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The polar character of the A-symmetry amplitude mode in the incommensurate phase of quartz
is emphasized, and the dispersion relation of the coupled electromagnetic field and amplitude-mode
oscillations (i.e., the amplitude-mode polariton) is derived.

I. INTRODUCTION

Incommensurate crystals are expected to have special
branches of vibrational excitations. The existence of a
phason branch of the excitation spectrum was first sug-
gested by Overhauser,! the existence of an amplitude-
mode branch of the spectrum was suggested by Lee
et al.,? and a number of authors have since studied the
amplitudon-phason vibrational frequencies for various in-
commensurate models (e.g., see Refs. 3—7 and references
therein).

It is known that in ordinary periodic crystals the zero-
wave-vector normal modes of a crystal often contain
modes which have a polar character, i.e., modes which
transform like the x,y, or z components of a polar vector.
A distortion of the crystal which is described by a polar
normal mode is necessarily accompanied by the produc-
tion of an electric dipole moment and an electric field.
The description of the vibrations associated with polar
modes must therefore take into account the coupling of
the polar mode to the electric field (e.g., see Born and
Huang,® or Hayes and Loudon®).

The fact that the phason or amplitude-mode vibrations
of an incommensurate crystal can have polar character
seems to have been ignored in the literature up to the
present. The main purpose of this article is to emphasize
that phasons and amplitude modes can have polar char-
acter, and when this is the case, the coupling of the polar
mode to the electric field must be taken into account.
These ideas are illustrated by studying in detail the par-
ticular case of the incommensurate phase of quartz.

Quartz has a high-temperature 8 phase and a low-
temperature o phase, with the phase transition between
these two phases occurring at approximately 845 K. The
crystal structures of these two phases are illustrated
schematically in Fig. 1. Relatively recently, it was
discovered'® that a triangular incommensurate phase ex-
ists over a relatively narrow temperature interval of
about one degree of 845 K. Thus the phase transition
from the B to the a phase as the temperature is lowered is
not direct, but must proceed through the incommensu-
rate phase. In the incommensurate phase, the order pa-
rameter 7 (defined!! in Fig. 1) varies spatially and is given
by

3
n(r)= 3 a; sin(q;'t+9;) , (1
i=1

where the q; are three wave vectors lying in the basal
plane, making angles of 120° with one another and
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aligned approximately (but not exactly) along reciprocal
lattice directions. The incommensurate phase of quartz
has been studied extensively both theoretically and exper-
imentally; a more detailed discussion and references to
the literature can be found in Refs. 6, 7, and 10-12.

To study the amplitude-mode and phason vibrations of
the incommensurate phase of quartz, one writes a; and ;
of Eq. (1) in the form a;=a’+8a; and ¥, =¢?+8v;,
where the a? and ¢? are the values appropriate to the
equilibrium state, and the six quantities 8a; and &, are
small oscillating quantities. To proceed further, one in-
troduces appropriate normal coordinates, i.e., coordi-
nates which transform according to the irreducible repre-
sentations of the point group'? C¢ of the incommensurate
phase. These coordinates are”!3

QA:801+802+803 ,
Q, =28a,—8a;—da; ,
1

=8a,—ba; ,

QE;’
Qp =089, 189, +6¢;,
QE; =289, — 8¢, — 8¢5,

0,y =81, 85 ,

and describe the vibrations of two nondegenerate ( 4 and
B) normal modes and two doubly-degenerate (E; and
E,) normal modes.

Although the doubly-degenerate mode described by the
coordinates Q £ and Q £y has a polar character (since the

coordinates transform like the spatial coordinates x,y un-
der operations of the point group C, of the incommensu-
rate phase—throughout the article the z axis is assumed
to be the axis of hexagonal symmetry), they are phason
branches of the excitation spectrum which have zero fre-
quency (at infinite wavelength). Thus they require special
treatment, which has already been given,'* and will not
be described further in this article. The coordinate Q 4,
on the other hand is an amplitude mode with a nonzero
frequency; it transforms like the spatial coordinate z and
is the only other coordinate which is polar. The
remainder of the article will focus on a description of the
vibrations associated with the coordinate Q ,.

As mentioned above, a polar mode in a crystal pro-
duces a lattice polarization which in turn generates an
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electric field. Coupled polar-mode and electromagnetic
field vibrations have become known as polaritons. The
polariton dispersion relation for cubic crystals was first
derived by Huang®'® and the first observation of light
scattering from polaritons was by Henry and Hopfield'®
on GaP. The experimental and theoretical study of po-
laritons has been extensive (e.g., see the reviews by Mills
and Burstein!” and by Claus et al.'®).

The polariton behavior of the Q , mode (see above) of
the incommensurate phase of quartz can be fully investi-
gated by adapting the results for uniaxial crystals de-
scribed in the reviews!”!® just mentioned. In our case,
the analysis is particularly simple, as only one polar
mode, Q 4, need be considered: The other polar modes,
which also occur in the normal phase of quartz (these are
the usual infrared-active zone-center normal modes),
occur at much higher frequencies than the Q , mode and
can hence be ignored.

