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Ground-state properties of the two-dimensional antiferromagnetic Heisenberg model
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The ground-state energy, staggered magnetization, and correlation function are computed for the
two-dimensional spin- —, quantum antiferromagnetic Heisenberg model (believed to be relevant to
the high-temperature superconducting materials without doping) on lattices up to 24X24 by Monte
Carlo methods extrapolated to zero temperature. A more accurate value for the ground-state ener-

gy is determined by the method of Neumann and Ulam by extrapolating from lattices up to 12 X 12.

I. INTRODUCTION

In the past year, a wealth of experimental data has
demonstrated the existence of strong antiferromagnetic
(AF) correlations in the small doping limit of high-T, su-
perconducting materials. ' The most detailed studies ex-
ist for La2Cu04 single crystals. The copper atoms form
planes, and the chemical and magnetic properties are all
suggestive of there being a localized spin —,

' on each
copper. The zero-temperature resistance is infinite unless
the material is "doped" (say, by adding strontium) which
adds mobile holes to the Cu-0 planes and eventually
leads to superconductivity.

Neutron scattering measurements are all consistent
with a two-dimensiona1 simple square Heisenberg antifer-
romagnet provided the doping is zero. No order is ex-
pected at nonzero temperatures, and the observed three-
dimensional ordering is consistent with a weak interlayer
exchange which in addition is frustrated. The anisotro-
py in spin space is very small ( ~6X10 ), and the in-
plane correlation length can grow to -50 lattice con-
stants before three-dimensional (3D) ordering ensues.
The zero-temperature moment and the in-plane correla-
tion length are in accord with one's expectations for a 2D
Heisenberg model, though the experimental error bars
are quite large.

On the purely theoretical side some doubts have been
expressed that conventional AF order exists for spin —,

' at
zero temperature. A rigorous proof of order exists for
spin 1 and larger, but similar estimates fail for spin —,

'

since the zero-point motion is more pronounced. More
generally one would like to know whether the spin- —,

'

Heisenberg model obeys what appears to be the long-
wavelength theory for higher spins, namely the nonlinear
sigma (NLcr) model. This description is particularly
useful in a numerical context since it facilitates the calcu-
lation of corrections due to finite size and nonzero tem-
perature. But again spin —,

' is furthest from the large-spin
limit for which one has an analytically tractable expan-
sion.

Clearly, to settle either question some nontrivial spin- —,

calculation has to be done. The NLo. model cannot be
used until it is demonstrated that sufticient local order ex-
ists to define the AF order parameter. The most convinc-
ing evidence of that would be a Monte Carlo
renormalization-group calculation. Almost as good is an
evaluation of the magnitude of the staggered magnetiza-
tion, which for the 12X12 lattice we find to be about
80% of the Neel value. Hence it is reasonable to evaluate
finite-size eA'ects using the NLo. model which we do
below.

The first numerical evaluation of the staggered order
magnetization was done by Oitmaa and Betts for 16 and
fewer spins. (In order to go from the z component of
staggered magnetization [co, in Eq. (18) of this work] to
the full staggered magnetization [co, Eq. (5)], a factor of
&3 is necessary. With this factor of &3 the result of Oit-
maa and Betts becomes co=0.84 in our units, which is
significantly higher than the other values collected in
Table III. ) Recently, Reger and Young have performed
a Monte Carlo calculation for the staggered magnetiza-
tion, essentially the same as the one presented here.
Since a number of extrapolations are necessary, we feel it
is useful to have two completely independent sets of mea-
surements available so readers can assess for themselves
the systematic errors. We also note that Huse has ar-
rived at a similar estimate for the long-range order from
series.

We also find the ground-state energy by the method of
Neumann and Ulam and find some disagreement with a
very recent calculation of Barnes and Swanson. ' Final-
ly, we examine the correlation function at zero tempera-
ture which has not been reported on previously.

II. FINITE-SIZE CORRECTIONS

As noted above, finite-size corrections are most easily
evaluated from the NLcr model action, which in imagi-
nary time form reads

S= ' f'drfd'x (a„n)'+ ', (a,n)'
Co
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[Q;(x ), m~ ( y ) ]=i e'J"Q
k (x )6 (x y—),

[Q;(x),QJ(y)]=0,

[m;(x), m (y)]=i@'~"mk(y)5 (x—y) .

