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Determination of effective-pair interactions in random alloys by configurational averaging
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A real-space method is presented for calculating efective-pair interactions (EPI s) in substitution-
ally disordered alloys, starting from electronic structure information for the constituting elements.
The EPI's are obtained by averaging over a small number of randomly generated configurations.
The electronic structure is calculated by tridiagonalizing a tight-binding Hamiltonian using the re-
cursion method. Convergence, both as a function of the number of configurations and the number
of recursion levels, is rapid, and the results compare very well with other calculations. The advan-

tage of the present scheme is that deviations from lattice periodicity can be taken into account in a
completely straightforward way. The EPI are essential ingredients in statistical methods for deter-
mining alloy phase diagrams.

I. INTRODUCTION

The electronic structure is the driving force behind a
large variety of physical and chemical properties of
solids. The phase formation and stability of substitu-
tionally disordered solid solutions are examples of such
properties and it is their determination which is the ob-
ject of the present work. The most successful statistical
models depend on the availability of reliable approximate
expressions for the configurational energy and entropy.
These are most conveniently formulated in terms of
effective-pair (and, if necessary, larger cluster) interac-
tions. Such interactions can, in principle, be measured

experimentally through diffuse intensities in neutron and
x-ray scattering for example. Several phenomenological
approaches have been proposed in the past as well. How-
ever, in keeping with a general trend in recent years, the
possibility of a first-principles calculation of effective-pair
interactions (EPI) has received increasing attention by
various groups. Several schemes have been developed
and investigated. One possibility is to start from
density-functional total-energy calculations for the per-
fectly ordered compounds. ' Alternatively, one can per-
turb the completely disordered alloy in several ways: by
imposing a concentration wave, by means of the general-
ized perturbation method, or using embedded clus-
ters. ' All of these methods have closely related free-
energy expansions. " The electronic structure of the
disordered compound is mostly frequently determined

within the coherent-potential approximation (CPA). '

The CPA is a mean-field theory for the completely ran-
dorn alloy and has been shown to be optimal within the
single-site approximation. It has been applied very suc-
cessfully to a wide variety of disordered metallic alloys.
However, attempts to go beyond the single-site approxi-
mation suffer from severe analyticity problems. Thus, the
inclusion of short- or long-range order in the CPA frame-
work is by no means straightforward.

In the CPA an effective medium is constructed through
a self-consistency requirement on the scattering operators
and the electronic properties are calculated, either by
tight-binding or multiple scattering [Korringa-Kohn-
Rostoker (KKR)] techniques. More generally, any alloy
electronic structure calculation involves these two steps:
"averaging" and band structure determination. In the
present work, it is proposed to interchange these steps.
That is, one first determines the electronic structure for a
randomly generated configuration (the only constraint be-
ing a fixed concentration) and the resulting physical
quantities are averaged over a sufficiently large number of
independent configurations. This procedure can be im-
plemented very efFiciently using the recursion method'
applied to a tight-binding Hamiltonian as will be dis-
cussed herein. Certainly, the idea of configurational
averaging is not new' and everything depends on the
rate of convergence with respect to the number of
configurations needed. Earlier work focused mostly on
densities of states (DOS), for which it was concluded that
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it was necessary to perform an exact average over the
first shell of neighbors in the fcc lattice. ' Since this in-
volved 144 inequivalent configurations, the method was
very time consuming and has not been widely used, al-
though the agreement with the CPA was satisfactory as
well as the extension to partially ordered systems. '

Moreover, for the bcc lattice the scheme could become
intractable, since it is very likely that exact averages
would need to be performed over the first and second
shell, because the bcc structure does not contain any tri-
angles entirely confined to nearest neighbors in the first
shell.

It will be shown in this work that it is not necessary to
enumerate all possible occupancies of the first shell to ob-
tain accurate EPI, but that a rather small number of
configurations, say ten, is sufficient. The reason for this
faster convergence, compared to DOS, is that the EPI are
essentially integrated quantities, i.e., total-energy
differences of different pairs in the alloy, and therefore
they are less sensitive to local perturbations that conserve
the total number of electrons. An attractive feature of
the recursion method is that it is not necessary to calcu-
late individual cohesive energies for the different pairs,
which would lead to a large subtractive cancellation of
terms. Rather, it is possible to compute these quantities
directly in the recursion formalism and in this way avoid
numerical instabilities.

The feasibility of this new approach has already been
illustrated in a previous short paper' for canonical
tight-binding parameters and d bands only. In the
present work the underlying formalism is worked out in
more detail and the treatment is extended to include s
and p orbitals. In a first group of calculations arbitrary,
but realistic, tight-binding parameters were selected for
an alloy A, B&, in which the number of d electrons X~
(Xii ) was equal to 3 (8). In a second group of calculations
first-principles parameters appropriate for the binary sys-
tem Rh, Ti&, were used. The remainder of this paper is
organized as follows. Section II sets out the background
and theoretical aspects of the present approach and
discusses some numerical details. Section III is devoted
to a discussion of the results for the "-3-8"system and the
binary alloy Rh, Ti&, . EPI obtained by the present
method are presented and the convergence as a function
of the number of levels and the number of configurations
is analyzed. As a first step towards a phase-diagram cal-
culation, heats of mixing for the different phases in
Rh, Ti, , are computed. The paper concludes with a
summary and some comments in Sec. IV.

