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We study the critical behavior, in a mean-field approximation, of a grand-canonical ensemble of
nonplanar self-avoiding random surfaces (SAS’s) which arises as an 1 —0 limit of a gauge-invariant
theory. We show explicitly that our model is equivalent to the usual ¢* theory near the critical
point, with the upper critical dimension equal to 4. The fractal dimension of SAS is 2.

I. INTRODUCTION

An understanding of the behavior of interacting ran-
dom surfaces is an important current problem both in
particle physics and in condensed matter physics,! and
has recently seen considerable activity.?”'® Self-avoiding
surfaces (SAS’s) are a natural extension' of self-avoiding
walks (SAW’s) and are closely related to string theories of
lattice gauge systems.!”” ! In particular, random sur-
faces have been found useful in the random surface repre-
sentation of lattice gauge theories.” The self-avoiding
constraint forbids a given bond to be shared by more
than two plaquettes in SAS’s (Ref. 3) and a given site by
more than two bonds in SAW’s.2’ The initial attempt at
an n =0 description by Maritan and Omero? for SAS’s
was shown to be incorrect by Durhuss et al.> It was no-
ticed by Durhuss et al.® that the weight for surfaces of
fixed boundary could become unbounded if there were no
restrictions on the nature of the allowed surfaces. For ex-
ample, the Euler characteristic must be restricted for the
weights to make sense as n -—0. However, such a restric-
tion could make the significance of these surfaces for
gauge theories highly questionable. Nevertheless, one
still hopes that some form of n =0 description for SAS’s
might exist, in view of the similarities that exist between
gauge theories and spin systems.?"?? This will be highly
desirable for obtaining a field-theoretic description of
SAS’s which is lacking at present. Such a description is
necessary to understand the critical behavior in physical
systems involving statistical fluctuations of surfaces. Our
understanding of the critical phenomena in surfaces is far
from complete. There are competing conjectures regard-
ing the upper critical dimension DX, above which self-
avoidance becomes irrelevant.’ 17 Various values of DX
have been identified, depending on the characteristics of
the model. Different models of SAS’s exhibit different
universality classes and our understanding of the field is
at present incomplete. Therefore, it is very important to
produce a model of SAS’s which can be investigated
analytically.

Our aim in the present work is to extend the n —0
analogy from SAW’s (Ref. 23) to SAS’s. We find that the
natural extension requires considering nonplanar sur-
faces. This natural model of nonplanar SAS’s is very gen-
eral and turns out to be equivalent to the n —0 limit of a
spin model with Z, gauge invariance involving n-
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component spins S (8=n) located on the links of a d-
dimensional hypercubic lattice Z 4 This model, which
turns out to be an extension of the model of Ref. 3,
reduces to several models, each with distinct characteris-
tics. We focus our attention on one of the models and
solve it in a mean-field approximation for arbitrary n.
For n =0, our calculation yields some novel features.
Our model possesses a first-order transition at zero field
and a critical point at nonzero field. Near the critical
point, our model is equivalent to the usual ¢* field theory.
We conjecture that the upper critical dimension DX is 4,
and the lower critical dimension D} is reasonably expect-
ed to be 1, just like the SAW problem.?* This violates the
conjectural relation Df=2D}.'7 The fractal dimension
D, is 2. Our values of DX and D, are consistent with the
results of Durhuus et al.® Since nonplanar diagrams
arise in gauge theories, domain walls, etc., our results
should prove very useful in these fields.

