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Role of noise in the initial stage of solidification instability
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Evolution of the morphological instability at the initially flat interface of a nonfaceting crystal
growing freely into its pure melt has been studied by a computer simulation. A stochastic
differential equation for the spatial Fourier components of the interface was formed by adding
Gaussian random-noise terms representing spontaneous temperature fluctuations to the determinis-
tic Mullins-Sekerka result of linear stability analysis. The results of the simulation qualitatively
reproduce recent experiments in succinonitrile in which the spatial Fourier spectrum was found to
be extremely noisy. The noise level required in the simulation was found to agree qualitatively with

a rough estimate of temperature-fluctuation effects.

Nonequilibrium dynamical systems frequently undergo
pattern-forming instabilities resulting in the appearance
of complex spatial structures in an initially structureless
medium. The best known examples occur in hydro-
dynamics, e.g., the Rayleigh-Benard and Couette-Taylor
instabilities.! Pattern-forming instabilities also occur at
inteffaces, such as the viscious fingering instability, ag-
gregation, or dendritic solidification.>?

A fundamental question in the analysis of pattern for-
mation arises when one considers how the process is ini-
tiated. In the case of the Rayleigh-Benard instability, for
example, hydrodynamics leads to an evolution equation
for the amplitude A4 (whose square is the convective heat
current) of the form

%zclA—c3A3+c5A5--~ , (1)
where C; increases from negative to positive as the tem-
perature gradient is increased through the critical value
for onset of convective flow. Once C; becomes positive,
the quiescent system ( 4 =0) is unstable, but convection
cannot begin in this deterministic description since
dA/dt =0aslong as 4 =0, even if C; >0.

Recently, Meyer et al. have converted Eq. (1) to a sto-
chastic differential equation by adding a Gaussian zero-
mean random-noise term f to the right-hand side.* The
onset of convective flow was then modeled with a com-
puter simulation in which a new value of f is inserted at
each iteration, and the result was shown to give an excel-
lent fit to the experimentally observed evolution of con-
vective flow, although the noise level required by the
simulation is 4 orders of magnitude larger than predicted
by hydrodynamic fluctuation theory.

The role of noise has also been shown to be crucial to
the growth of side branches during dendritic crystal
growth of NH,Br from solution. Dougherty et al. have
recently shown that the side branch amplitude grows ex-
ponentially with distance from the dendritic tip, ap-
parently as a result of amplification of microscopic noise
involving concentration: fluctuations in the solution near
the tip.’

We have recently reported a preliminary quantitative
study of the morphological instability at the initially pla-
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nar interface of a nonfaceting crystal (succinonitrile)
growing into its pure melt.® Mullins and Sekerka’ first
carried out a linear stability analysis for this problem 25
years ago and found that the evolution of a small
sinusoidal perturbation of amplitude A4, and wavelength
27 /k on the planar interface of a crystal advancing into
its pure undercooled melt with velocity v, is given by

d A,
dt

The linear growth coefficient w, is given (approximately)
by

wk=vok(1_dolk2) 5 (3)

:Cl)kAk . (2)

where d; and [ are the capillary length and the thermal
diffusion length, respectively. Equations (2) and (3) show
that the interface is unstable against fluctuations span-
ning the range of k values 0<k <(d,!)"'/2. Note, how-
ever, that Eq. (2), like Eq. (1), is purely deterministic.

Our experiments resulted in a sequence of high-
resolution digitized records of the advancing initially pla-
nar interface as shown in Fig. 1 (note that the y axis in
Fig. 1 is expanded by 10X). Spatial Fourier transforma-
tion of the three records shown in Fig. 1 resulted in the
spectrum of Fourier amplitudes A4, shown in Fig. 2. The
growth of Fourier amplitudes in a restricted range of k
values is in qualitative (but not quantitative) agreement
with the Mullins-Sekerka prediction.*® But the large
variation of A, between neighboring k values indicates
the importance of noise in the early evolution of the in-
stability.

We have introduced stochastic noise terms into the
Mullins-Sekerka analysis, in analogy with the approach
of Meyer et al.* to the Rayleigh-Benard problem, by
rewriting Eq. (2) as a set of stochastic differential (or
Langevin) equations:

7=kak+fk(t), (4)

where the noise terms f (¢) are assumed to be white with
respect to both k and ¢, i.e.,
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FIG. 1. Experimentally observed profiles x (y) of the growing
crystal-melt interface of succinonitrile at three different times.
The time interval between each successive curve is 1 sec, and
curve 3 corresponds to about 20 sec after the start of quenching.
The solid lines through the data points are 10-point least-
squares cubic B-spline fits. Note that the y axis has been ex-
panded by 10X as shown by the inset vertical and horizontal
bars.

(O flt')) =2528,48,, . (5)

This method of including a stochastic source into an
otherwise deterministic system has been used by other
workers in addition to the reference mentioned above.
Cook,’ in his contribution to the Hilliard-Cahn-Cook
theory for the early stage of spinodal decomposition, used
an evolution equation for the composition modulations
that is mathematically identical to Eq. (4). From that
equation, he was able to explain successfully the fluctua-
tions in the system observed experimentally through x-
ray spectroscopy. More recently, Toral et al.!° worked
on the same spinodal system by numerical simulation.
Their approach was again similar to our, i.e., they started
with a deterministic equation that described the dynam-
ics of the system; then a stochastic term was added to-ac-
count for the effect of noise.