II. FORMALISM

n, A. n, m
n&m, A, ,p

(2.1)

where n and m are lattice sites 'and A, and p label the or-
bitals (A, ,p= 1, . . . , 9 for s, p, and d orbitals). The on-site

A given configuration o. of the binary system can be
described by the following tight-binding Hamiltonian:

H(o. )=g lii, a)s~&ii, tl+ g ln, ~)P~" &iii, pl,

energies c,„depend, strictly speaking, on the local envi-
ronment in the disordered system, but one often makes
the approximation to replace them by elemental values
c,„or c„depending on whether site n is occupied by an A
or a 8 atom (diagonal disorder). It will be seen, however,
that such a simplification would lead to unphysical re-
sults in the present case. The hopping parameters P„"
are likewise restricted to three values P ",P, or P" .
In the Slater-Koster' parametrization scheme, these are
related to the three- and two-center integrals for the pure
elements. Off-diagonal disorder is usually taken into ac-
count by geometrically averaging the pure element hop-
ping parameters'

pAB (pA ApBB)1/2 (2.2)

Several methods are available for obtaining tight-bin-
ding parameters for the pure elements. Canonical values
(for d bands only) have been used quite successfully to
predict ordering tendencies and lead in some cases to re-
markable agreement with experiment. ' ' A semi-
phenomenological set of parameters has been tabulated

by Harrison. Closer to a first-principles determination
are the values obtained by Papaconstantopoulos by a
least-squares fit to linear augmented-plane-wave (LAPW)
band structures. Potentially the most accurate first-
principles results are those given directly by the tight-
binding —linear-muffin-tin-orbital (TB-LMTO) method of
Andersen and co-workers.

The recursion method' provides an algorithm for cal-
culating diagonal matrix elements of the resolvent or
Green s function, associated with the Hamiltonian (2.1)
and defined as

b,'=(u, lu, ),
a; = & u; IH I u, ),
Hlu, )=a, lu, )+b, +, lu, +, )+b, lu, , ) .

(2.4a)

(2.4b)

(2.4c)

This prescription essentially transforms the Hamiltonian
into (Hermitian) tridiagonal form and thus leads directly
to a continued fraction representation for the Green's
function matrix element (uolGluo). If the algorithm is

stopped after L steps, L exact levels of the continued
fraction are obtained. This computational scheme is also
closely related to the theory of orthogonal polynomials, a
fact that can be exploited in the development of stable
and efficient computer codes. One of the attractive
features of the recursion method is the fact that it allows
for a direct physical interpretation, apart from its formal
mathematical elegance. Indeed, it is clear from Eqs. (2.4)
that the matrix element after L levels contains the exact
contributions from all closed paths of L steps starting
and ending at the central orbital. Thus if one tries to
model an infinitely extended system, the recursion algo-
rithm after L steps contains contributions only from a

(2.3)

Given a starting state luo), one generates a discrete
chain of vectors,

l u; ), which can be constructed to be
orthonormal, through the following set of operations:
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P 0 = e( ) z —I E(o )IkT—
where Z is the partition function

Z T (N) —E(cr) jkT

(2.5)

(2.6)

and the trace operator Tr' ' denotes a sum over all
configurations of a system with N sites. In the work of
Sanchez et al. it has been shown that the state of order
of an alloy can be expressed in terms of a complete set of
orthogonal functions involving various clusters, used to
approximate the configurational entropy. The function
relative to cluster o. is defined as

+a(oa)=crp'z ' ' ' on (2.7)

where the o; are pseudospin variables (+1 if site i is oc-
cupied by an A atom, —1 otherwise). Any function of
the alloy configurations can be expanded in terms of these
functions; in particular, the density function (2.5) can be
written as

p(cT ) =2 1+g @ (o )g (2.8)

central cluster consisting of O(L ) atoms. For numerical
purposes, this limits the number of atoms that can be
modeled, and also implies that one is always studying a
finite system. In order to reduce the necessary amount of
computer storage, it is possible to decouple the number of
levels and the number of atoms in the cluster, a point that
will be pursued in the next section. In either case, a ter-
minating continued fraction is obtained, which yields a
number of isolated bound states, appropriate for a finite
cluster. For most purposes this is an unphysical approxi-
mation to the problem under investigation and some way
needs to be found to eliminate finite-size effects by
embedding the cluster in an infinite medium. Mathemati-
cally, this means that a terminator must be appended to
the continued fraction expansion, so as to obtain a
Green's function with a branch cut, rather than a set of
simple poles. The problem of finding a terminator that
gives an optimal description of the surrounding medium
has been studied in many papers (Ref. 26 and references
therein) and several prescriptions are available. It has
been established in our previous paper' that the EPI (for
transition-metal alloys) are not very sensitive to the exact
nature of the terminator and therefore the simple quadra-
tic terminator can be used with confidence. This
amounts to putting all a; and b; with i )L equal to aL
and bL, and approximates the density of states of the
embedding medium with a semielliptical band.