The layout of the paper is as follows. We introduce
our surface model in Sec. II. This is accomplished by
considering a gauge-invariant theory in the limit » =0.
Here, n stands for the number of components of the spins
which are located at the links of the lattice. As said pre-
viously, each spin is constrained to have a fixed length:
S2=pn. This mapping enables us to relate a grand-
canonical ensemble of nonplanar surfaces with the spin
model as n—0. We consider various limits of the spin
model. Each such limit describes a certain physically in-
teresting model of SAS’s. In Sec. III, we present a
mean-field analysis. Within this framework, we find a
line of first-order phase transitions terminating in a criti-
cal point C. The critical behavior about C is studied in
Sec. IV. We demonstrate that the critical behavior is
equivalent to that of a ¢* field theory with usual Landau-
like exponents. In particular, we identity the upper criti-
cal dimension DX as 4 and the fractal dimension D ', of a
surface as 2. Section V includes a discussion of other in-
teresting properties. In particular, we suggest that the
lower critical dimension DL can be reasonably taken as 1,
and we estimate the number of Hamilton surfaces. A
brief summary of our results is also given.

II. SURFACE MODEL

Let us consider a finite lattice with N sites. Every pla-
quette on the lattice has four links associated with it and,
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correspondingly, four n-component spins s, s, s’ and s'”".
However, only first m components of these spins interact
with each other. Let us also include a gauge-fixing exter-
nal magnetic field

H=H(1,1,...,1,0,...,0)

with m' nonzero and equal components. The system is
described by the following anisotropic Hamiltonian:

#,=K3 0p+HS 0, (1)
[P] [B]
with
' 0p= § Slalgralgria)griia)

a=1

and
m’

OB___. z S(a) ,

a=1

K and H both non-negative. We will also restrict m and
m' such that m 2m’. The first sum is over each pla-
quette P and the second one over each bond B. In the ab-
sence of H, we have local gauge invariance under

ZZ:S(a)—-»—S(a) , (2)

which is broken by H. A similar anisotropic interaction
has been used to describe self-avoiding rings and walks.?
The partition function Z, is defined by

Z,= ][] Trgexp#, ,
[B]

where
Trp(X)= [dQ,(X)/Q, ,

and where Q, is the solid angle. It is well known?® that
as n —0, a spin component can occur, at most, twice:

Tr(1)=Tr[S¥]?=1,
Tr[S @ PP=Tr[S'¥>* " 1=0, p=2,...,

as n—0. This ensures that a bond can, at most, be
shared by two plaquettes. Following Ref. 23, we find that
the only diagrams that survive are the ones shown in Fig.
1.

(a) There are closed surfaces, Fig. 1(a). Each closed
surface of area |S| contributes a weight of mK'S!. The
factor m originates because the ‘“color” index a runs

mKls! ST
(a) (c)

A 4 o .
1..k2 L
2mK 1 Fm H?

(b) (d) (e)

FIG. 1. Various diagrams surviving the n —0 limit.
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from 1 to m in each closed surface. Each plaquette gives
a factor of K.

(b) Each elementary plaquette, Fig. 1(b), can appear
twice due to K203 /2 in the expansion of exp(KOp), see
(1), and contributes a weight of mK?/2, and not mK? as
in (a). This is a closed surface with only two plaquettes.

(c) There are open surfaces, Fig. 1(c), with boundary 7,
determined by bonds, each belonging to exactly one occu-
pied plaquette. Such a diagram must have a factor of
H'"! from the boundary because, each spin on the bound-
ary can be made to appear twice with a term HS'® from
(1), as shown by crosses in Fig. 1(c). Here, |y| denotes
the length, i.e., the number of bonds belonging to y.
Since a=1,...,m’, each surface can have only m’
different colors. The total weight is m'H lrig sl

(d) Each bond, which is unoccupied by any plaquette,
can appear in two different states: (i) The corresponding
spin does not appear in the diagram, Fig. 1(d), and (ii)
The spin appears via H?[S'912/2, a=1,..., m’', Fig.
1(e). The total weight for these two possibilities?®?? is
zo=14+m'H?/2.

