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A molecular kinetic theory for the rheology of glass is given. According to this theory, the struc-
ture of a glass consists of randomly distributed high-energy sites, which correspond to the frozen-in
density fluctuations. These sites are termed as defects. The anelastic deformation associated with
the B relaxation in a glass is attributed to the availability of a set of configurational states through
the faster, uncorrelated rotational-translational motions of molecules within these defects. These
involve a broad distribution of potential energy barriers of lower energy. The nonelastic deforma-
tion observed after a long period of time (>>10* sec) is associated with the a process and is attribut-
ed to the much slower hierarchically constrained motions of the surrounding molecules, which leads
to the growth of sheared microdomains within the glassy matrix. The effect of hierarchical con-
straints within the microstructural regions is essentially as described by Palmer, Stein, Abrahams,
and Anderson [Phys. Rev. Lett. 53, 958 (1984)]. At a low temperature when the duration for the
measurements is long, or at high temperatures when the number of defects is high, sheared micro-
domains nucleated at one site grow and merge into the others which were nucleated at other sites,
thus leading to an irrecoverable macroscopic deformation or viscous flow. The theory is extended
to amorphous polymers in which further restrictions on the number of available configurational
states is placed by the strength and directionality of covalent bonds and by the entanglements and
junction points between the polymer chains. The number of molecules forming the defects was cal-
culated from the thermodynamic data at T > T, but at T' < T, it was assumed to be the same as at
T,. The result of the theory is-a relation practically coinciding with the observed time and tempera-
ture dependence of the creep and dynamic-mechanical properties of the glassy state of a material.
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I. INTRODUCTION

On the application of a mechanical, or electrical,
stress, glassy materials exhibit two types of recoverable
deformation whose kinetics are both time and tempera-
ture dependent. The first type of deformation involves lo-
calized atomic, or molecular, motions within a glassy ma-
trix; the second type involves large-scale atomic, or
molecular, motions, and, in a molecular glass, ultimately
leads to viscous flow or irrecoverable macroscopic defor-
mation. For a given duration of measurement, the mag-
nitude of the latter type increases rapidly with increase in
the temperature and reaches large magnitudes as the tem-
perature approaches the softening or the glass-transition
range. In the dynamic-mechanical or dielectric measure-
ment, the different types of deformations appear as
separate peaks in the relaxation spectra of the corre-
sponding loss tangents. The high-frequency peak is
known as 3, and the low-frequency peak as an a process.
Their separation in the frequency plane decreases with in-
creasing temperature.

It is now known that the occurrence of localized
molecular motions or 8 relaxation observed at tempera-
tures below T, (temperature at which viscosity, 7, is 1012
Pasec), and in some cases also above T, is an intrinsic
property of atomically or molecularly disordered sub-
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stances. It is also observed that the characteristics of the
rate of the B-relaxation process do not change when a
liquid is cooled from a temperature above T}, to far below
it, but those of the a-process do change, namely that the
temperature dependence of the rate of the a process
changes at a temperature near 7, from the Vogel-
Fulcher-Tamman type to an Arrhenius type, with an ap-
preciably high activation energy and low preexponential
factor.

Theoretical treatments for the occurrence of molecular
motions seen both as a and B processes have been
difficult, but a number of qualitative ideas have been ad-
vanced in terms of the structure of a glass in order to ra-
tionalize them. This paper provides a molecular descrip-
tion and formalism for these behaviors by considering
that the molecular motions that determine the rheology
of glassy materials begin at particular sites, hereafter
called ‘“‘defects”, and evolve with time. The observed de-
formations or relaxation processes are a manifestation of
this evolution. It includes some of the formalisms of
similar ideas of each of its authors, who have published
them before in different contexts, and also modifies the
development of those ideas. For clarity, the theory is
dealt with in four sections, namely: (i) structure of a glass
as a disordered matrix containing low-(and high-) density
regions,1 or islands of mobility,? (i) anelastic deformation
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resulting from the formation of sheared domains which
grow with the time of the applied stress®; (iii) the develop-
ment with time of molecular motions that appear as 3
and a processes, and viscous flow, their treatment in
terms of hierarchically constrained motions, as originally
given by Palmer, et al.* and modified here, and (iv) their
formalism in terms of measurable quantities, the shear
compliance and modulus. The theory is followed by a
discussion of its prediction of time dependence in Sec. V
and then the temperature dependence in Sec. VI, of the
creep compliance and the dynamic mechanical behavior
of both molecular glass and amorphous polymers® with
chain entanglements and junction points. Several experi-
mentally testable consequences of the theory are given in
Sec. VII. Since 1986, when this work was done, some of
the ideas given here have been used to develop theories
for the calorimetric and aging behaviors of polymers by
Perez® and for the rheology of polymers near the glass-
transition region by Perez, et al.”