Although most applications of the recursion method
involve the determination of the (local) density of states,
any observable that can be related to the Green's func-
tion (2.3) can be calculated recursively. In particular,
the present work is aimed at the calculation of effective-
pair (and cluster) interactions in disordered alloys, quan-
tities that are the main ingredients in statistical tech-.

niques such as the cluster-variation and Monte Carlo
method. In these treatments, averages are taken involv-

ing the density function p(o ), which gives the probability
of finding a specific configuration o. in an ensemble of sys-
tems. This function is given by

where

E [p]=Tr' 'p(cT )E(o ),
or, after substitution of (2.8),

E=co+gE g

(2.10)

(2.1 1)

where

E =2 Tr' 'E(o ) (2.12)

is configuration independent, and

E =2 Tr' '4 (cr)E(o) (2.13)

are the effective-cluster interactions. For a pair of atoms,
one at site p and one at site q, the trace in (2.13) can be
broken up into two parts, one over the points p and q,
and one over the remainder of the configuration, which
leads to the final expression

(2.14)

where Vzj is the total energy of a pair I (at site p), J (at
site q) embedded in the average medium at a given con-
centration, or explicitly

V =2 Tr' 'E (I J o'), (2.15)

where E (I,J;o') is the energy of a configuration o con-
sisting of atom I ( J) at site p (q), with the remaining sites
denoted by o.'. It is seen that the VzJ are total energies
and, as such, cannot be obtained from a pair-potential
model. But ordering energies result from taking
differences of large terms and are known to converge sat-
isfactorily taking only effective-pair interactions. In a
similar fashion one can define triplet and higher-order in-
teractions, for example,

pq~ 8 AArl Ada Aaa aaa ) (2.16)

in an obvious notation and assuming that all sites are
equivalent. Typically, these ordering energies converge
quickly as a function of cluster size and interatomic dis-
tance, but the expressions (2.14) and (2.16) are not very
useful for computer calculations, since one needs the
difference of nearly equal large numbers. However, it
turns out that the "orbital peeling trick" developed by
Burke, following the work of Einstein and Schrieffer,
permits a direct calculation of the EPI, as will now be
shown.

In the Hartree-Fock approximation, the total energy of
a solid consists of two terms, a one-electron band-
structure contribution VBs and an electrostatic term VEs,
which includes the double counting correction and the
ionic repulsion. It is usually assumed that upon taking
differences like in (2.14), the electrostatic contributions
cancel out and one is left with solely the one-electron
band-structure term. ' Thus, what is needed to calculate

(2.9)

is one of a hierarchy of linearly independent correlation
functions. The internal energy of the alloy system can be
written as a functional of the density
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the EPI is an average over all configurations o., with fixed
occupancy of sites p and q, of the one-electron band-
structure term

V(0. ) = f En (E,o)dE. , (2.17)

where n (E,o ) is the electronic DOS and E~ is the Fermi
level, independent of the configuration o.

At this point it is important to specify the choice of the
basis set. Often in substitutional impurity problems one
assumes a unique set of orbitals at each site and thus the
impurity is described using the same orbitals as the atom
that was removed (Ref. 32 and references therein). This
may be a bad approximation, in particular if the two
atomic species that are involved are very dissimilar.
However, the adspace-subspace description developed by
Williams et al. and extended by Riedinger avoids this
shortcoming and provides a more general setting for this
type of studies. In an EPI calculation two atoms need to
be embedded and therefore a basis set 0 is defined as fol-
lows:

charge corresponding to orbital A, at site n, and U„, V„
are the intra- and inter-atomic Coulomb integrals. In the
case of a disordered alloy studied here, one would a priori
need to determine c,„ for each atom. This is clearly an
impossible task. The crudest approximation is to consid-
er only two different atomic levels c and c. , independent
of the atomic environment. As a first improvement on
this scheme, one can allow for changes in the potential
(e„)only for the atoms at the sites p and q. In these two
cases Ho does not depend on the nature of the atoms at
positions p and q. A further refinement of this approach
would be to include some potential perturbations on the
atomic sites surrounding the atoms at p and q. In fact, as
will be seen in the next section, it turns out that taking c„
independent of the position n yields good results for the
EPI, but is insufhcient for the mixing energies. In the fol-
lowing, it will be assumed that the host Hamiltonian Ho
is independent of the nature of the atoms at sites p and q.