Now, it is not hard to see that as n -0, Z, —~Z, given
by

N,

Z(): mCmIC‘(_]i)COHllelS’Z(j)VB‘ [ , (3)

Isl, Il
where C is the number of connected closed SAS’s, C’ the
number of connected open surfaces (i.e., with nonempty
boundary), C, the number of connected double pla-
quettes; Np=Nd is the total number of bonds and
Ny=2|S|+1|y|/2 is the number of bonds occupied by
plaquettes. Two SAS’s are disconnected if they do not
share a bond; sharing a corner is not sufficient for their
connectness. Moreover, our SAS’s are not necessarily
planar and have very rich topology: They may possess
handles and/or holes. .
We can define a related partition function Z for SAS’s
b
y A N ' C
Zi,m=2Zo/20" = S mSm'C (L) onlrhdSl @)
s, 71

where n”*=H?/z, and k=K /z}. As 7—0(H —0), k—K,
and we have only closed SAS’s in (4):

Zaosea,0)= 3 mS(1)Cklsl (5)

Isl,lyI=0

By letting m =n—0, we find that all closed surfaces
disappear in (4) and we have only open surfaces:

2opt-:n(K’ﬁ'l;’n =0)= m'C‘1I|7’|K|S| . )
s, lyl0
If one is interested in studying the behavior of only one

SAS, it is achieved by setting m =m’'=n and evaluating
(8Z, /3n), —¢ at fixed K and H (note that Z,=1):

(8Z,/3n),_=(3InZ, /3n),_o=NpyH?*/2

+NpK2/2+ 3 KSHTY . (7)

1S]>2, [y
Here Np denotes the number of plaquettes in the lattice.
Each term in the sum in (7) denotes the statistical weight
of a single surface, whether closed or open. This limit, in
which one probes the behavior of a single surface, is also
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known as the dilute limit. As H —0, one obtains only
closed SAS’s in (7).

In many cases, one is interested in considering a Wil-
son loop. In this case, one must consider an open surface
whose boundary is defined by the single contour I' of the
Wilson loop. Let

wr=I1IS/", ST, ®

1

denote the product of S\ over the contour I of the Wil-
son loop. The quantity of interest is the average value of
the operator Wr.. To obtain this, we set m =n and H =0
in (1). By setting m =n—0, all closed surfaces disap-
pear. Therefore, Z,=Z=1. Now consider the average
value

(W), =TI Trale ™ W) /T] Trge”™ .
B B

As n—0, we find that only diagrams that survive are
those whose boundary is the contour I':

(Wr)y=3 K. )
S

as=r
Each term in the sum (9) denotes the weight of a single
surface S with boundary S =T". It is, in principle, possi-
ble to evaluate { Wr.),.

It should be remarked that the weights in (4) are deter-
mined by |S| and |y| both. In this respect, our model
differs from previous models.®>”!® At H=0 and
m =m'=1, our weights are identical to those used by
Durhuus et al.,® except that we have a grand-canonical
ensemble. Durhuus et al. consider a single surface in
their discussion. Majority of the work, except Ref. 3,
deals only with planar surfaces. As we have indicated,
we put no restriction of planarity on our surfaces. It is
conceivable that due to nonplanarity, our surfaces belong
to a new university class of surfaces. As we will see, how-
ever, our results about Dc” and D ¢ are in agreement with
that of Durhuus et al.3 who also consider nonplanar sur-
faces in general.

It is easy to generalize our technique to describe self-
avoidance among D-dimensional manifolds (D=0 for
SAW’s, D =1 for SAS’s, etc.). We will not do this here.

Let ¢, and ¢, denote the density of plaquettes and of
the boundary in the thermodynamic limit Ny — . This
limit will be assumed in the following. It should be
remarked that our mapping between the spin system and
self-avoiding surfaces is established for finite Nz. In oth-
er words, n =0 limit is taken before Ny — . However,
we will assume in the following that the two limits (n —0
and Np— ) can be interchanged. Such an interchange
is believed to be valid in the disordered phase of the spin
system but may be invalid in its ordered phase. We will
come back to this point in the last section. We observe
from (4) that ¢p,=kd&/3k, ¢,=n10d/3n where
&=InZ/Ngz. As n—0, ie, H—0 we find that
¢,=MH —0, where M is the magnetization of the sys-
tem. Let us consider H—0. At small K, we expect to
have very few closed SAS’s each with a finite area so that
¢p is zero in the thermodynamic limit. As K increases,
we expect to observe a phase transition at some K =K.
For K > K, we will have ¢p >0, whereas ¢, =0 below
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K, with a singularity at K =K,. This behavior is similar
to the behavior observed in SAW model.?»?* As we will
see below, the transition is, in fact, a first-order one in the
mean-field approximation and is expected to become a
continuous one in lower dimensions.