II. STRUCTURE OF A GLASS

In recognition of the central idea that fluctuations of
the local fluid structure from point to point within a
liquid become frozen-in at the glass-transition tempera-
ture, the concept of the heterogeneity of the microscopic
structure of a glassy material has been implied in a num-
ber of theories. Amongst these are the free volume
theory by Cohen and Turnbull,® and its extension in
terms of “liquidlike” and “solidlike” regions by Cohen
and Grest,”!° cell model by Robertson, Simha, and Cur-
ro,'! heterogeneous structure model for kinetic behavior
by Brawer,'? and its further description in terms of a
“master equation” by Dyre,!3 the configurational entropy
theory by Adams and Gibbs,'* and defect structure by
Slorovitz et al.'> and by Cunat.!® These theories explain
the characteristics of liquid and glass relaxations reason-
ably adequately, although they provide no explanation
for the existence of B relaxation in a glass. That such
heterogeneity may also be responsible for 3 relaxations in
molecular glasses was suggested by Johari and Gold-
stein'” and by Johari'® in recognition of the fact that the
occurrence of a 3 relaxation is intrinsic to the nature of a
glassy material.

Accordingly, the structure of a glass may be considered
as a random distribution of local regions of (spatially)
fluctuating density and high energy, or entropy, in an
atomically or molecularly disordered continuum. In
these local regions, a molecule together with its first
neighbors forms a group of molecules which remains in
an internal thermodynamic equilibrium. Molecules in
these groups are capable of undergoing thermally activat-
ed Brownian motions at temperatures substantially below
T, —motions that show up as a secondary or S3 relaxa-
tion in the dielectric and mechanical spectroscopy and in
the NMR relaxation studies. Let the number of mole-
cules that form the local regions, or defects, be in a con-
centration n per mole, so that the relative concentration
of molecules forming such regions with respect to the to-
tal number of molecules, Cp, =n/N 4, where N, is the
Avogadro number. The presence of such regions would
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increase the Gibb’s free energy of a glass by an amount
nG.,., where G, is the increase in the free energy of an
atom or a molecule when taken from the mean density re-
gion to the low- or high-density regions in the structure.
Since the concentration of such local regions in the
glass is the same as that which freezes in at its T,, we as-
sume that this concentration remains constant with
changing temperature below T, if spontaneous structural
relaxation does not occur. But, for temperatures above
T,, Cp increases according to the Boltzmann distribution

__n _ 1
N, 1+ exp(G,.rkyT)’

Cp (1)

or

1

C,= :
D1+ exp(H, /kpT)exp(—S,,./ky) ’

(2)

where, G, . =H,,., — TS, for one molecule. This means
that the density fluctuations in a liquid are rapid and an
equilibrium value of Cj is attained at each temperature
above T, within the experimental time scale. Equation
(2) implies that the vibrational contribution to the ther-
modynamic properties of the glass and its corresponding
crystalline state are the same, i.e, in the absence of such
regions the thermodynamic properties of a glass and a
crystal are identical.

At a temperature above Tg, a continuous, thermally
activated, redistribution of molecules in such defects
occurs and this is tantamount to the availability of a
number of configurational states over a time scale, 7, of
less than 10* sec (T, is defined here as the temperature at
which molecular motions freeze out on an experimental
time scale of 10° sec according to =G, where G ~10°
Pa).> Upon sufficient fluctuations in energy or enthalpy,
the molecules within the defects can rearrange into
another configuration independently of their environ-
ment.

In their theory for cooperative motions in liquids near
T,, Adams and Gibbs'* showed that the average transi-
tion probability into another configuration at a tempera-
ture 7 is given by

W(T)x exp( —z*Au/kpT) , (3)

where z* is the number of molecules undergoing a
cooperative motion. By assuming that the con-
figurational entropy is uniformly distributed among all
molecules, they calculated that

z*=N_,(S*/S.), (4)
which led to
N ,S¥Au
S.kgT

W(T) < exp , (5)

where S is the critical configurational entropy, Ap is the
excess chemical potential, and S, is the configurational
entropy.

Alternatively, we suggest that the configurational en-
tropy is distributed only amongst the molecules in the de-
fect sites, so that S, =nS,,.. Therefore,
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w(T) NaScAn ©6)
xexp nSexckB T ’
or
— B
W(T) < exp CokT | 7

where B =AuS¥ /S, a quantity independent of temper-
ature and n =CpN 4. Thus, in Eq (7), Cp, instead of S,
becomes the order parameter. It is noteworthy that in
our formalism, the domains of cooperative movements
are limited to the defect, i.e., a molecule which forms
with its first neighbors a high-energy site.