The electronic DOS is related to the Green's function
through the equality

O=coU A U 3 UB UB (2.18)
1 1

nI&(E) = ——Im Tr&'iz —= ——Im Tr(E —&I& )
7T 7T

where co is the set of atomic orbitals describing the host
(the recursion cluster except for the sites p and q), 3 and
A (B,B ) are sets of atomic orbitals for an A (B) atom
at site p, respectively, q. In this formalism the Hamiltoni-
an for an A atom at site p and a 8 atom at site q, for ex-
ample, would be written in block form as nlrb(E) =—Im ln det(E AIJ ), —1

(2.22)

(2.21)

where &l~ is the Hamiltonian for the full system, of the
form (2.19). It is well known that this can be written as

0 H~ 0 0 0

H~ 0 0 H~~ H~o which will be the starting point for the numerical calcula-
tions. It is now obvious that the EPI can be written as

0 0 H~ 0 0 (2.19) E =—' dzz Irn qz
oo dZ

(2.23)

Ha~

Ho~ 0
Hao

0 How Ho

where H~ and H~ are the Hamiltonians for the isolated
atoms, HI„' (Hg ) are the Hamiltonians describing the A

(B) atom at site p (q), Ho is the Hamiltonian for the host
and the other matrices couple the different subsystems.
This representation is overcomplete, but this introduces
no errors, since only one set of orbitals for each site is
coupled to the host in each of the four cases needed in
(2.14). The adspace-subspace description also eliminates
the potential problems due to particle nonconservation;
two atoms, namely those that are not coupled to the rest
of the system, can be thought of as located at infinity.
The physical system then consists of these two isolated
atoms and the full recursion cluster, Thus the total num-

ber of atoms of each species is the same in all four cases
in (2.14).

The process involved in an EPI calculation is the inter-
charge of two atoms. The self-consistency procedure,
which takes into account the charge transfer, consists of
a shift of the diagonal elements of the Hamiltonian

e„=e„+g U„"Nl"+g V„N (2.20)
p m

where e„' is the atomic energy level, N„ is the total

where g(z) is the generalized phase shift given by

det 0„„det9'~~
rl(z) =ln

det 9ps

deters

g
(2.24)

det(E &IJ ) =detGIJ 'det(E——Ho ), (2.27)

The Friedel sum rule, which expresses the conservation
of the total number of electrons, can be written quite gen-
erally as

E

f dz Im q(z) =0 . (2.25)
00 dZ

Now, integrating by parts in (2.23) and using the Friedel
rule, one finally finds for the EPI

E~
Im f q(z)dz . (2.26)

4~ QO

It is obviously out of the question to calculate the full
determinants in Eq. (2.22), since they are of the order
N X v, where N is the number of atoms in the cluster and
v the number of orbitals per site. Since in the exchange
of the atoms on sites p and q the perturbation is of finite
range, the phase shift g(z) has a finite size, as can also be
seen as follows. From the properties of a partitioned ma-
trix it follows that:
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detG~ z detGBB
rj(z) =ln

detG&B detGB~
(2.28)

M

detA (2.31)

Q11

Q21

Q12

Q22

Q1M

Q2M

QM —11 M- —12 M —1M —1 M —1M ~M —1

QM1 QM2 QMM

(2.29)

with I=Tv and "principal" submatrices 3„.. . , AM
have been indicated. For any I ~k ~M one has, with
Dk =detdk

Dk+1

k
(2.30)

where gk is the top left element of the inverse of Ak.
From this it follows that

Thus, it is not necessary to calculate the determinant of
order (X—4)vdet(E H—o), which otherwise would lead
to an unacceptable increase in computer time.

A11 that remains is the calculation of the generalized
phase shift (2.24), and this can be done efficiently by
means of the "orbital peeling" scheme as will now be dis-
cussed. For short, denote by A. any one of the four ma-
trices (E —&iq )

Using these representations in (2.28) and keeping in mind
that common factors cancel, one finds

g AAg BB

i)(z)= g ln
k=1 gk gk

(2.32)

Each g k is the top left element of a partial Green's ma-
trix, with the designated atom at sites p and q. It can be
seen that only diagonal elements of the Green's function
are needed, but that each g k must be calculated sepa-
rately for each of the 4v cases: The 4v orbitals are
"peeled off" one by one and this can be readily included
in the recursion framework. In this method matrix ele-
ments gk are obtained, with every row and column of the
Hamiltonian with an index i & k equal to zero.