As K — o (H—0), we expect the SAS to cover max-
imum number of plaquettes. This corresponds to cover-
ing every bond of the lattice. We will call such a SAS a
Hamilton surface in analogy with Hamilton walks that
cover each site.?

III. MEAN-FIELD SOLUTION

We will now solve (1) in a mean-field approximation.?®
For the sake of convenience, we will consider m =m’'=1.
In the presence of a field, the magnetization M=(S)
points along a=1 direction. Let us write S=M+o
where o is the fluctuation with zero mean: (o ) =0. Set-
ting

S(a):M(a)+o.(a)
in (1) and expanding, we find that

H,=KNpM*+KnpM*3 o+ --- +HI SV,

[B] [B]
where Np is the total number of plaquettes and
np=2(d —1) is the number of distinct plaquettes at each
bond. The missing terms in (10) contain higher powers of
o’s and describe the effects of correlations among the
fluctuating field . However, in the mean-field approxi-
mation,?® these fluctuation correlations are neglected.
Now, reexpressing o'@=8@—M® we find that the
mean-field approximation for #, is given by

Hoo=—()KNgM*+(KM*+H) 3 SV,
[8]
where Knp has been replaced by K and where we have

used the fact that Nynp=4Np. The corresponding free-
energy o, =InZ, /Ny per bond is given by

(10)

(11)

0, =—(3)KM*+Inz, , (12)

where z,(x)=Trexp[xs'!] is the single-spin partition
function in a field x =KM?*+H. This single-spin parti-
tion function is given by

2,(x)=T(n/2)xV'n /2)' "I, ,_(Vnx),

where I, is the modified Bessel function of order v (see
Ref. 26 for details).

It is evident that our mean-field calculation does not
destroy the n dependence in the free energy. In other
words, our free energy w, depends not only on the aver-
age M=(S'V), but also on the transverse components

through z,.
As n—0,z45(x)=1 +x2/2, and we have
wo=—()KM*+In[1+LKM3*+H)?] . (13)

The equilibrium value of M is obtained by maximizing «,
with respect to M. Note that our definition of w differs
by a minus sign from the useful definition of the free en-
ergy. Therefore, we must maximize w, and not minimize
it. This yields the following equation of state:
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H=f(x)=x—K[x/(1+x2/2)]?, (14)
or
HM =g(M)=1—KM*—(1—2M?)'% (15)

We have shown f(x) in Fig: 2 for various values of K.
For very small H and small K, we have a solution of M
which is proportional to H along AB. However, for K
between K, and K, to be determined herein, there is a
first-order transition at some H =H *(K) from x =xp to
x =xc, so that the free energies are equal:
w(xg)=w,xc). At H =0, the first-order transition
occurs from M =0 to M =M ;~0.697 at K =K ;~4.927
(x =x7=1.668), and is similar to the transition obtained
for n =1 by Balian et al.'® This first-order transition line
AC defined by H*(K) is shown in Fig. 3 and terminates
at a critical point C with H=H_(K_), K =K_ at which
we have an inflection point in f(x) with zero slope
OH /M =1/x=0): f'(x,)=f"(x.)=0. This corre-
sponds to g'(M_.)=H_, g""(M_.)=0. The point Cis a crit-
ical point since the susceptibility y =0M /dH diverges at
this point. Numerically, we find that x,~0.662,
K, ~2.153, H.~0.317, and M, ~0.543. The magnetiza-
tion M is continuous in K at H =H_. The same is true of
the plaquette energy €, =0w,/0K.