(3)

Q(x) and m(x) behave like coordinates and angular
momentum on a sphere for each site x. The Lagrangian
is recovered by setting 8 0=m X Q and co =po/go, not-
ing that Q(x) m(x)=0.

The connection between the variables in equation (2)
and a lattice spin model is given by summing over some
"block" of spins 8 and setting

Q= g e(x)S(x), m= g S(x),1

~& xEa xEB
(4)

where p& is chosen to correctly normalize 0 and scales
with Ns, the number of spins in 8, e(x) = 1( —1) on the
even (odd) sites of the lattice and S(x).S(x)=s(s+1). In

.appropriate variables, it has been shown that p0=0(s),
co =0 (1) for s —+ ~ and hence for sufficiently large s the
ensemble e has long-range order in Q, i.e., & Q )&0.

There is, however, a subtle difference between the
ground state of a quantum Heisenberg antiferromagnet
on a square lattice and the ground state of the Hamiltoni-
an (2) that should be noted. Namely, on any finite lattice,
Lieb, Schultz, and Mattis" have shown that the Heisen-
berg ground state is a singlet and hence the expectation

- value of any vector operator, in particular 0, is zero.
More generally in any eigenstate ~M ) of fm;, the com-
mutators (3) imply &M~Q~M) =0. The Lagrangian form
of the NLo. model, however, is equivalent to a classical
model for which there is conventional long-range order.
These contrasting statements about & Q) can be recon-
ciled by imagining that the lattice ground state involves
an average over the direction of 0, whose square, all
agree is nonzero. We elaborate on this idea below, but
for the moment we wish to emphasize an analogy with
superAuidity or BCS superconductivity.

There the order parameter is a complex number, whose
expectation value in any state with a fixed number of par-
ticles is zero by virtue of commutation relations similar
to (3). ' Hence to prepare an ensemble with a nonzero
order parameter it is necessary to superimpose states with
different numbers of particles. The greater the spread in
number, the more accurately can one define the phase of
the order parameter.

We now repeat these uncertainty principal arguments
for the quantum antiferromagnet. In so doing we will
have to include in our ensemble, states above the ground
state, and it is of interest to estimate their energy.

To simplify the notation, we make the associations
(I/p2N) fQ; ~r and fm; L, , since the commutation

where po and co are, respectively, a bare stiffness constant
and spin-wave velocity, and the AF order parameter 0
obeys the constraint Q = 1. The Hamiltonian version is

&=—,
' f [po(B„Q) +go 'm ]d x, (2)

where m is a magnetization density and yo the bare sus-
ceptibility. The commutators are

&(z —&z ) ) ) + O(1/A),

where A is defined by these equations; it may be as large
as X, but can be smaller. Hence by the constraint,
&x +y ) ~0( 1/A). The uncertainty relations, e.g. ,
&x ) &Lz ) + &z), imply &L +L ) ~ O(A). Therefore
the components of the magnetization perpendicular to
the staggered order must have a spread of O(A,'~ ),
which necessitates superimposing values of the total spin
S =0, 1,2, . . . , 0 (A' ) in the ensemble in order to
achieve the desired order in Q. From (2) the energy
diA'erence scales as -S /(goN) since the excess magneti-
zation (m) will be -S/N and uniformly distributed to
minimize the energy.

To proceed further with finite-size effects, we rely on
the heuristic idea that a renormalization-group calcula-
tion can be done without modification for a finite system
until the block size approaches the system size. Hence all
the complicated nonlinear interactions in (1) and (2)
should do no more than renormalize the coefticients in
the linearized long-wavelength theory. These arguments
are not wholly trivial and are considered more carefully
in Ref. 13. One useful consequence is that the part of the
ground-state energy dependent on the total spin is pre-
cisely S(S+I)/(AN), where y is the physical, long-
wavelength susceptibility.

On this basis, the finite-size corrections to the total en-
ergy can be estimated from spin-wave theory and scale as
X ', i.e., just the energy of the lowest spin-wave mode
in the finite system. The corrections to the total stag-
gered magnetization are somewhat different.