It is important to note that only four atoms need to be
"peeled. " Obviously a cancellation of terms occurs from
the matrices H~ and HB since these are diagonal and
not couple'd to the system. Thus for each pair (I,J), one
has two atoms to peel, but it is possible to show that be-
cause of the symmetry in the definition of the EPI, for
each pair (I,J) only one atom needs to be "peeled. " To
this end one defines G[(X I')li] as t-he term obtained by
"peeling" for a pair X-Y the orbitals for the X atom on
site i where Xand Yare 3, B or a vacancy, denoted by V
and i =1,2 referring to site p and q, respectively. The
term detG» detGBB /detG~B detGB~ in the phase shift
can then be written symbolically as

G[( A-A)/1]+6[( V-A)/2]+G [(8-8)/1]+6[(V 8)/2]-
—6 [( A 8)/1] —G -[( VB)/2] —G [(8-A)/1] —G [( V-A)/2]

=G[( A —A)/1]+6[(8-8)/1] —G [(8 A)/1] —G [( A-8)/1] . (2.33)-

Thus this quantity is computed by "peeling" only on the
atom at position 1 for each of the four possible
configurations.

The choice of the Fermi level and the description of
the Hamiltonian used pose delicate questions in the case
of a disordered alloy. One cannot simply assume that the
on-site energies depend only on the nature of the atoms in
the disordered alloy and use the tight-binding parameters

t~ e
for the pure elements (s'~, s"„, c, ~~, and e~~, and likewise
for the 8 atoms), since coupling A and 8 will introduce
changes in these energies. In the present work a rigid
shift 6 of the pure compound, values for one species, say
B, will be assumed. That is, the values of the on-site en-
ergies for the 3 atoms will be left unchanged from those
of the pure element, while the B values are taken to be

ecB+5, cB+6, cB'+6 and cB +6. Thus, for a given con-
centration one has to determine this parameter 6 as well

as the Fermi level EF. Since a fully self-consistent calcu-
lation is not feasible for the disordered case, as discussed
previously, these values have been calculated for the pure
elements as well as the ordered structures ( AB, A38, and
A83) under the assumption of local charge neutrality. If,
for a given structure, two or more atoms of a given type
are present (like the two inequivalent 8 sites in the DO3
structure with composition AB3), an average is made.
For other concentrations (in the disordered state) 5 and
EF are found by interpolating between the values for the
pure compounds. In general, a linear variation of EF and
5 with concentration is obtained, comparable with a
Taylor's expansion truncated after the second term.

For the calculation of EPI this scheme gives satisfacto-
ry results. Mixing energies, however, are differences of
integrated quantities and it turns out that this approach
needs to be refined. The mixing energy for the complete-
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ly disordered state, for example, is given by

F E
5E "(c)=c(f En "[E)dE +(1—c) J Fn tEldE)

—(1 c).E—
& cE—&, (2.34)

III. RESULTS

where E~ and Ez are the cohesive energies of the pure
elements. The first two terms in this expression are com-
puted by means of configurational averaging in a manner
completely similar to the EPI. That is, the one-electron
band-structure term is calculated, with a given site first
occupied by an 3 atom and then by a B atom. It turns
out that a simple rigid shift of the on-site energies gives
insufhcient accuracy as far as mixing energies are con-
cerned. A first improvement is to allow for a shift of the
Fermi level on the central atom, so as to satisfy some
property, for expmple, since charge transfer is small in
metallic systems, one can impose local neutrality. This
approach can be understood by the following argument:
The small shift of the Fermi level arises because of the re-
placement of an atom. In such a case no perturbing po-
tential exists to screen the electronic charge displaced be-
cause of the exchange of atoms. The shift in the Fermi
level is small and can be considered within a perturbation
framework. To first order it is equivalent to having an
unknown perturbing potential on the site under con-
sideration. Rather than introducing such an adjustable
parameter, the Fermi-level shift is calculated self-
consistently in the present scheme. Finally, it must be
pointed out that further improvements can be made by
applying the perturbation method developed by Foulkes
and Haydock, but this is outside the scope of the
present work.

configurational average ( )~J was calculated by gen-
erating random configurations (at fixed concentration)
and averaging the resulting EPI, a procedure that has
been shown to converge quickly. '

In the remainder of this paper, EPI obtained by
configurational averaging will be presented and their gen-
eral properties discussed. A unique 5 and E~, function of
the concentration c, will be considered. However, for the
purpose of illustration, the EPI will be plotted as a func-
tion of the position of the Fermi level. Strictly speaking,
since a constant value of 5 has been used, the results are
only valid at the exact Fermi level for the "3-8"alloy. It
seems reasonable though to assume that the general
trends in the EPI will be found in this way, and this ap-
proach also provides a general check on the method.