As K— o, we have from Ref. 14, x*~8K, ie,
M*~2/K —0. This should not be surprising for n =0,
as it is shown that M is indeed zero at K = «.%® It is easi-
ly seen that the spontaneous magnetization decreases
continuously from M =M, at K =K toM=0at K= .
This is, again, a common feature for n =0.%¢

IV. CRITICAL BEHAVIOR

The divergence of x as we approach the critical point
implies that the correlation length £ also diverges as we
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FIG. 2. The graphical solution of (14) for various K and H.

us to obtain a continuum theory of SAS’s whose scaling
properties, i.e., long-distance properties, are identical.

With this hope, let us now expand our theory near the
critical point. We find the equation of state (15) to be
more suitable for this purpose. We also find it convenient
to use new variables 7, &, and ¢ in the following. They
are defined as follows:

K=K.(1+7),H=H (1+h), and M =M_(1+¢) .

approach the critical point. Therefore, there is hope that (16)
the study of our model near the critical point will enable We expand g (K, M) around the critical point:
J
g(K,M)=1—(1—-2M»)2—K M*—K M*r=g (K, ,M)—K M*r~g(K.,M_,)+g (K.,,M (M $)
+g"(K.,,M. )X M.$)?/2+g"" (K, ,M,)(M.$)*/6—K M*r .
Using g(K.,M.)=H_M_ and g’'(M_.)=H_, g""(M_,)=0, we find that
HM =H M, (1+h)(1+¢)~H M. (1+¢)+(g"" /6 M,$)* —K.MX1+¢)*r . (17)
[
Simple algebra now shows that the preceding equation we can rewrite the preceding equation of state as
reduces to N R
'=A¢°—3B1¢ . (21)
h=A¢>—Br(1+3¢), (18) ¢
where The ordering field 4’ has the following significance:
v h'=0 is tangential to the transition line AC near C (Fig.
A=2MX5M?—1)/[3H.(1—2M?)°"?]>0, 3). Therefore, h’' is asymptotically orthogonal to the
R (19) transition line AC near C. The ordering field 2’ remains
B=KM:/H. >0 . - zero as we move along AC. In this sense, i’ acts like the
: . 1 symmetry breaking in ordinary magnetic systems. _
Defining a new ordering field It is now clear that the equation of state?! is identical
h'=h+Br, (20) to the equation of state in the usual ¢4-ﬁeld theory. This
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field theory is defined by the action
m3 A
S=%(a¢)2+—2-2;¢2+70¢4—h0¢. (22)

For uniform ¢, the first term is zero. The minimization
principle yields the following equation of state determin-

ing ¢:
o=mld+Ap’ . 23)

The phase transition occurs when m,=0, which corre-
sponds to 7=0 in (21). For h,=0, we find that ¢=0 if
m,>0. This corresponds to 7<0 in (21). For m, <0,
¢#0. This corresponds to 7>0 and ¢0 in (21). It is
therefore evident that we obtain usual Landau exponents
for our model: y=1, B=%, a=0, and 6=3 where they
are defined as usual.

It is easily seen that the same (mean-field) exponents
are obtained even for n =1.272% As a matter of fact, we
obtain a phase diagram similar to Fig. 3 and the same
mean-field exponents as above for all »>0.2% It is
known'? that there is a continuous transition at zero field
in d =3 for n =1. Moreover, computer simulation sug-
gest a first-order transition at zero H (Refs. 28 and 29) in
d =4. Therefore, the transition must move from
H =0,d =3 to H=H_,,d=4. It would be interesting to
see how H, moves away from H =0 as d is raised above
3.

By studying the correlation functions, Brezin and
Drouffe?’ have demonstrated that our model (1) for n =1
is equivalent to a ¢* field theory in the long-distance limit.
Therefore, we expect the upper critical dimension D to
be 4, and the hyperscaling to be valid for d <DZX. This is
certainly true for n =1 since our model (1) is equivalent

to the usual Ising model in d =3 (Ref. 18) for which’

hyperscaling is generally believed to be valid. As shown
herein, hyperscaling is obeyed in d =1 for n =0. Since
the mean-field critical behavior does not usually distin-
guish between different n’s,’® we expect hyperscaling to
be valid also for n =0. Therefore, the correlation length
exponent v is 1 ford > D=4.

