thereby resulting in
different values of Mo. We can obtain a common inter-
cept for M» and M, z only by choosing different values of
the ferromagnetic resonance field parameter BR for the
two resonances. We have thus shown that we cannot
simultaneously describe all observed resonances using a
single value of Bz and Mo in Eq. (21). While we do not
understand this discrepancy with the model, it must be
remembered that Eq. (21) represents an ad hoc phenome-
nological relation, and that the actual relationship con-
necting the resonance conditions with the Bloch equa-
tions is undoubtedly more complex. It is also possible
that the assumption made implicitly in Eq. (17)—that the

TABLE I. Slopes and intercepts corresponding to the M» and M12 FRA resonances for equal and
different values of BR (at 32.4 GHz).

Resonance

M11
M12
M»
M12

Ferromagnetic
resonance field

BR (kG)

15.0
15.0
12.5
15.0

Intercept
(10-' kG-')

—34.15
—17.54
—18.25
—17.54

10 ' slope

2.38
2.63
1.39
2.63

Saturation
magnetization

M, (Aym)

2.33
4.53
4.36
4.53

—1.5

—1.35



39 MAGNETIC DIMENSIONAL RESONANCES IN Fe304 SPHERES 2539

dielectric constant ~ is real, isotropic, and frequency
independent —may be too simplistic, thus leading to a
qualitative departure from the exact predictions of Eq.
(21).

Further experiments —perhaps on ferrites, which are
better characterized and less complicated than Fe304-
would be desirable in order to shed further light on this
interesting question.

6.0—

4 0

2.0

FRI
g= l.36xlO G s

d = I.I rn m

B. Resonances in the FRI configuration

The features of the magnetotransmission spectrum in
the ferromagnetic-resonance-inactive (or FRI) configura-
tion resemble the FRA spectrum, consisting of a broad
resonance at high fields and a series of closely spaced nar-
row resonances at lower fields. We have observed two
magnetic dimensional resonances in this configuration,
whose size and frequency dependences are qualitatively
similar to the FRA case. Unlike the FRA configuration,
no resonances were observed for spheres smaller than 1.1
mm in diameter. From our model, the two FRI dimen-
sional resonances correspond to

I

lQ
+

CQ

O

0

-2.0
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lO (~d) (m s )
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Re(k a)=H, , m =1,2,
where H» and H&2 are unknown constants. The model
predicts a linear relationship between (Bo+Bz) and
(cod ) for appropriate values of Bz, with a slope and in-
tercept equal to 4H, c /(~poMO) and —(p~o) ', re-
spectively. As before, we fit the data by using the
gyromagnetic ratio y as a fitting parameter. One such
plot is shown in Fig. 7. Again, the two straight lines do
not intersect on the (Bo+Bz ) axis, in contradiction
with the theory. Furthermore, the values of the inter-
cepts (and therefore of the saturation magnetization)
differ from those obtained from the FRA dimensional
resonances by at least a factor of 2. Nevertheless, quali-
tatively the theory does appear to describe the observed
size and frequency dependences. Beyond this, it is
difficult to make any estimates for the ferromagnetic res-
onance field Bz or the saturation magnetization Mo from
the limited FRI data available. However, the very ex-
istence of strong dimensional resonances in the FRI po-
larization should prove useful in providing additional
data for a better understanding of the general problem
presented in this paper, once a more rigorous model is
formulated.

V. CONCLUSION

We have extended the phenomenological approach
used by Dixon and Furdyna in their investigation of di-
mensional resonances in gyrotropic plasma spheres to
gyromagnetic Fe304 spheres. It is clear that this ap-
proach is at least qualitatively successful in identifying

FIG. 7. A plot of (80+8&) ' vs (~d) for y=1.36X10
G 's ' for the two-dimensional resonances in the
ferromagnetic-resonance-inactive (FRI) configuration, using the
same value of y(1.36X10' G 's ') as in Fig; 5.

the origin of the dimensional resonances in this system,
and in describing the main features of their striking size
and frequency dependences. As a result, we also get esti-
mates for the ferromagnetic resonance field (and conse-
quently the g factor) and the saturation magnetization.
However, the fact that in fitting the dimensional reso-
nances we require different ferromagnetic resonance field
parameters Bz for different dimensional resonances is
puzzling and not understood at the present stage.

As is clear from the data shown, the dimensional reso-
nance effect observed in the small Fe304 spheres is
exceedingly strong. This strength of the interaction,
along with the fact that the resonance condition can be
tuned by the sphere size, holds promise for possible appli-
cations of the effect in microwave nonreciprocal devices,
once this striking phenomenon is better understood quan-
titatively.
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