As noted before, the computing time grows very quick-
ly as a function of the number of levels in the continued
fraction. To illustration this point, Fig. 1 shows results
for the nearest-neighbor EPI in the fcc structure with
"3-8", values and c~ =0.25. It can be seen that the
necessary cpu time (plotted in arbitrary units) grows rap-
idly with increasing number of levels. This rapid growth
puts a serious limit on the number of levels for which the
recursion scheme is computationally tractable. Next,
Fig. 2 shows the same nearest-neighbor EPI as a function
of the number of configurations (X) and the number of
levels (L). It can be seen that the convergence as a func-
tion of X is very fast; the results for X =10 and X =20
are virtually identical. As a function of L, the asymptotic
value seems to be approached quite closely for L =7 or 8.
These results are similar to those found before' and ex-
hibit the same trends. The uncertainty in the EPI after
averaging over 10 configurations is approximately l%%uo

and improved accuracy can be obtained by increasing the
number of levels, rather than the number of
configurations. It is interesting to note that the self-
consistency parameters, i.e., the Fermi-level E„and the

The formalism described in the previous section has
been applied to calculate nearest-neighbor and next-
nearest-neighbor EPI's in the fcc and bcc lattice for two
types of transition metal alloy systems. In the first group
of calculations, in which the configurational averaging
method was tested for convergence and other general
properties, s, p, and d orbitals were considered for a ficti-
tious 3-8 system. To this end, arbitrary, but realistic,
tight-binding parameters were taken to represent a disor-
dered A, B, , alloy in which the number of d electrons
X„(Nz ) was equal to 3 (8) and giving a d band width of
1, (defining thus the energy unit) and reasonable positions
and shape of the s and p bands. As a consequence, all re-
sults are expressed in arbitrary units (arb units). This
case will be called "3-8". Subsequently, the binary alloy
Rh, Ti, „which is one example of such a system, was in-

vestigated using the tight-binding values tabulated by
Papaconstantopoulos. Off-diagonal disorder was treat-
ed by means of Shiba's prescription (2.2). Note, however,
that this is an approximation that need not be made in a
real-space method, provided that hopping parameters for
the ordered compound AB are known. The

1

6

FIG. 1. CPU time (in arbitrary units) for a full EPI calcula-
tion as a function of the number of levels (L) in the continued
fraction.
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FIG. 2. Nearest-neighbor EPI (in arbitrary units) in the fcc
structure for "3-8" values with c& =0.25, as a function of the
number of configurations (X} and the number of levels (L).
Solid curve: L =7, but with self-consistency parameters for
L =8. In all cases the same set of random configurations was
used.

on-site energy shift 5 (which are functions of the number
of levels), have a considerable infiuence on the EPI's.
The solid curve is obtained by using seven recursion lev-
els, but with the self-consistency parameters correspond-
ing to eight. The resulting EPI (obtained by averaging
over identical random configurations in all cases) deviates
strongly from that obtained for seven and eight levels,
with the appropriate EF and o:„. Similar calculations
were made for a bcc alloy, taking into account interac-
tions up to third neighbors. The results show that for an
fcc alloy with first- and second-neighbor interactions,
seven levels of the continued fraction are necessary, while
for the bcc alloy only six levels are needed. In general,
the error is of the order 0.01 eV and depends only weakly
on the actual values of the EPI. Thus it appears that the
uncertainty in the EPI obtained by configurational
averaging is an absolute one. Finally, it also needs to be
pointed out that the convergence as a function of the
number of levels is faster for a disordered system than for
an ordered one (see also Fig. 3).

From the foregoing it can be concluded that increasing
the number of levels in the continued fraction expansion
leads to improved accuracy, but that this is accompanied
by a prohibitive increase in computer time. Therefore it
is logical to decouple the number of levels and the num-
ber of atoms in the cluster, and it will now be shown how
this can be done. To determine the set of coefticients in
the continued fraction, one can use the "zebra"
developed by Dreysse and Riedinger. This procedure
builds a cluster organized into shells in such a way as to
guarantee that the resulting structure has the minimal
size compatible with the number of levels used. In stan-
dard approaches, one would use a more spherical cluster.
Using the "zebra" method saves time in that one avoids
evaluating the matrix elements to atoms outside the "ze-
bra", which are all vanishing. In this way no additional
sources of error are introduced. It has been conjectured
that the size of the cluster grows as L"where d is the spa-

FIG. 3. Nearest-neighbor EPI (in arbitrary units) in the fcc
structure for "3-8" values with c& =0.25, as a function of the
number of levels (L}with fixed cluster size. The cluster size is
chosen so as to be exact for a given number of levels L, . The re-
sults for L, =4—8 are indistinguishable.

tial dimension. In particular, for d =3 this term is equal
to ~I. /6 where ~ is given by

6 (s„)=r, (3.1)

TABLE I. Position of the Fermi level for di6'erent "truncat-
ed" cluster sizes in the bcc lattice with third-neighbor interac-
tions. The Fermi level E~ is computed for 8 exact levels of the
continued fraction, with a cluster exact for L, levels. Also given
are the number of sites in each cluster and the computation time
(in arbitrary units).