In any spin-singlet state, the staggered long-range or-
der may be calculated from

1
co = lim 0 x E(xls(x) '

0) .
X

Finite-size corrections to m follow from the NLo. model
correlation function:

&(~')- —f &L(x)L(0)),

where L =&Q).(Q —&Q)) From (1), &L( )Lx(0)) is
found to go as q in momentum space, where q is a 2+ 1

dimensional wave number. Fourier transforming back
we find at zero temperature &L(x)L(0))—1/x for x
large, or 5(cu )-N

A nonzero temperature, of course, is nothing but a
finite size in the imaginary time direction. To make the
temperature cutoff comparable to the spatial one, the
spin-wave scaling T-N ' should be used since the La-
grangian is isotropic in x and v. if appropriate units are
chosen.

There is one remaining subtlety related to the singlet

relations are the same. We fix p2 by imposing &r ) =1.
An ensemble with the staggered order along z has the
properties

&x) =&y) =0, &z) =1—O(1/A),
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character of the antiferromagnetic ground state and' the
low-lying excited states with higher total spin that were
noted above. Although these states are too few to be
thermodynamically important, the associated energy gap
for large N is less than that for spin waves (N ' rather
than N ' ), and they are included in the Monte Carlo
calculation since we extrapolate the temperatures to zero
asT X

In any large but finite ordered system, there is a single
degree of freedom associated with the order parameter
integrated over the entire sample. Typically this may be
treated classically and is assigned some fixed direction by
breaking the symmetry. The quantum antiferromagnet is
more interesting since the order parameter does not com-
mute with a conserved quantity, fm, which one is al-

lowed to control in doing thermodynamics. Let r be f0
normalized to & r &

= 1 as before and assume the system is
in an eigenstate of total spin S and z component M. Then
we conjecture that there is a piece of the density matrix
diagonal in r described by a wave function equal to the
spherical harmonic Ys~(r). Therefore, in a correlation
function such as &S,(0)S,(x) & there is an additive piece
proportional to fdr~Ys~~ z . Changing a single quan-
tum of spin will change the correlation function by a
nonzero amount. [Similar conclusions follow from a
model in which the spins on each sublattice are combined
ferromagnetically into two O(N) spins which are then
added to yield the total spin S ((N. ] Of course, in any
physical system there are small anisotropies which orient
Q and smear the magnitude of the total spin in the per-
pendicular directions.

In the present paper we will mostly be concerned with
ensembles with M= 0. Thus the S dependence of
& S,(0)S,(x) & is proportional to

drz
~ Yso

4S +4S —3

which is —,
' for S=O but larger for S)0. Mixing in

higher-S states increases the magnitude of z-z correla-
tions. For an unconstrained ensemble with T-X
(but M=0) thermal fiuctuations populate all
S ~O(N' ). Therefore decreasing the temperature in-
creases (makes less negative), &S,(x)S,(x+e)&, where
e is a unit vector in either the x or y direction.
If one incorrectly assumed the total energy was
6&S,(x)S,(x+e) &, then it would appear that the specific
heat was negative. While the extrapolation to X~~
can in principle be improved by these ideas, the magni-
tude of the effect is of order the sampling errors for our
data.

Further analysis shows that the renormalized stiffness
constant and spin-wave velocity appear in various finite-
size correction terms. In a Monte Carlo calculation,
however, the statistical error bars preclude their deter-
mination this way. Obviously g can be determined
directly from the energy as a function of (magnetic field)
H or f m', and p would follow from the excess energy in

a lattice with an odd number of rows or columns.

III. NUMERICAL METHODS AND ALGORITHMIC
DETAILS

We want to evaluate expectation values for the 2D
spin- —,, quantum, isotropic, antiferromagnetic Heisenberg
model:

&O &
=—trOe ~", Z =tre1

H= gS;S
where /3 is the inverse temperature, S is a vector of Pauli
matrices, and the summation is over all nearest-neighbor
pairs. Note that in our notation the Hamiltonian is di-
mensionless.

One of the two numerical techniques used in this work
is the quantum Monte Carlo method. ' ' The basic idea
is to write

e ~~= lim
m —+ oo

—PH,. /m
e (9)

intermediate states can be inserted to obtain

Z= lim g &a, ~e
' ~a, &

m~00 a

X&a, /e
' /a, &

. &a„/e " fa, & .