In our computer simulation, the set of 38 Egs. (4),
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FIG. 2. Modulus of Fourier coefficients 4;(t) of experimen-
tal data of Fig. 1. Curves 1, 2, 3 in this figure correspond to
curves 1, 2, 3 of Fig. 1.
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for 0<k <0.1 pum™! (corresponding to k steps of
8k =0.00266 pm~!) was analyzed, starting with all
A, =0 as the initial conditions. At each step, a new set
of random-noise terms f;(¢) was selected following a
zero-mean Gaussian random distribution, and the ampli-
tudes A, (t) were obtained by numerically integrating the
set of Egs. (4). The rms value of the noise (s) is the only
adjustable parameter in the simulation. The result of one
such simulation, with time steps of 0.52 sec, is shown in
Fig. 3. The lower and upper curves correspond to times
of 2.5 and 20 sec, respectively. The rms noise level,
chosen to approximately match the experimental results
of Fig. 2, was s =0.037 um/sec. Note that the envelope
of the lower curve is essentially flat, showing that at early
times the evolution of all Fourier components is governed
by the stochastic noise terms and the deterministic terms
play no role. The shape of the upper curve shows that
once the deterministic terms become important, the
Fourier components with large linear growth coefficients
are selectively amplified, leading to an envelope conform-
ing with the Mullins-Sekerka theory (shown as the dotted
smooth line in Fig. 3), but the influence of the stochastic
terms remains in the obvious noisiness of the spectrum.
The time evolution of a particular mode can be fol-
lowed on the logarithmic plot of | 4,(z)| with k =0.03
pm~! as shown in Fig. 4. At early times, 4, follows a
random walk growth. At a “crossover” time 7, exponen-
tial growth sets in, as indicated by the solid line whose
slope represents the Mullins-Sekerka prediction of Eq.
(2). We have found that the value of 7 does not depend
on the rms noise level, although the exponential growth
line on the log plot is displaced upward as the noise level
increases. We also find that 7 is inversely proportional to
the linear growth coefficient w,,.
< We believe that the source of the stochastic noise
represented by f,(¢) in Eq. (4) is temperature fluctua-
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FIG. 3. Modulus of Fourier coefficients of the interface from
the computer simulation. The lower and upper data points cor-
respond to 2.5 and 20 sec after initiation ( 4, =0, t =0). The
smooth dotted line at the top is the prediction of the Mullins-
Sekerka theory assuming a uniform starting amplitude for all &
of A,=0.015 um at t=0. The rms noise s =0.037 um/sec.
Note the different scales in amplitude for the two different
times.
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FIG. 4. Logarithm of the modulus of 4,(¢) for the kK =0.03
um™! mode vs time. The straight solid line is a fit through the

last 30 data points. Its slope agrees with the prediction of the
Mullins-Sekerka theory.
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tions. Since succinonitrile is nonfaceting with linear
growth kinetics, a temperature fluctuation AT should
produce a fluctuation in growth velocity Av = —WAT. ¥
is the Kkinetic coefficient which, for succinonitrile, has
been reported to be ¥=17 cm/sec K.!! Thus we expect
that

F&)=W(AT), , 6)

where (AT), is the kth Fourier component of (AT).

We have not attempted to carry out a serious calcula-
tion of (AT), for several reasons. One clear reason is
that our computer simulation assumes that all (AT),
have a persistence time of one iteration (0.52 sec) while
the actual correlation time for temperature fluctuation is
k dependent, with #;, =(Drk?)”! where Dy is the thermal
diffusion constant.

As a rough approximation, we can conipute the tem-
perature fluctuation in a volume element of size (1/k,)’
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where k., the maximum wave vector (or shortest wave-
length) fluctuation against which the system is unstable,
is given by Eq. (3) as k, =(d,!)"1/2=0.085 um ™.

The mean-square temperature fluctuation in a volume
element AV is given by thermodynamic fluctuation
theory as

kpT?

C,AV "’

((AT?)= 7

where C, is the specific heat and kjp is Boltzman’s con-
stant. Equations (6) and (7), with AV =(1/k,)’, then give
Av=WAT=0.23 um/sec which is about six times larger
than the value 0.037 um/sec deduced from the simula-
tion.

In summary, we have shown that the very noisy
Fourier spectrum of the interface morphology observed
in succinonitrile in the early stages of the Mullins-
Sekerka morphological instability can be successfully ex-
plained by a computer simulation in which the deter-
ministic Mullins-Sekerka equation is supplemented with
stochastic noise terms which describe spontaneous tem-
perature fluctuations at the interface. Additional studies
of this system are in progress.

Note added in proof. We have recently carried out a
more rigorous calculation of the strength of the noise
terms in Egs. (4) and (5) based on microscopic fluctuation
theory in which a Landau-Lifshitz fluctuating heat flux
was introduced ab initio into the energy conservation
equation. The estimated noise strength was found to be
1.0X 1077 um/(sec)'’?, 5 orders of magnitude smaller
than the result S,=S(A?)!"2=2.7X10"? um/(sec)!’?
found from the computer simulation. This discrepancy
closely resembles the result of Ref. 4.
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