II. THE AMPLITUDE-MODE POLARITON
DISPERSION RELATION

Electromagnetic radiation in matter is described by
Maxwell’s equations, which, for a wave with frequency
and wave vector q, become

2
qX(gXE)+ €(w) E=0 . (3)
C

In writing Eq. (3) we have assumed a small amplitude
of propagation for which the medium will respond linear-
ly to the incident fields. The magnetic permeability has
been set equal to unity, for we are dealing with a dielec-
tric crystal, and the effects of spatial dispersion have been
ignored. In the frequency range of interest (@~ 10 cm™})
the electromagnetic waves that couple strongly to the
amplitude mode have very long wavelengths compared
with the lattice spacing and we can confine ourselves to

FIG. 1. Projection onto the basal plane of the positions of the
silicon ions in a Wigner-Seitz unit cell of the quartz crystal
structure. The solid circles represent the positions of the ions in
the high temperature B-phase and the arrows show the direc-
tions of the displacements which these ions undergo in the tran-
sition to the a-phase. An order parameter 7 describing the B to
a phase transition can be defined as having a magnitude equal
to the displacement of one of the silicon ions, and a sign which
is positive if the displacement is in the direction shown, and
negative if the displacement is in the opposite direction.
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the form of the dielectric tensor in the limit q—0.

For uniaxial crystals, the dielectric functions are iden-
tical for two principal directions which describe the opti-
cally isotropic plane, i.e., €,(w)=¢€,(0)=¢€,(w); for the
third principal direction, which is perpendicular to this
plane, the dielectric function is €,(w)=¢(w). Here 1 and
|| denote directions perpendicular and parallel to the op-
tic axis.

In developing a description of the polariton behavior in
the incommensurate phase of quartz, we follow the har-
monic approximation of the potential energy approach
described by Cochran and Cowley.!® In the frequency re-
gion of interest, the amplitude mode Q 4 is the only polar
mode, and it transforms as the z component of the polar-
ization with the z axis being the axis of hexagonal sym-
metry. The free energy is therefore

1

F=%b1Qi +b,04E,+ 8

[e,;(0)—8,1EE; . @

Here €;;( ) represents the contribution to the dielectric
function from sources of polarization other than the in-
commensurate excitations.

The equations of motion and the macroscopic polariza-

tion are derived from Eq. (4) as

. JoF
= =p +b,E, , (5a)
04 30, 19410, _
oF 1
Piza—Ei:8i3b2QA +Z—1;[€i(°°)-1]Ei . (5b)

By assuming a harmonic time dependence eliminating
Q, in favor of E, and taking into account the constitu-
tive relation €(w)-E=E+4#7P, one obtains

47b3 a)ﬁ,_—coz
elo)=¢lo)t——5=¢(o)—— ©)
Wy Wy —w

where wf; =[€,(0)/¢(=)]w’ is the longitudinal optic

(LO) frequency and w% = —b, is the infrared dispersion
frequency. Also €,(w)=¢,, which is independent of fre-
quency.

The dependence of the frequency on the wave vector
can be obtained from Egs. (3) and (6). To this end, we
can assume without loss of generality, that q lies in the xz
plane (a plane containing the optic axis). Due to the in-
variance of the dielectric tensor with respect to rotations
about the z axis the frequency can depend only on the an-
gle between the wave vector and the optic axis. Let this
angle be 0 and note that

g, =gqsinb, q,=gq coso . (7

From Eq. (3) one obtains'’

2
[C—czo-z—el—cosze E,+ sinfcos@ E, =0, (8a)

o2
c—zqgel_l Ey——O ) (8b)

w2

sinf cosf E, + [T&'eu(m)— sin’@ |E,=0 . (8c)
cq
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Equation (8b) shows that for the incommensurate
phase of quartz, an ordinary wave whose phase velocity is
nondispersive and independent of the orientation of the
wave vector propagates in the medium with its electric
field polarized perpendicular to the plane formed by the
wave vector and the optic axis. In this case there is no
contribution to the polarization from the lattice motion;
the wave is a purely electromagnetic wave in a dielectric
medium.