(10)

There is considerable freedom in the partitioning of H
into the H;. Our choice is to take r =4 and partition the
pair interactions of H as shown in Fig. 1 for a 4X4 lat-
tice.

The intermediate states 0. can be chosen to correspond
to spins up or down on each site and may be considered
to be states with differing fictitious times j. In this way
the quantum 2D system has been transformed to a classi-
cal 3D system. Using the commutivity of the terms in
each of the H;, matrix elements in (10) can each be fac-
torized into a product of four-spin matrix elements which
can be easily calculated exactly for each of the 16 possible
four-spin configurations (see, for example, Ref. 16). Ten
of the 16 four-spin matrix elements turn out to be 0.
Thus the great majority of spin configurations have zero
weight and must be avoided in any stochastic sampling
method. This prevents updating a single spin at a time by
Monte Carlo methods, but one can sample the "allowed"
configurations by updating several spins simultaneously.
To be able to perform all local changes we simultaneously
update four cubes of spins stacked in the time direction,
involving 16 spins; at least 6 of these 16 spins are unal-
tered in the updating, however.

This updating is efhciently carried out by storing a
look-up table of all of the allowed subconfigurations of 16
spins (of which there are 8192). Along with each

H= gH,
i =1

for the 2D system, where the terms in each of the H; are
chosen to commute among themselves. Since
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FIG. 1. The pair interactions of the Hamiltonian are parti-
tioned into H l, H&, H3, and H4 as indicated here for a 4 X 4 lat-
tice with periodic boundary conditions.

subconfiguration we store all possible subconfiguration
updates which are compatible with the spin environment
(this number turns out to be 1 or 2) and the Monte Carlo
probability for each to be chosen (which depends on
P/m). Each 16-spin subconfiguration in the lattice is up-
dated during one "sweep. " Typically hundreds of
thousands of sweeps are carried out for each value of
temperature and lattice size.

This local updating procedure does not sample all the
states in (10). First one cannot reach configurations con-
sisting of closed strings of up (or down) spins which wind
around one or more times in the spatial directions (we
used periodic boundary conditions in both the spatial and
temporal directions). In constructing these strings one
removes ambiguities by the convention that spins are
connected vertically (i.e., in the time direction) rather
than diagonally when such a choice exists and never hor-
izontally. Then it is clear that choosing boundary condi-
tions so that the spatial boundary consists only of up
spins removes the winding number configurations. Thus
they are but a finite-size effect and must disappear as the
size of the system goes to ~. Numerically we find that
restricting the winding number to be zero (by starting
with it zero and doing only local updating) we obtain re-
sults for the energy, staggered magnetization, and corre-
lation function on a 4X4 lattice which agree with the ex-
act results within our ~ 1% errors (see below), so the
effect of winding number configurations can be safely
neglected even for small lattices.

The other quantity these local rules preserve is
S,""=Q„S,(x). While it would be possible to nonlocal-
ly fiip an entire string of up (or down) spins in the time
direction to change S,""', the Monte Carlo acceptance
rate of such a nonlocal update becomes very small as the

size in the time direction m goes to oo. We avoid these
updates altogether by recognizing that the ground state
of the Heisenberg model is a singlet S,""'=0." Since we
are interested in the ground-state behavior of the system
we restrict our simulation to that subspace of states and
take the temperature, T~O. Quite generally, even at
finite temperature one expects a canonical and micro-
canonical ensemble to give identical correlation functions
in the thermodynamic limit.

We checked for ergodicity on a 4 X 4 X 8 lattice by
starting with random-allowed spin configurations with
S,'' =0 and performing simulated annealing to try to
reach the classical Neel configuration consisting of alter-
nating spins on each time slice. After tens of thousands
of such runs it was found that the only configurations
which could not be locally updated into the classical Neel
state were those with strings of spins winding around the
spatial lattice. As discussed above, such configurations
are irrelevant in the thermodynamic limit.