The mean time for a transition, 7(T), is related to the

inverse of the probability, W(T) in Eq. (7). Therefore,

h B

=37 CpkyT

exp , (8)

where 4 is Planck’s constant, and B is a constant with di-
mensions of energy. According to Eq. (8), 7 explicitly de-
pends on the concentration of defects, Cp, at a tempera-
ture 7.

The translational-rotational diffusion coefficient, D, of
a molecule is given by,

D =v A\ exp , 9)

where vy=(kgzT/h), and A is the mean distance of dis-
placement of a molecule at T2 T,. '

We suggest that the relative concentration of molecules
forming defect sites or Cp, can be calculated from the
difference between the enthalpy of the liquid and the
crystalline solid from Eq (2) as follows: If AC, is the
difference between the measured heat capacity of the
liquid and the crystal at a temperature T near T, then

N, CpH o .=AH~AC,(T—T,), (10)

where T, is the extrapolated temperature at which, ac-
cording to the Adams and Gibbs theory,!* the linearly ex-
trapolated enthalpy of the supercooled equilibrium liquid
at T <T, would become equal to that of the crystal.
Measurements'* on most molecular liquids and polymers
have shown that 1.2=(T,/T,)=<1.5. Therefore, from
Eq. (10)

AC,T,(1—T,/T,) :

CD(Tg)z HechA ’ (11)
and at T near T,
(0Cp /3T)=(AC,/HyN 4) . (12)

Since H.,., the difference between the enthalpy of a
molecule forming the defect and of the molecule that is
outside the defect, is expected to remain constant with
changing temperature, C, increases linearly with AH (T)
with an approximate slope of AC, /H.,.. The detailed ar-
guments in its support have been given earlier by one of
us.! H,_ . and S, can be calculated from Egs. (2) and

exc €xc
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(10) with their derivatives, (3Cj, /97) at T,, and therefore
Cp can be estimated. We use these estimates in Sec. V.

III. NONELASTIC DEFORMATION
OF A GLASS NEAR T,

In an earlier paper! we had proposed that the deforma-
tion mechanism at an atomic level in a liquid above T},
involves the transfer of an applied stress, through mainly
an elastic medium, to those regions in the bulk of the sub-
stance which are soft, i.e., where resistance to shear is
significantly weaker than in the rest of the material. The
molecules in these regions, or defects, are in a state of
high energy, and entropy, and have a volume different
from those in other regions which are closely packed.
The thermally activated Brownian movement of a mole-
cule or a group of molecules in these regions, or “soft
sites,” is first to become biased by an applied stress. We
envisage that at such sites the shear microdomains are
nucleated or begin to form. Thus, the nucleation of shear
microdomains begins at those “soft” regions where mole-
cules are in an internal thermodynamic equilibrium.
These initial or primary motions, in our theory, corre-
spond to the sub-T, or the B relaxations. A detailed
description of the growth of such shear microdomains
has been given by one of us earlier,'® but it is useful to de-
scribe again the general concepts of such domains here.
In a shear microdomain, the shear is along a surface S
and molecular rearrangements occur inside the volume of
such domains which is limited by a surface =. The inter-
section of the two surfaces, namely of 3 and S defines a
curve C,, which separates or distinguishes between the
area where shear has occurred from the area where shear
has not occurred. According to the mechanics of con-
tinuous media as discussed in Ref. 19, the line C, is a
dislocation loop. But in amorphous solids, such disloca-
tions are of Somigliana type and, therefore, line C,, being
a Somigliana dislocation, acts as a sessile or immobile de-
fect. The net effect of this is that the shear remains
confined within the microdomain. If the applied stress is
maintained for a relatively long time, the stress biased
diffusion of molecules between the microdomains occurs
and this causes the size of the shear microdomains to in-
crease. On the removal of the applied stress, the domain
recovers its initial configuration in a time 7, as a result of
the elastic energy of the line C, and the thermally ac-
tivated Brownian motions. Thus the system retains its
memory. This means that in this regime of deformation,
hereafter called “nonelastic regime,” the number of de-
fects and their distribution remains unchanged, and if the
stress is removed the defects are recovered at their origi-
nal sites. The duration of this recovery is the same as re-
quired during the shearing of a microdomain and its sub-
sequent, diffusion-assisted, recoverable growth. This cor-
responds to the anelastic behavior observed near 7.

