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Role of noise in the initial stage of solidification instability
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Evolution of the morphological instability at the initially Bat interface of a nonfaceting crystal
growing freely into its pure melt has been studied by a computer simulation. A stochastic
differential equation for the spatial Fourier components of the interface was formed by adding
Gaussian random-noise terms representing spontaneous temperature fluctuations to the determinis-
tic Mullins-Sekerka result of linear stability analysis. The results of the simulation qualitatively
reproduce recent experiments in succinonitrile in which the spatial Fourier spectrum was found to
be extremely noisy. The noise level required in the simulation was found to agree qualitatively with
a rough estimate of temperature-fluctuation effects.

Nonequilibrium dynamical systems frequently undergo
pattern-forming instabilities resulting in the appearance
of complex spatial structures in an initially structureless
medium. The best known examples occur in hydro-
dynamics, e.g., the Rayleigh-Benard and Couette-Taylor
instabilities. Pattern-forming instabilities also occur at
interfaces, such as the viscious fingering instability, ag-
gregation, or dendritic solidification. '

A fundamental question in the analysis of pattern for-
mation arises when one considers how the process is ini-
tiated. In the case of the Rayleigh-Benard instability, for
example, hydrodynamics leads to an evolution equation
for the amplitude A (whose square is the convective heat
current) of the form

dA 3 5

dt
=C A —C A +C A3 5 7

where C& increases from negative to positive as the tem-
perature gradient is increased through the critical value
for onset of convective flow. Once C& becomes positive,
the quiescent system ( A =0) is unstable, but convection
cannot begin in this deterministic description since
d A /dt =0 as long as A =0, even if C, )0.

Recently, Meyer et al. have converted Eq. (1) to a sto-
chastic difFerential equation by adding a Gaussian zero-
mean random-noise term f to the right-hand side. The
onset of convective flow was then modeled with a com-
puter simulation in which a new value of f is inserted at
each iteration, and the result was shown to give an excel-
lent fit to the experimentally observed evolution of con-
vective flow, although the noise level required by the
simulation is 4 orders of magnitude larger than predicted
by hydrodynamic fluctuation theory.

The role of noise has also been shown to be crucial to
the growth of side branches during dendritic crystal
growth of NH4Br from solution. Dougherty et a/. have
recently shown that the side branch amplitude grows ex-
ponentially with distance from the dendritic tip, ap-
parently as a result of arnplification of microscopic noise
involving concentration fluctuations in the solution near
the tip. '

We have recently reported a preliminary quantitative
study of the morphological instability at the initially pla-

nar interface of a nonfaceting crystal (succinonitrile)
growing into its pure melt. Mullins and Sekerka first
carried out a linear stability analysis for this problem 25
years ago and found that the evolution of a small
sinusoidal perturbation of amplitude Ak and wavelength
2n. /k on the planar interface of a crystal advancing into
its pure undercooled melt with velocity Uo is given by

dAk

dt ~k Ak (2)

where do and I are the capillary length and the thermal
diffusion length, respectively. Equations (2) and (3) show
that the interfac'e is unstable against fluctuations span-
ning the range of k values 0~ k ~ (dol )

'~ . Note, how-
ever, that Eq. (2), like Eq. (1), is purely deterministic.

Our experiments resulted in a sequence of high-
resolution digitized records of the advancing initially pla-
nar interface as shown in Fig. 1 (note that the y axis in
Fig. 1 is expanded by 10X). Spatial Fourier transforma-
tion of the three records shown in Fig. 1 resulted in the
spectrum of Fourier amplitudes Ak shown in Fig. 2. The
growth of Fourier amplitudes in a restricted range of k
values is in qualitative (but not quantitative) agreement
with the Mullins-Sekerka prediction. ' But the large
variation of Ak between neighboring k values indicates
the importance of noise in the early evolution of the in-
stability.

We have introduced stochastic noise terms into the
Mullins-Sekerka analysis, in analogy with the approach
of Meyer et al. to the Rayleigh-Benard problem, by
rewriting Eq. (2) as a set of stochastic differential (or
Langevin) equations:

dAk
=~k Ak+ fk(t),dt (4)

where the noise terms fk(t) are assumed to be white with
respect to both k and t, i.e.,

The linear growth coefficient cok is given (approximately)
by

cok =vok(1 —dolk ),
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where k„the maximum wave vector (or shortest wave-
length) fluctuation against which the system is unstable,
is given by Eq. (3) as k, =(dol) '~2=0. 085 pm

The mean-square temperature fluctuation in a volume
element 6V is given by thermodynamic Auctuation
theory as
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FIG. 4. Logarithm of the modulus of Ak(t) for the k =0.03
pm ' mode vs time. The straight solid line is a fit through the
last 30 data points. Its slope agrees with the prediction of the
Mullins-Sekerka theory.

tions. Since succinonitrile is nonfaceting with linear
growth kinetics, a temperature fluctuation AT should
produce a fluctuation in growth velocity EU = —%AT. 4'
is the kinetic coe%cient which, for succinonitrile, has
been reported to be 4=17 cm/sec K." Thus we expect
that

f»(t) =%(b,T)»,
where (b, T)» is the kth Fourier component of (b, T).

%'e have not attempted to carry out a serious calcula-
tion of (hT)» for several reasons. One clear reason is
that our computer simulation assumes that all (b, T)»
have a persistence time of one iteration (0.52 sec) while
the actual correlation time for temperature fluctuation is
k dependent, with t» =(Drk )

' where Dr is the thermal
diffusion constant.

As a rough approximation, we can conipute the tern-
perature fluctuation in a volume element of size (1/k, )

where C is the specific heat and k~ is Boltzman's con-
stant. Equations (6) and (7), with b, V=(1/k, ), then give
bu =+5,T=0.23 pm/sec which is about six times larger
than the value 0.037 pm/sec deduced from the simula-
tion.

In summary, we have shown that the very noisy
Fourier spectrum of the interface morphology observed
in succinonitrile in the early stages of the Mullins-
Sekerka morphological instability can be successfully ex-
plained by a computer simulation in which the deter-
ministic Mullins-Sekerka equation is supplemented with
stochastic noise terms which describe spontaneous tem-
perature fluctuations at the interface. Additional studies
of this system are in progress.

Note added in proof. We have recently carried out a
more rigorous calculation of the strength of the noise
terms in Eqs. (4) and (5) based on microscopic fluctuation
theory in which a Landau-Lifshitz fluctuating heat Aux
was introduced ab init&0 into the energy conservation
equation. The estimated noise strength was found to be
1.0X10 pm/(sec)', 5 orders of magnitude smaller
than the result So =S(ht)'~ =2.7 X 10 pm/(sec)'
found from the computer simulation. This discrepancy
closely resembles the result of Ref. 4.
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