Our identification of D¥=4 differs from various sug-
gested values of DZ:DH =8 by Parisi!” or D¥= « by Bil-
loire et al.,* suggesting that our SAS’s belong to a
different universality class. However, it is gratifying to

H= co

[o]

H

0=)

"Dilute Limit"

>

H=0 K K

FIG. 3. The transition line AC [H=H*(K)]. Curve BB’ in-
dicates a line of possible “Higgs” transitions.
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see that our result is consistent with the conjecture of
Durhuus et al.?

It should be emphasized that our identification of DCH,
Dy, etc., is done in a mean-field calculation. From (12), it
is evident that the free energy o, depends on the value of
n in general. In other words, it knows about the ex-
istence of the longitudinal components S and the
(n —1) transverse component S@ a=2,...,n Even
when m =1, the free energy depends on n due to the term
z, in (12).

However, near the critical point, the expansion (17) de-
pends only on the longitudinal field ¢. The transverse
fluctuations have been thrown away. Therefore, it is not
surprising that our equation of state (21) is identical to
the equation of state (23) for a one-component ¢*-field
theory. Our mean-field values of various exponents will
not change even if the transverse fields were included.
However, to obtain these exponents in d <DCH =4, the
transverse components must be included. In that case,
the exponents, in general, will depend on n. Since our
main interest is in identifying D, we have neglected the
transverse components in our analysis.

At C, ¢p and ¢, are both nonzero. However, the densi-
ty ¢c=m (3@ /0m), m =m’'=1, of different SAS’s cannot
be determined from knowing ¢, and ¢,. By solving (1)
for arbitrary m =m’, we find that ¢-~0.039 at C. We
will not give the details as they are not very illuminating.
The average number of plaquettes P of a SAS may be
defined by ¢p/¢. which is finite at C. However, an
infinite SAS must exist at C as the correlation length £
diverges here. Near the critical point, £ diverges as
|7, v=4. Therefore the radius of gyration R of this
growing SAS must also diverge as £~ |7| ™" as |7| —0.

The singular part of the free energy is obviously deter-
mined by this diverging surface. Since ¢p ~0w,/dk, we
find that the singular part ¢’ of ¢ must behave as

¢ ~ |74t 24

Since the volume occupied by this surface behaves as §d,
we find the number of plaquettes P in this surface behaves
as

P~¢5§)§d~ 1717 .
In other words,
P~RYV", (25)

Therefore, the fractal dimension D, of SASis D;—,,,=2,
in our mean-field approximation as conjectured by Du-
rhuus et al.?

V. DISCUSSION AND SUMMARY

It is known that at zero field, one cannot have a
nonzero magnetization® for integer n. Our calculation at
finite field, where we observe the critical behavior does
not violate this result. However, as H decreases, our
mean-field result must become invalid due to the inter-
vention of some other transition”?’~2%3! (for example,
the “Higgs” transition along some curve BB’, Fig. 3, or
the roughening transition, etc.), before we get to H =0,
K > K, where M is not a sensible order parameter. Our
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calculation involving only single parameter M cannot de-
scribe the Higgs transition, unless we put some matter
field or introduce some other more sensible order param-
eter, which we have not discovered yet. However, as sug-
gested by Brezin and Drouffe,?” we can use the preceding
method for calculating any gauge-invariant observable.
Because of the failure of our mean-field calculation, we
predict that there must be an analogous “Higgs” transi-
tion line BB’ even in our surface model. At present, we
do not know the significance of this transition and is
currently under investigation.