L,

0.682 12
0.683 69
0.684 44
0.684 65
0.684 68

Sites

192
538

1158
2132
7978

Time

255
417
754

1138
1940

s„ is the number of sites in the shell n, and 6 is the
second-order finite-diA'erence operator. For an fcc lattice
with hopping parameters up to first or second neighbors,
~ takes the values 20 and 36, respectively. For the bcc

. lattice with hopping parameters up to first, second, or
third neighbors, the corresponding values are 12, 24, and
80, respectively. In order to use tight-binding parameters
determined from ab initio calculations, it is necessary to
include second-neighbor interactions in the fcc lattice
and third neighbors in the bcc. This leads to a consider-
able increase in the size of the clusters used. Figure 3 re-
ports results for the EPI of the ordered AB compound
(with "3-8" parameters) on the fcc lattice with first and
second neighbors, as a function of the number of levels
and the size of the cluster used (with EF and 5 fixed at
their values for 8 levels). The cluster size was determined
by considering L, exact levels for nearest- and next-
nearest neighbor hopping. It can be seen that the results
obtained with clusters exact for 4 to 8 levels are almost
indistinguishable. This is con6rmed in Table I, which
contains results for the bcc lattice with third-neighbor in-
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-0.06
-0.5

FIG. 4. Nearest-neighbor EPI (in arbitrary units) in the fcc
structure for "3-8" values as a function of band Ailing, at con-
centration e& =0.25 (short-dasheQ line), 0.50 (solid line), and
0.75 (long-dashed line).

local density of d states on a Rh and Ti site has a band-
width between 0 and 1. For an energy above this band,
the EPI, for any concentration, have very small ampli-
tude. So that it can be concluded that the EPI are mainly
related to the d orbitals. (This does not imply that the s
and p orbitals are unimportant; for example, they certain-
ly affect the shape of the EPI.) Also note that only the
position of the first node is affected by changing the con-
centration. Pair interactions involving more distant
atoms are plotted in Fig. 5. As expected, the number of
nodes increases, while the magnitude of the EPI de-
creases, with increasing separation of the atoms involved
(note the change in scale, compared to Fig. 4). To sum
up, at this stage, it was found in agreement with previous
results' for d orbitals only, that configurational averag-
ing converges quickly and that 10 configurations are

teractions. From this it can be concluded that the cluster
size must be such as to guarantee L, /2 exact levels, in
the range of levels considered here (6—10). Using such a
"truncated" cluster leads to an important gain in time:
up to a factor of 4. Typically, the number of atoms in the
cluster is around 600 (instead of 4000—8000).

Next, Fig. 4 shows the nearest-neighbor EPI for the
"3-8" case in the fcc structure at three different concen-
trations as a function of band filling. These results were
obtained by averaging over 10 configurations, using 8 lev-
els in the continued fraction expansion. The number of
nodes is in agreement with the values given by general
theorems and the curves have a similar overall shape,
with a "phase-separating" region at the band edges and
an "ordering" region near the center of the band (see also
Ref. 17). By choice of the tight-binding parameters, the

0.016-

l I y /'
/ eg

I
I

I

C) 6.0— 0.02—

gi
I i

l' I

-0.02—

-4.0

0.4 0.6
E

1.2 1.4

FIG. 5. Further-neighbor EPI {in arbitrary units) in the fcc
structure for "3-8" values with c& =0.25 as a function of
bandfilling; solid line, second neighbor; long-dashed line, third
neighbor; and short-dashed line, fourth neighbor. Note the
change in scale compared to Fig. 4.

FIG. 6. Nearest-neighbor EPI (in arbitrary units) in the fcc
structure for "3-8" tight-binding parameters with c& =0.25 for
various prescriptions to generate the configurations (see the
text): (a) as a function of the number of configurations (1V), (b)
as a function of bandfilling. Sohd line: fixed concentration in
every shell; short dashed line: fixed concentration in first shell;
and long-dashed line: Axed overall concentration.
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sufIicient to obtain convergence. The number of levels is
a crucial factor as far as computer time is concerned.
Typically, a maximum of 8 levels is necessary and an im-
portant speedup can be obtained by using "truncated"
clusters.

In order to study the inhuence of the environment on
the EPI, three sets of configurations were generated. In
the first one, the only constraint was the overall concen-
tration of the recursion cluster, while in the second group
the first coordination shell of the pair was also held at the
fixed overall concentration, and in the third group this
constraint was imposed in every concentric shell around
the central pair. In all cases, adjustments were made by
appropriate rounding of the shell occupancies to ensure
that the total number of atoms was conserved. The re-
sulting EPI are drawn as a function of the number of
configurations (at a fixed concentration c„=0.25) in Fig.
6(a) and as a function of bandfilling (averaged over 12
configuratons, for 8 exact levels of the continued fraction)
in Fig. 6(b). Although the infiuence of the ordering con-
straints is clearly visible in Fig. 6(a), the differences are
relatively small; a few percent between the first two cases,
and approximately 20% in the case of concentric shells
with constant compositions. It can be seen in Fig. 6(b)
that the positions of the nodes are the same and only the
extreme values are affected. Note also that the band
filling selected corresponds to a Fermi level near the max-
imum in Fig. 6(b) so that deviations will be rather larger
than on the average.