The extrapolation to infinite temporal extent m has
been examined by several authors. ' For the quantities
measured here, the expectation values have been shown
to be even in I and so corrections to the I~ ~ limit be-
gin at O(1/m ) (see for example, Fig. 3). Also, for
sufficiently large P= 1/T, it has been shown that the ex-
pectation values considered here become functions of
(P/m) only, for fixed L ( =X'~ ). So for each size lat-
tice, we fix f3 to be sufficiently large as to approximate
zero temperature, and then take measurements for a
variety of small (P/m ) in order to extrapolate
(P/m) ~0. The extrapolations are carried out by fitting
the small (P/m) data to a quadratic in (P/m) . [For
sufficiently large lattices the variation with respect to
(/3/m) has been shown to be independent of size. ' We
used this fact to reduce the computational cost for the
24X24 lattice by evaluating expectation values for only
one value of (P/m) and using the (P/m) extrapolation
obtained for the 12 X 12 lattice to take the m ~ ~ limit. ]
This then gives the ground-state properties of the finite-
size system. Making these measurements on systems of
size 4 X 4 up to 24 X 24 we then attempt the thermo-
dynamic extrapolation L, ~ ~.

For a more accurate estimation of the ground-state en-
ergy we used a numerical algorithm, first suggested by
Neumann and Ulam, ' that stochastically implements the
direct iteration method to find the dominant eigenvalue
of a large matrix T (in our case the negative of the Hamil-
tonian). 'It can be considered a simplified version of the
Green's function Monte Carlo method, ' and it has been
used in the evaluation of eigenvalues of the transfer ma-
trix of classical spin systems and in the study of the
one-dimensional spin-1 Heisenberg antiferromag net.
One starts with a set So =

I ~i ) ] of Mo elements of a basis
and transforms each ~i ) into m copies of the basis ele-
ment ~j) chosen with a probability P, in such a way
that the following equation

is true on average. Otherwise the choice of P; is largely
arbitrary. After this operation, we end up with a set S,
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containing M& =Xjn basis elements. The process is re-
peated k times ending up with a set S& of Mk
"vandorn walkers. " By appropriately scaling T one can
maintain the value of all the Mk close to a target value
M. For k and M large, the vector g li ), where the sum
is over the set Sk, stochastically approximates the highest
eigenvector of the system, and the dominant eigenvalue
of T, A, , can be obtained by

-2.65

-2.70

A, =A,(M)+0 1

M

where -2.75

(13)

with the average taken over different values of k.
For the Heisenberg antiferromagnet in the square lat-

tice we used for the basis elements I li ) I the standard
eigenvectors of the z component of the spin at each point
with a trivial phase rotation in one of the sublattices to
guarantee that the o6'-diagonal elements of T in this basis
are non-negative. By adding a convenient constant to T,
its diagonal elements were also made non-negative. We
used values of k up to 10 —10, neglecting the first few
hundred values. The bias due to the finite number of ran-
dom walkers was corrected by calculating A, (M) for
several values of M and extrapolating it to the limit
M~~. Typical values of M used in our calculations
range from 10 to 5X10. The form of the transition
probability P; 1 from the state li ) to the state l j ) was
taken to be

(jl Tli )
y( jlTlz )

(14)

IV. RKSUI.TS

A. The energy

We describe next the results for the energy obtained
with the stochastic random-walk method described in
Sec. III (Neumann-Ulam method). We used lattices of
sizes 4X4, 6X6, 8X8, and 12X12. When this work was
almost completed we received a report by Barnes and
Swanson' that also uses a random-walk approach, al-
though different than the one used in our study, to com-
pute the ground-state energy of the 20 Heisenberg anti-
ferromagnet with lattices up to 8X8 spins. Our results
are summarized in Fig. 2 and compared to their reported

-2.SG

"2.85
0.00 0.05

ION

O. IO 0.15

FIG. 2. Neurnann-Ulam method measurements of the energy
per site as a function of lattice size and a fit to AX ' +8.

values with our conventions for the energy in Table I.
Both results are very close, but significantly different, and
give extrapolated values for the ground-state energy per
site in the thermodynamic limit that diifer by 1% (seven
standard deviations). This is a small dift'erence but it can
be of importance in variational studies of the ground
state, in which a precise value of the energy is a good in-
dicator as to the accuracy of the variational approxima-
tion. To double check our program we computed the ex-
act value of the energy in the 4 X4 case to a high degree
of accuracy in the sectors with total spin S=O and S=1
using the direct iterative power method (see also Ref. 7,
where the S=O value is calculated). These results are
also quoted in Table I. Our results obtained using the
stochastic method for these cases agree within error bars
with the exact values. The S=O value quoted by Barnes
and Swanson is one of their standard deviations smaller

TABLE I. The energy per site as a function of lattice size and total spin S.

