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Simulated growth of wetting films with a conserved order parameter
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We have simulated the growth of saturated and unsaturated wetting films in two and three dimen-
sions using an Ising lattice-gas model with nearest-neighbor interactions and a variety of long- and
short-ranged adsorbate-substrate potentials. The Monte Carlo simulations provide a locally con-
served order parameter (Kawasaki nearest-neighbor spin-exchange dynamics). Starting from a su-
persaturated bulk configuration, we find that the films grow as t' ' as predicted by Lifshitz and
Slyozov. For an unsaturated bulk starting configuration, the film thickness appears to grow at inter-
mediate times as t, where 0 is a small exponent which is determined by the substrate potential in
the mean-field regime and which is universally —, in the fluctuation regime; at long times, the thick-
ness approaches the equilibrium thickness as t ' . These results are consistent with theoretical
predictions made by Lipowsky and Huse.

I. INTRODUCTION

In a previous paper' we presented the results of Monte
Carlo (MC) simulations, using nonconserved order-
parameter (Glauber) dynamics, of the growth of wetting
films on a substrate as modeled by a d-dimensional solid-
on-solid (SOS) model. Emphasis in that work was placed
on the rate of growth of the films as functions of time in
the limit that the lateral size I. of the system is large
enough to play no role. The results were compared with
the predictions of Lipowsky, based on analysis of an
effective interface model, and were found to be in agree-
ment. A second paper presented further MC studies of
the SOS model with emphasis on the properties of the in-
terface between the growing film and the bulk phase and
also on the properties of an equilibrium interface between
two coexisting bulk phases.

The present paper reports MC simulations of the
growth of both saturated and unsaturated wetting films,
using an Ising lattice-gas model and conserved order pa-
rameter (Kawasaki) dynamics. We work in both two and
three dimensions, allowing nearest-neighbor adsorbate-
adsorbate interactions and both long- and short-ranged
adsorbate-substrate interactions. Emphasis is placed on
the time dependence of the thickness of the growing film
after quenching into supersaturated, unstable bulk
configurations, which separate into domains of the two
coexisting phases, or into metastable or stable bulk
configurations, leading to the growth of an unsaturated
film given appropriate interactions. In the case of an ini-
tial unstable bulk configuration, the domain growth
theory of Lifshitz and Slyozov predicts that at long
times not only the mean domain size in the bulk will in-
crease as t', but also the film thickness will grow with
the same time dependence as a consequence of bulk
domains drifting to the substrate and becoming part of
the adsorbed film. As this process occurs, a depletion
zone forms above the film, where there will be a relatively
low density of growing bulk domains. Our simulation re-
sults are in complete agreement with this picture.

In the case of stable or metastable bulk solutions,

Lipowsky and Huse have given a theory, based on an
effective interface model, of the rate of growth of wetting
films under conditions of diffusion-limited growth and for
various substrate potentials and dimensions d of the sys-
tem. Our simulations are in general agreement with their
theory, although we are not in every case able to make a
quantitative comparison.

Section II of this paper presents our model, describes
the Monte Carlo simulations, and summarizes the
relevant theoretical predictions of Lifshitz and Slyozov
and of Lipowsky and Huse; Sec. III is a compilation of
the results; and Sec. IV contains a discussion and sum-
rnary.

II. MODEL AND METHODS

We employ an Ising lattice-gas model on a simple cubic
lattice of dimension d equal to 2 or 3 with, respectively, a
[10]or [100]direction perpendicular to the surface of the
substrate. A site i of the lattice is either occupied by an
adsorbate atom or empty. Given neighboring occupied
sites, there is an interaction energy —J with J)0; other-
wise there is no interaction energy. In addition, there is
an interaction energy U; between an adsorbate particle
on site i and the substrate. Thus, the Hamiltonian is

&= —J g n;nJ+ g U;n, ,

where n; =0 (1) depending on whether site i is empty (oc-
cupied). The potential U; is taken to be a function only
of the distance z, , in units of the lattice constant, of site i
from the substrate; it is given by

where in the simulations we have used p =1, p =2, and
p = ao (short-ranged U;). For d =2, the lattice size used
in obtaining results reported here was 100X50; for d =3,
it was 20X20X50. Other sizes were employed to check
the size dependence of various results. Run lengths were
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typically 50000 MCS (Monte Carlo steps per site). Runs
were started by distributing a given number of particles
A' randomly throughout the lattice; JV was chosen so as
to produce a particular overall concentration c such as
20% or 30%%uo. Thus the initial configuration can be
thought of as a typical thermal distribution at infinite
temperature. The particles were then allowed to move to
nearest-neighbor sites using standard Kawasaki dynamics
at temperature T. For given thermodynamic and poten-
tial parameters, runs were repeated X times with different
initial configurations and random number seeds; we used
values of X from 10 to 100. A variety of time-dependent
quantities such as the .density profile n (z, t), the film
thickness l(t), and the coverage I (t) were accumulated
aged over the X runs. These quantities are given by, first,

n(z, t)=L' g'n, (t), (3)

where the prime on the sum denotes that the sites i which
are summed must lie in the zth layer. Next, the film
thickness l ( t ) is defined by