Next a group of calculations was performed for the
binary alloy Rh, Ti, , with the orthogonal two-center
tight-binding parameters tabulated by Papaconstanto-
poulos. Figure 7 shows nearest-neighbor fcc and
nearest- and next-nearest —neighbor bcc EPI as a function
of concentration for this system. From these EPI one can
determine the energy of mixing for the two structures as
follows:

0;000 0

—0.005—

-0.010—

CL

X -0.015—

E
LJ

—0.020—

-0.025— L
0

-0.030 r
0.2 0.8

bE (c)=Ed;,(c)—Ei;„(c)+bE„d(c), (3.2)

in which elastic and vibrational contributions, as well as
volume changes, have been neglected. The different ener-

gy contributions involved are

E„„(c)=(1 c)E~ +cEii,— (3.3)

i.e., a linear interpolation between the cohesive energies
of the pure elements in the crystal structure I, Ed;, is the
cohesive energy of the completely disordered state given
in (2.34), obtained by configurational averaging of the
band structure term (2.17), and b,E„d is the
configurational part of the mixing energy, related to the
EPI by

FIG. 8. Energy of formation of Rh, Ti&, in the bcc (upper
curve) and fcc (lower curve) structure as a function of concen-
tration.

0.005—

b,E,„d =gqz Vh,
h

(3.4)

where V& is the EPI between an atom and its hth neigh-
bor and

0.0025-

0.00

—0.0025
0.4 0.8

FIG. 7. EPI (in Rydbergs) for Rh, Ti&, as a function of the
Rh concentration. Solid squares: zearest-neighbor EPI in the
fcc structure; open squares: nearest-neighbor EPI in the bcc
structure; and solid circles: next-nearest-neighbor EPI in the
bcc structure. The curves are drawn to guide the eye.

(3.5)

where n& is the coordination number and n& the number
of BB pairs both corresponding to the hth neighboring
site. The energy of formation defined as the difference
Ed;,'(c) Ei;„correspo—nding to the EPI in Fig. 7 are
shown in Fig. 8, for the bcc (upper curve) and fcc (lower
curve) structure, respectively. As noted before, the calcu-
lation of the term Ed;, (c) must be performed very careful-
ly. In (3.2) Ed;, and Ei;„are large numbers and their
difference is very sensitive to the position of the Fermi
level. In order to ensure sufIicient accuracy, one can
adopt the method discussed before, involving a small
shift of the Fermi energy. The correction introduced by
this small variation leads to a negligible change to the
EPI (less than 0.01 eV). A phase diagram calculation us-

ing these results is in progress and will be reported upon
elsewhere.
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IV. SUMMARY AND CONCLUSIONS

This paper has addressed the calculation of effective-
pair interactions in binary alloys, quantities that are
essential to understand the statistical thermodynamics of
these systems on a first-principles basis. It has been
shown that these EPI can be calculated accurately and
reliably by means of direct averaging over random
configurations. To this end, the formalism set out previ-
ously' has been extended in order to include s and p or-
bitals in a recursion method approach to a realistic tight-
binding Hamiltonian. The feasibility of this scheme de-
pends crucially on the use of the orbital peeling trick to
calculate cohesive energy differences directly. Since no
reciprocal-space transformation is made, the present
method is ideally suited to treat problems with broken
symmetry, such as partially ordered structures, or low-
symmetric configurations, in particular surfaces and in-
terfaces. For completely disordered systems, the results
compare very well to those obtained within the
coherent-potential approximation, ' although the present
method is more time consuming since in the CPA only
one recursive cycle needs to be performed once the
effective medium is set up. On the other hand, since the
configurational-averaging method repeats the same set of
instructions for each random configuration, it is very well
suited for parallel implementation on computers. It is
also important to note that the present method takes en-
semble averages (in an approximate way) of the appropri-
ate physical quantities, rather than calculating these
quantities for an "averaged" configuration. The former
approach is of course the correct one in classical statisti-
cal mechanics.

The main difficulties in the present description of a
disordered system arise because of charge transfer. They

involve a shift in the on-site energies and the determina-
tion of the Fermi level. Simple procedures to take these
effects into account have been presented here, but further
extensions are straightforward, if necessary. A consider-
able saving in computer time can be obtained by decou-
pling the number of levels from the number of atoms in
the recursion cluster. Numerical simulations indicate
that it is sufficient to take the number of atoms in the
cluster appropriate for nearest-neighbor hopping parame-
ters only, even if further neighbor interactions are
present. A further conclusion of this work is that 10
configurations and a maximum of 8 levels are sufhcient to
guarantee an uncertainty of a few percent in the magni-
tude of the EPI. The main emphasis of the present paper
has been on the formalism and general checks of conver-
gence and other properties. Some preliminary results are
included for the system Rh, Ti, „using the first-
principles values obtained by a fit to an LAPW band
structure. A further discussion of these EPI and the re-
sulting phase diagram will be given in a forthcoming pa-
per.
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