When the electric field lies in the xz plane, one obtains
the extraordinary amplitude-mode polariton dispersion
law, for which the phase velocity is a function of the fre-
quency and of the orientation of the wave vector with
respect to the optic axis. The dispersion law which fol-
lows from (8a) and (8c¢) is

.2 2
w4_w2 C2 2 Sin 9 COS 9 +a)ﬁL
€(0) €,
) 2
6 , cos0
+egol, |2 4222 =0, (9
APl e e ©)

Unlike the general case for an uniaxial crystal for
which €, is a function of frequency, a closed analytic ex-
pression for the dispersion relation results in the particu-
lar case studied here. Fig. 2 shows this dispersion rela-
tion for the extraordinary amplitude-mode polariton for
several angles. This dispersion relation possesses two
branches. For ¢ —0, the frequency of the upper branch
approaches the value ©=w,, whatever the orientation of
q relative to the optic axis. The frequency of the lower
branch goes to zero as g goes to zero with slope ¢ /n,(0),
where

.2 2
n"(0)= sin‘@ | cos@ (10)

€,(0) €,

2.0 T T 2
7
7
/'//
7
,/"/
w =
wy e
1.0 - — T
-
L
o
Za
2
7/
,//
0 1 1
0 1.0 2.0 3.0
cq
wy

FIG. 2. Dispersion relation for the amplitudon-polariton for
different values of 6, the angle between the wave vector and the
optic axis. The solid lines correspond to 6=0, the dashed lines
to 8=45° and the dashed dotted lines to 6=90°, for the values
€,=2.3839, €)( 0 )=2.4118, ¢,(0)=3.00.
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For ¢ — «, the upper branch exhibits a linear variation
of frequency with wave vector which is characterized by
the phase velocity ¢ /n,( ) where

cos’0

a2
Sin’9 , cos’d 11

—2 —
n, () e() .

On the other hand, the lower branch at large wave vec-
tors has a frequency which is independent of the magni-
tude of the wave vector, and which is given by

n.()

:w”L-ne(—O) (12)

Another aspect of the dispersion relation of Fig. 2 is
that for 6=0, the electric displacement vector is perpen-
dicular to the optic axis and does not couple to the
amplitude-mode; under these conditions the amplitude-
mode and the electromagnetic wave are independent and
their dispersion relations cross. As soon as 6 moves away
from zero, however, the amplitude-mode and the elec-
tromagnetic wave interact and there can be no crossing of
the two branches of the dispersion relation.

III. RAMAN SCATTERING

Polaritons can be observed by Raman scattering pro-
vided the Raman tensor of the polar modes does not van-
ish, or by infrared reflexion when the mode is Raman
inactive.'® The Raman tensor describing light scattering
from the polar amplitude mode in quartz has nonzero ele-
ments a,, =a,, and a,,.

The amplitude-mode polariton in quartz can in princi-
ple be observed using the x (zz)y scattering geometry em-
ployed in Refs. 7 and 20. In both these references
scattering from relatively low-frequency excitations (= 10
cm™!) was observed. Unfortunately, the observation of
the temperature dependence of these features led to
different conclusions in the two references. Shionoya
et al.” concluded that the mode which they observed at 7
cm™! was the amplitude mode, whereas Berge et al.?°
concluded that the similar features observed by them
were probably not the amplitude mode. In view of these
differences in interpretation, it would be worth while
looking at the low-frequency features observed in the
scattering from other points of view. One way of doing
this would be to use other scattering geometries, to be
discussed below, to investigate the polar character of this
mode.

Raman scattering is usually observed in the right-angle
scattering geometry, i.e., a geometry in which the in-
cident and scattered rays are at right angles. Unfor-
tunately a right angle scattering geometry allows only the
large wave-vector limit of the polariton frequency to be
measured. To investigate the polariton dispersion rela-
tion more fully the x (z§)£ scattering geometry (see Fig.
3) can be used. In this case, by observing scattering
which is close to the forward direction (i.e., by making
the angle ¢ of Fig. 3 small) one can observe the polariton
frequency at smaller wave vectors,!”!® i.e., one can ob-
serve the lower branch of the dispersion relation shown
in Fig. 2 in a region where the wave vector is relatively
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FIG. 3. Scattering geometry x(z§)§. The incident beam
propagates in the x direction and is polarized in the z direction
while the scattered beam propagates in the £ direction and is
polarized in the § direction.

small and the frequency begins to decrease below the
large-wave-vector limit.

Now note in Fig. 2 that the large-wave-vector limit of
the amplitude-mode vibrational frequency depends on the
orientation of the wave vector of this mode relative to the
optic axis. In Fig. 4, this dependence is shown more ex-
plicitly. This dependence of the mode frequency on the
direction of the wave vector is called directional disper-
sion. The directional dispersion of the ordinary zone-
center polar phonons in quartz has been observed by
Shapiro and Axe.?! A similar scattering geometry could
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FIG. 4. Directional dispersion. The parameters used are the
same as in Fig. 2.

be used to study the directional dispersion of the polar
amplitude mode in quartz.

IV. CONCLUSIONS

The A-symmetry amplitude mode in quartz is a polar
mode and its coupling to the electromagnetic field should
be considered when calculating its vibrational frequency.
This coupling leads to a characteristic polariton type
dispersion relation as shown in Fig. 2. Similarly, the po-
lar characteristics of the amplitude modes and phasons in
any incommensurate crystal should be taken into account
when calculating their frequencies.

The investigation in the manner described above of a
possible polariton-type behavior and directional disper-
sion of the features observed at frequency shifts of the or-
der of 10 cm ™! in Raman scattering from quartz”?° could
help to clarify the nature of these features.
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