(4)

note that it is necessary to interpolate n (z, t) to nonin-
tegral values of z to make use of this definition. Finally,
the coverage I (t) is taken to be

fn(z, t) ~ no]

In a regime where the bulk phase is stable but the sys-
tem is sufficiently close to two-phase coexistence and the
substrate favors the formation of a film of a phase
different from the bu1k phase, a film of finite thickness
wi11 grow until it reaches some equilibrium thickness. If
this thickness is sufficiently large, then the film is expect-
ed to grow at intermediate times in the same manner as
at two-phase coexistence, and at long times it should ap-
proach the equilibrium thickness lo as lo —l(t) —t
Further, Lipowsky and Huse suggest that in the region
of metastable bulk phase, the interface between the grow-
ing film and bulk may display a Mullins-Sekerka instabili-
ty.

In the regime of unstable bulk phase, the domain
growth theory of Lifshitz and Slyozov is appropriate.
According to this theory, domains of the coexisting
phases nucleate in the bulk, and at long times, these grow
by coalescence of the domains into larger ones. At the
same time, the presence of a nearby substrate with a po-
tential which preferentially attracts domains of one par-
ticular phase results in the growth of a film of this phase
by essentially the same mechanism which produces the
domain growth in the bulk. The result is that not only
the bulk domains but also the film thickness is predicted
to grow as t ' . As presented in Ref. 4, this is the process
of crust sintering.

I (t)= g [n(z, t) —no], (5) III. RESULTS

where no is the bulk density. Notice that the definition is
such that the depletion layer which develops between the
film and the bulk does not contribute negatively to the
coverage because we do not include in the sum those z for
which n (z, t) ~ no

We turn now to a discussion of extant relevant theoret-
ical predictions of the rates of film growth under different
conditions. First, under conditions of two-phase coex-
istence, i.e., film formation beneath a coexisting bulk
phase, Lipowsky and Huse predict, on the basis of an in-
terface model with an effective substrate-interface poten-
tial V(l)-1/l~ [p is the same as in Eq. (2)], that at long
times the film thickness diverges as t where

for d =2 and p 6 1,

1
otherwise (but p ) —1),

2 p+2
For a suSciently short-ranged potential in two dimen-

sions, fluctuations dominate the growth process, leading
to a p-independent value of 0; otherwise, 0 depends on
the range of the potential. For p ~ —1, an instability de-
velops.

It is perhaps worthwhile to point out at this juncture
that our simulations cannot produce the predicted behav-
ior at long time because we are using the canonical en-
semble, i.e., the total number of particles is fixed. Conse-
quently, as the dense film grows, the bulk is depleted and
at some point ceases to be saturated or supersaturated,
and the film thickness must therefore approach a finite
value at long times. For "intermediate" times, however,
we can attempt to verify the predictions.

We present first the results for the case that the start-
ing configuration is in the bulk unstable regime. In our
simulations, the initial configuration is a homogeneous
(infinite temperature) phase with 20—30%%uo of the sites oc-
cupied; we quench suddenly to a temperature below the
critical temperature T, so that the system is unstable; the
substrate potential is such as to attract the dense phase to
the substrate. Because we start from a fairly low concen-
tration, the domains of the dense phase that form in the
bulk do not percolate and so appear as isolated clusters.
These diffuse toward the substrate and cause the film to
grow. There also appears a "domain depletion layer"
close to the film where the density of the (growing)
domains of the dense phase is lower than the density far
from the film-bulk interface. We have done simulatiohs
for d =2 and d =3 and have employed p = 1, p =2, and
short-ranged substrate potentials in both cases. A typical
result well above the roughening temperature is shown in
Fig. 1 where I (t) and l(t) are plotted against t' for
d=2, p =1, T=0.4J/k, and no=0. 2; the data are the
results of ten separate runs giving, at various times, stan-
dard deviations in the coverage and thickness ranging
from 3% to 7%%uo and uncertainties in the means (the plot-
ted values) of 1 —2%%uo. Both sets of points fit a straight
line quite well, demonstrating the predicted t' behavior
even though the total coverage is not very large. One
should bear in mind, however, that the growth rate of the
film is determined by the inhuence of the potential on the
material throughout the system and so is a reflection of
the domain growth rate everywhere. If the same infor-
mation is presented in a log-log format, the data for I at
times larger than about 10000 MCS are At by a straight
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FIG. 1. The coverage ( ) and thickness (X) are shown as
functions of the time (in units of 2500 MCS) to the —,