Size and sector Measured values Ref. 7 values Exact values

4X4
4x4
6x6
8x8

12X 12

S=O
S=1
S=O
S=O
S=O
S=O

—2.807 10+0.000 34
—2.662 32+0.000 20
—2.7120+0.0013
—2.6860+0.0015
—2.6680+0.0026
—2.6689+0.0030

—2.810+0.0024
—2.664+0.0008
—2.726+0.0028
—2.706+0.0064

—2.6908+0.0036

—2.807 120 8
—2.662 471 2
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Eo = —2.669+0.003, (15)

where the error is only due to the statistical errors of the
fit, and no attempt has been made to include higher-order
corrections to the scaling law. This is to be compared
with a recent variational calculation by Huse and Elser
of —2.6552, which is only 0.5% higher. The coefficient
of the X term in Fig. 2 was —8.85.

The energy was also measured by the quantum Monte
Carlo method described in Sec. III. The results are much
less accurate than are obtained using Neumann-Ulam,
but serve as a crude check on both methods. We mea-
sured (S,(x)S,(x+e)), where e is a unit vector in either
the x or y direction, and used the fact that the ground
state is rotationally invariant (Sec. II) which implies

Eo = 6 lim (S,(x)S,(x+e) ) .
p~ oo

(16)

First the L=4 (4X4 lattice) measurements were carried
out for various /3 and (P/m) as shown in Fig. 3. Note
the saturation to a universal function of (/3/m) as /3~ ca

than the exact value, and their S= 1 value is two standard
deviations smaller (see Table I). These discrepancies
could be attributed to statistical Auctuations but could
also signal a small systematic error in their results. A
further study of the energy of the system for states with
total spin greater than zero is underway, and it will be re-
ported elsewhere. The corrections to the total energy
of the ground state scale extremely well with the size of
the system as 1/L, as explained in Sec. II, even for the
4X4 lattice. Fitting our data to a function of this form
we obtain an extrapolated value for the ground-state en-
ergy per site in the thermodynamic limit of

B. The staggered magnetization

The ground-state staggered magnetization co may be
defined by

1
co = lim 0 x E(x)s(x) ' 0),

X

(17)

where e was defined in Sec. II. By rotational invariance
of the ground state we may also obtain co by the thermo-

(Sec. III). The (P/m) —+0 extrapolation was then carried
out as discussed in Sec. III, resulting in Fig. 4 for the
dependence of (S,(x)S,(x+e)) on P. The errors shown
are statistical only. It is clear that within those errors
this method agrees with the exact result for P~ ~ (see
Table I) with no evidence of any contribution from the
"winding number configurations" discussed in Sec. III.
The estimator for Eo plotted in Fig. 4 increases with de-
creasing temperature and continues to do so for larger L.
This may be attributed to the lack of explicit rotational
symmetry in our numerical scheme and the admixture of
higher total-S states discussed at the end of Sec. II.

On larger lattices we worked at fixed P=2L (see Sec.
II) and obtained the results shown in Fig. 5 with Eo ap-
proximated by 6(S,(x)S,(x+e)) at /3=2L. The error
bars exhibited here are also statistical only. There are
also systematic errors, e.g. , in ignoring terms higher or-
der in (P/m) in taking the m ~DO limit, which appear
to be of the same order as the statistical errors. But the
largest error here is seen to be due to working at P=2L
rather than infinity (recall Fig. 4). This appears to give
an —2 —3 % error which looms large in Fig. 5 because of
the meager size dependence of the energy and the much
greater accuracy of the Neumann-Ulam data.