It should be noted that in deriving (13), we have taken
the thermodynamic limit before taking the self-avoidance
limit n—0, whereas the original mapping (4) requires
taking n — 0 before Ny — . Such an interchange of lim-
its is, in general, not valid when there are phase transi-
tions. Therefore, one may suspect our mapping in the
shaded region bounded by BB’ and AC in Fig. 3. One
must investigate this issue of limit interchange in order to
study the significance of the “Higgs” transition line BB’
and the ordered phase below it. This is currently being
explored.

Even though one cannot define a plaquette in d <2, we
can consider an effective one-dimensional lattice
(2X2XN) in the limit N — «. Consider H =0. It is evi-
dent that for K <K, =1, we have only finite closed sur-
faces, whereas for K > K, we have an infinite closed sur-
face, covering the whole lattice, a situation similar to the
one for SAW’s in d =1.2* It is evident that v=1 here.
This shows that DCL can be regarded as 1, and we suggest
that DCH need not be twice DCL, in general. Furthermore,
since the transition at H =0 is continuous in d =1 and
first order in mean field, we expect that the transition at
H =0 becomes continuous in some low dimensions.

Let us now evaluate the number of (closed) Hamilton
surfaces (H—0,K — ). Since M*—2/K, we obtain
from (13)

©o=—3+InV2K —In(2Kn, /e*)'?, . 26

where we have replaced K by Kn, (see above) at the end.
Let us assume that the number Wyg of the Hamilton sur-
faces grows as p’}ﬂ=yg§ 2 Nz=2|S|, |y|=0. Setting
Wys in (5), we find that wy—In\/ K uys. Comparing this
with (26), we find that

Mps=2n,/e3=4(d —1)/e>~(d —1)/5 . 27
I4
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It is evident that the connectivity constant u for a SAS of
area |S| on an infinite lattice (whose number
Wsas 1S| ~S|7%!5) must be bounded from below by
Hys, and provides a better lower bound than given be-
fore? for large d.

We should make one final remark. It is commonly be-
lieved that there is a close connection between surfaces
and branched polymers.! Therefore, it seems logical that
they both have the same critical behavior. In particular,
it is believed that the upper critical dimensions for self-
avoiding random surfaces and self-avoiding branches po-
lymers (SABP’s) should be the same. As we have argued
here, .DCH =4 for our surfaces. Therefore, one should also
expect D=4 for SABP’s. We have shown elsewhere’?
that the original arguments of Lubensky and Isaacson®?
suggesting DX=8 for SABP’s is incorrect. We indeed
find that DCH =4 even for SABP’s. As a matter of fact, we
find an identical phase diagram for branched polymers.3?
Therefore, there indeed appears to be a deep connection
between SARS’s and SABP’s.

This deep relationship between SABP’s and SAS’s is
further strengthened by their behavior in the dilute limit,
i.e., in the limit of only one SABP or one SAS; see (7). In
the case of a branched polymer, the transition in this lim-
it turns out to be first order in a mean-field approxima-
tion and there is strong evidence that it remains first or-
der for all d =22 (Ref. 32). By considering our model for
m =m'=n—0, it can be shown that the transition is
indeed first order in our mean-field approximation when
considering a single SAS. As a matter of fact, the line of
transition AC for any nonzero n and m =m’=n moves
out to AC at K =0 in the dilute limit n —0, as shown in
Fig. 3. Similarly, the “Higgs” transition line BB’ also
moves out to H— o in this limit. The details are
presented elsewhere.3* Therefore, there does exist a very
close relationship between SABP’s and SAS’s.

Let us summarize our results. We consider a very gen-
eral model of nonplanar SAS’s (Ref. 3) and show its
equivalence with the # =0 limit of a spin model. This is
a first valid » =0 connection between a spin model and
SAS’s. By solving it in a mean-field approximation, we
have argued that our model is equivalent to the usual ¢*
theory. We suggest that DCH=4 and that D=2 for non-
planar surfaces for d > DX. We also suggest that DLi=1.
We discuss the full phase diagram. We evaluate the con-
nectivity constant uyg for Hamiltonian surfaces in the
mean-field approximation which yields a better lower
bound for y in higher dimensions.
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