' power for
d =2, p =1, no=0. 2, and T=0.4J/k. The lattice measures
100X 50; ten runs have been averaged to produce these results.

line of slope 0.332+0.007, while those for the film thick-
ness are fit by a line of slope 0.284+0.016. A nonlinear fit
to the function y =a +bt where a, b, and t9 are parame-
ters yields, for y=I, 0=0.360 and, for y =l, 0=0.328.
The simplest interpretation of these fits is that 0 is indeed

3
Simi 1ar resu 1ts are found in three dimensions and for

the other substrate potentials, demonstrating consistency
with the t' growth law, at least for the dimensions and
substrate potentials employed here.

Figure 2 shows the domain structure in a typical run
using the same parameters as above. The dots ( )

represent occupied sites while empty sites are blank; the
substrate is at the left of each figure. Figure 2(a) presents
the structure at a "time" of 2500 MCS while Fig. 2(b) is
at 50000 MCS. The growth of both the film (at the left)
and of the bulk domains is apparent, as is the appearance
of a depletion zone just above the film-bulk interface
where the density of domains of the dense phase is much
lower than in the bulk.

For the three-dimensional systems at temperatures
close to and somewhat below the roughening temperature
Tz -0.6Jlk, the film growth is discernible, but very
slow, and shows evidence of layering transitions. %'e
have not succeeded in extracting any general information
about the growth rate in this regime.

We have studied the long-time behavior of the film
growth following a quench into a regime where the bulk
phase is initially stable or metastable. These are
equivalent because, as the film grows, the material in the
remainder of the system dilutes so that the bulk becomes
stable even if initially metastable. Under these conditions
we see the expected long-time behavior I (t) =l „—At ', where A is a constant and l „ is the equilibri-
um film thickness. Figure 3 shows 1(t) versus t ' for
d =3, p =1, no=0. 2, and T=1.4; 36 runs were per-
formed to achieve these results. The straight line shown
is from a least-squares fit to the points. Extrapolated to
t ' =0, it predicts I =3.02. This prediction was
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FIG. 2. The domain structure of the system is shown in one
particular run for the same conditions as in Fig. 1 at times (a)
2500 MCS and (b) 50000 MCS. Displacement parallel to the
substrate is plotted along the ordinate; perpendicular to the sub-
strate, along the abscissa. The substrate is located at the left of
the figures, and a dot represents an occupied site.
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checked by doing separate grand-canonical ensemble
simulations at a number of distinct chemical potentials to
infer the equilibrium film thickness as a function of the
mean density of particles in the system. The result is
shown in Fig. 4. For the particular case presented in Fig.
3, no=0. 2 and the thickness from the grand canonical
ensemble simulations is about 2.82 which is in reasonable
agreement with the canonical ensemble result of 3.02.

Similar results were obtained in two dimensions and
also for p =2 in both two and three dimensions. The
fiuctuations were relatively larger for d =2 (using a
100X50 lattice), necessitating about three times as many
runs to obtain results as good as those shown in Fig. 3.
In general the equilibrium thickness obtained from the

FIG. 3. The Alm thickness is plotted as a function of t
for d =3, p =1, no=0. 2, and T=1.4J/k; time is in units of
2500 MCS. The line is the result of a least-squares At to the
data.

grand ensemble simulations was slightly smaller than that
inferred from the canonical ensemble, probably a conse-
quence of size e6'ects.

We have also studied film growth under the same con-
ditions but at intermediate times. In at least some runs it
is possible to interpret the observed growth rate before
saturation begins to set in as 1(t)—t with 8 given by Eq.
(6); however, 8 is so small that a quantitative determina-
tion is not easy. As an example, consider Fig. 5 which
displays l(t) versus t'~ for d=3, no=0. 22, p =1, and
T= 1.1 2J/k. Sixteen runs were done, producing distri-
butions at various times with standard deviations of typi-
cally 4% of the mean value and an uncertainty in the
mean of about 1%. A least-squares fit to a log-log plot of
the same data produces a line of slope 0.18+0.02. The
predicted value of 0 for this case is —,'. The simulation re-
sults are certainly not inconsistent with the prediction
but neither is there quantitative agreement of a fully sa-
tisfactory sort. Figure 6 shows the thickness as a func-
tion of t' for a case which diA'ers from the preceding
one in that p =2 and eighteen runs were performed; the
standard deviations of the distributions at various times
were typically around 5% of the mean, leading to uncer-
tainties in the mean of slightly more than 1%. For this
case 0 is predicted to be —,'. A least-squares fit to a log-log
plot of the data yields 0=0.14+0.03. An alternative
fitting procedure is to write I(t)=lo+bt with lo, b, and
0 as variable parameters. This method results in the data
of Fig. 5 being best fit by 0=0.161 and those from Fig. 6,
by 0=0.131. On the basis of these results, we feel that
we cannot claim unambiguous verification of the predic-
tions for 0 in Ref. 5, but the simulations are certainly
qualitatively consistent with them.