A
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H
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CU
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o P*2O
o P=8

+ g=z

8
o & 0

G~
8
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+ 0 00,
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+

IV
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(P/m)
2
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O. IO
—l.2

0
L ~. . J =L

0.5
L . . 1 . . I.. . J

I.Q

FIG. 3. Measurements of 2(S,(x)S,(x+e) ) for a 4X4 lattice
with various values of temperature and temporal lattice size
(m). Statistical errors are of order the size of the symbols.

FICx. 4. The temperature dependence of 2(S,(x)S,(x+e))
for a 4X4 lattice obtained by extrapolation of Fig. 3 to infinite
m.
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FIG. 5. Lattice size dependence of an approximation to the
energy per site, 6(S,(x)S,(x+e)) at P=2L, compared to the
Neurnann-Ularn measurements of the energy per site shown in

Fig. 2. The line is a fit which does not include the L=24 data
point I,see text) and disagrees with the Neumann-Ulam measure-
ments because of finite temperature effects.

dynamic limit of

0 x e(*)&.(x) '
0)

2 1

CO—+ as L~~
3

(18)

If co&0, then only the long-distance part of the correla-
tion function contributes to (18), so in either case we can
also obtain cu via the correlation function half way across
and half way diagonally across the lattice:

CL~2= 2 g 1(O~S,(x,y)S, (x,y +L /2) ~O)
~

= 1

L 2

FIG. 6. Measurements of cu, for a 4X4 lattice with various
values of temperature and m. Statistical errors are of order the
size of the symbols.

L =8. For this size lattice, the values for p= 16 should be
within 0 (0.01) of the infinite-P limit.

The same analysis was carried out in evaluating CL/z
and CL&2 L/2. The final results are summarized in Fig. 9.
AH the errors are statistical only, except for the 24X24
data in which the errors shown are 1.5 times statistical
(see Sec. III). We extrapolated each data set linearly in

0.50—

CO
as g~oo

3

(where L is assumed even) and

CIi2ii2= 2 g (O~S, (x,y)S, (x+L/2, y+L/2)~0)1

as L~oo
3

(19)

(20)

OJ
N

0.45

0.40—

We measured co by all of Eqs. (18), (19), and (20).
In Fig. 6 we show ni, for a 4X4 lattice for various /3

and (plm) . After extrapolating to (p/m) =0, Fig. 7 is
obtained. Within (statistical) errors we obtain the exact
value of (18) for L =4, p~ oo (Ref. 7) (we have calculated
this by use of direct iterative power method to be
0.368 702 848 1S10). On larger lattices we again worked
at fixed p=2L. A sample plot is shown in Fig. 8 for

0.5
I/

FIG. 7. The temperature dependence of co, for a 4 X 4 lattice
obtained by extrapolation of Fig. 6 to infinite m.
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I I I I I I I I I I I I I I I I I I I

0.40—
TABLE II. Our Monte Carlo values of ~„CL/2, and CL/2 L/&

compared to those of Reger and Young (Ref. 8). Finite-
temperature corrections were subtracted from the values ob-
tained in Fig. 9 as described in the text. Combined statistical
and systematic errors are around the 20% level for each quanti-
ty.

0.35 Quantity (L ~ ~ )

CO

CL /2

CL/2 L,

This work

0.099
0.111
0.114

Ref. 8

0.118

0.124

0.30

0.25

0
I I I I I I I I I I I I I I I I I I I

0.02 0.04 0.06 0.08
2

(p/m)

FICJ. 8. coz on a 8X8 lattice. The fit of the p=16 data is of
the form A +B(P/ m)'+C(P/m) .

0.4

1/L to estimate the thermodynamic limits, but did not in-
clude the L, =24 data in the fit because of the problem of
the thermally excited higher-total-spin states discussed at
the end of Sec. II. Since we have the singlet-triplet spac-
ings explicitly for a number of different N from the sto-
chastic iteration method, we find

exp[P[Zo(S =1)—Eo(S =0)]J SO(1)

for L ~ 8 and P=2L. Hence we expect a Ilattening of the
curve around X=12 as is observed. A crude attempt was
made to eliminate the finite-temperature efFects by using
the P= m numbers for 4 X 4 to shift all the points, i.e., by
adding to the L, ~~ limit of each measured quantity
Q =co„CL /z, and CL/z z. /z, the amount2

[Q(L =4,p= oc ) —Q(L =4,p=2L)] .

This shift is comparable to what one would have inferred
from Fig. 8 for SX8. The larger values of N are sys-
tematically high due to the inclusion of S ~ 1 states. The
results are given in Table II (in our convention) and com-
pared to other Monte Carlo results of Reger and Young.
Our combined statistical and systematic errors for each
of the three quantities are estimated to be about the 20%
level, similar to the errors quoted in Ref. 8.

It should be pointed out that the agreement between
the two sets of Monte Carlo results occurred despite
several significant differences between our calculation and

0.3

I.O
Lj
C3

0.8— U 24x 24, P =48
D l2 x 12,P = 24

0.2

O.I—

0
I I I I I I I I

O. I 0.2

A

M
CA

O
l4

V)
V

CV

0.6—

0.2—

cj
C5 Lj [:j() e Lj Cj

FIG. 9. Lattice size dependence of ~'„CL/2, and CL/2, L/~

linearly extrapolated in 1/L to the thermodynamic limit. The
L =24 data - was not used in the extrapolation because of the
contribution of the thermally excited higher-spin states dis-

cussed in Sec. II.

5 IO

FIG. 10. Correlation function along a lattice axis on 12X12
and 24X24 lattices.
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TABLE III. Our value for the ground-state staggered magnetization co compared to previous esti-
rnates.

Quantity This work

0.57+0.05

Ref. 8

0.60+0.04

Ref. 24

0.606

Ref. 9

0.626

Ref. 23

0.71

that of Reger and Young. In particular, they went to
smaller (P/m) and extrapolated linearly (two parame-
ters) in that quantity rather than quadratically (three pa-
rameters) as we did. They partitioned the Hamiltonian
into r=2 pieces [see Eq. (8)] rather than our r=4. We
worked at a lower temperature for the largest systems.
They ran with only one value of m for their largest sys-
tem: L=12; we used four values. Their thermodynamic
extrapo at~ons « ~ and CL/2, L/2 versus 1/L included
quadratic terms; ours were only linear.

Averaging our measurements for the quantities co„
CL z2, CL &2 I &2, each of which approximates ca /3, we ob-
tain an estimate for co: co=0.57+0.05. This is compared
in Table III to the Monte Carlo result of Reger and
Young, spin-wave results, a reanalyzed perturbative ex-
pansion away from the Ising limit, and the variational
calculation of Huse and Elser.

C. The correlation function

Although the correlation function at finite temperature
has been previously measured, there have been no re-
ports of it at zero temperature. We measured the correla-
tion function along the x axis for the various size lattices.
For L = 12 and L =24 the situation is as shown in Fig. 10.
The error bars for the L=12 lattice are statistical only;
those for the L=24 lattice are 1.5 times statistical. The
m~ ~ limit of the L=24 data was obtained by using
L=12 finite-m correction (see Sec. III) for the corre-
sponding x. For x) 6 and L=24 we simply used the
x=6, L= 12 shift since the correction is nearly constant
beyond x =3. It is seen that the correlation function
quickly approaches the asymptotic limit given by the
staggered magnetization.

V. SUMMARY

In this paper we have presented results for the
ground-state values of the energy, staggered magnetiza-

tion, and correlation function for the quantum antiferro-
magnetic Heisenberg model. The energy value is deter-
mined to 0.1% accuracy and disagrees with a previous
measurement. ' The staggered magnetization is about 11
standard deviations above zero and is in agreement with
previous measurements (see Table III). The correlation
function is seen to approach its asymptotic value within a
few lattice spacings.

The 6nite-size corrections deduced from the NLo.
model are consistent with observations, particularly for
the energy in Fig. 2. The energy of the higher total-spin
states is also in accord with our expectations and will be
discussed in Ref. 22. Some indication of the bias incurred
by mixing in states with total M&0, noted at the end of
Sec. II, was apparent in Fig. 9. Subtle topological correc-
tions to (2) have been proposed in Ref. 26 which could be
missed in a numerical simulation.

1Voted added in proof. A very recent Monte Carlo cal-
culation by Reger, Riera, and Young obtained
Eo = —2.680+0.002 in marginal agreement with our
value. We thank Peter Young for communicating that
value to us in advance of publication.
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