IV. SUMMARY AND DISCUSSION

In this paper we have presented results of film-growth
simulations of an Ising model using conserved order-
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2.50

3.50

1.50
O. 10

I s s

0.20
I
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0
FIG. 4. The equilibrium film thickness l„(Q), found from

grand-canonical ensemble simulations, is plotted against the
mean density of particles in the system no for d =3, p =2, and
T=1.4J/k; the value of l„ inferred from canonical ensemble
simulations (see Fig. 3) is shown ( X ) for the particular case of
no =0.2. The line is included to guide the eye.

2.50 '
1.00 1.50

tx) e

FIG. 5. The thickness l(t) at intermediate times is plotted as
a function of t' for d =3, p =1, no=0. 22, and T=1.12J/k.
The time is in units of 2500 MCS and a straight line is included
to guide the eye.
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FIG. 6. The same as Fig. 5 except that p =2 and T' is plot-
ted along the abscissa.

parameter dynamics. We include nearest-neighbor in-
teractions between adsorbate particles and both short-
and long-ranged (algebraic) interactions between the sub-
strate and adsorbate; the latter do not depend on dis-
placement lateral to the substrate surface. Both two- and
three-dimensional lattices were used. Temperatures
(after quenching from very high 1) and mean particle
concentrations were chosen to produce initially either an
unstable uniform bulk phase or a stable or metastable
uniform bulk phase in order to examine the growth rate
of the films under a variety of conditions.

In the case of starting in an unstable uniform bulk
phase, the film thickness or coverage appears to grow at
long times as t ' in agreement with the theory of domain
growth and sintering developed by Lifshitz and Slyozov.
The mechanism producing this behavior, the validity of
the theory, and numerical simulations of domain growth
in the bulk have been much discussed of late. The mech-
anism involves the evaporation and coalescence of indivi-
dual domains in the bulk; these domains initially nucleate
spontaneously as a consequence of having an unstable
system. In the bulk, the average domain size, according
to the theory, increases as t '; further, given appropriate
substrate potentials, domains of one phase drift to the
substrate and cause a film of this phase to grow there. As
discussed in Ref. 4, the same mechanism is responsible
for crust sintering. We have studied only the film growth
and find surprisingly clear evidence, considering the film
thicknesses we were able to achieve and the apparent
difficulty in obtaining unequivocal results in the case of
bulk domains, for an exponent of —,

' in both two and
three dimensions and for both short- and long-ranged

[p = 1 and p =2 in Eq. (2)] substrate potentials.
Under conditions of a metastable initial configuration

so that domains of a second phase do not nucleate in the
bulk, the theory of Lipowsky and Huse is applicable.
They find that the film coverage or thickness should grow
as t where 0 is a small exponent that will depend on the
range of the substrate potential if it is sufficiently long-
ranged. In d =3 and for any algebraically decaying sub-
strate potential, U(z)-z~+', 8=1/2(p +2); this relation
also holds in d =2 and for p (1, but for p ) 1, 0= —,', in-

dependent ofp.
It is difficult to do simulations of sufficient length in

this regime to see the expected power law dependence of
l(t) very clearly in most cases, although our results are
always consistent with the predictions. The reasons for
the difficulty are, first, that the exponent 0 is small and it
is not easy to determine a small exponent accurately.
Also, the film will not grow with this time dependence
forever in the simulations because the number of particles
is fixed and the total system size is quite limited (50 layers
in the direction normal to the substrate). Consequently,
as the film grows, the bulk phase is depleted and ceases at
some point to be metastable or to be on the two-phase
coexistence curve. Under these conditions the film thick-
ness approaches some limiting value rather than continu-
ing to grow. In order to maintain the appropriate condi-
tions as long as possible, we did runs using a quite large
initial uniform density, no=0. 2 to 0.3; it was therefore
necessary to run at temperatures not far below the bulk
critical temperature, giving rise to rather large Auctua-
tion efFects, thereby further increasing the difficulty of ob-
taining clear-cut results. We have presented here results
for the particular case of d =3 with p = 1 and p =2; they
are qualitatively consistent with the predictions. We
achieved similar results in two dimensions, but with rath-
er more difficulty because of the larger inAuence of Auc-
tuations.

Finally, at longer times under the conditions just de-
scribed, we were able to study the approach of the film
thickness to the saturated, equilibrium value. Lipowsky
and Huse predict that the thickness should approach
this value as t '; our simulations support this predic-
tion unequivocably.
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