After a relatively long period of the applied stress,
when the growth of a microdomain has occurred up to a
certain distance and when similar lines originating from
neighboring defect sites merge, the line C, loses its elastic
energy, or identity. This leads to a viscous flow. In order
to be consistent with the experimental observations, it is
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necessary to assume that after the annihilation of shear
microdomains, the previous defect sites continue to act as
shear sources. A justification for this was discussed in
Ref. 19, which considered that these are also a cause of
singularity of stress which results in a behavior similar to
the Franks and Read’s sources of dislocation jogs in crys-
tals. Consequently, the mechanism for the deformation
given here need not imply a change in the number of de-
fects, even though their configuration and/or distribution
become altered.

A quantitative description of the preceding mechanism
for tllée deformation of a glassy solid leads to an equa-
tion,

dn(t) _ _n(t)—n(e) , nlo)—n(z)

+ , 13
dt Ty Tp (13
J
y TplTp—1T4)
Jn=Lt=4 _D_‘Z.__ff 1— exp ot a2t
o (Tf+TD) T 7'/+TD

where 1/7=1/7,+1/7p and
A =aA’}/fVaV1N0/kBT .

a=~0.1 is a constant, Ay is the elemental shear, f, the
Schmid factor, V,, the activation volume for the forma-
tion of a shear microdomain, ¥}, the volume per molecule
in the shear microdomain, and N, is the number of de-
fects per unit volume, i.e., C, =N, V;. Schmid factor is a
geometrical term which converts the normal stress to its
shear component within the shearing surface. Its value is
in the range 0.3-0.5.

IV. TYPES OF MOLECULAR MOTIONS

A. General equations

On the application of a stress, glassy materials show
usually two types of anelastic behavior, one at short times
and lower in amplitude, known as [ relaxation, and the
other at long times known as « relaxation and nearly ten
times greater in magnitude. The rate of the [3 process fol-
lows an Arrhenius behavior with an activation energy of
~40-80 kJ/mol, but that of the a process follows the
Vogel-Fulcher-Tamman equation. But, at temperatures
below T, i.e., in the isoconfigurational state, the rate of
the a process follows an Arrhenius behavior with an ap-
parent activation energy of 200—400 kJ mol.'"* The tem-
perature dependence of the o relaxation at T > T, is at-
tributed to the cooperative character of molecular
motions and the term ‘“‘cooperativity” is used to mean
concerted or simultaneous motions of atoms or molecules
within a given volume. The broad spectrum of times for
the a process is usually regarded as a result of many pro-
cesses acting in parallel with, and independently of, each
other, with a characteristic time 7;, which in turn is
spread over a range of times from zero to a maximum
value. These processes may also be expressed in terms of
a stretched exponential, or Kohlrausch,?® or Williams-
Watt’s?! equation, exp[— (¢ /7)P], where 0 <B < 1.

J.Y. CAVAILLE, J. PEREZ, AND G. P. JOHARI 39

where n(t) is the number of defects which remain unac-
tivated at time ¢t and do not produce a shear micro-
domain, n (o) is the total number of defects at + =0, and
n(oo) is the number of defects that remain unactivated
on the application of a stress. 7, is the characteristic
time corresponding to defect activation required for in-
ducing a shear microdomain and its subsequent growth,
and 7, is the characteristic time corresponding to the
diffusion-assisted annihilation of neighboring lines. Thus,
the first term on the right-hand side of Eq. (13) is the rate
of both nucleation and growth of shear microdomains,
and the second term is the rate of annihilation of disloca-
tion lines C,, which borders the growing microdomain.

On integration, Eq. (13) gives the shear compliance J at
time ¢, during the growth of shear microdomains

] , (14)

r

A number of mathematical models have been recently
developed to represent the nonexponential or stretched
exponential decay function. These consider a variety of
descriptions as, for example, correlated states by Ngai
and White?? and Dissado and Hill,?® by Ngai et al.?* and
Ngai and Rendall,”® by Bendler and Schlesinger,’®
hierarchical constraints by Palmer et al.,* fractal and per-
colation structures by Rammal,?’ fractal free-energy
model by Dotsenko,?® and fractal time model by Hong
et al.? 1t is conceivable that any of these models could
be adapted for use in our molecular theory, but we found
Palmer et al.’s formalism* more suitable for the micro-
structural processes. In this model the arrangement of
relaxation processes is in series rather than parallel, and
this is equivalent to a hierarchy of degrees of freedom,
from fast to slow, which is now expressed in terms of
correlations. In our theory here, the fastest motion cor-
responds to the single-molecule motion resulting in the
activation of a defect as described previously and other
molecules or groups of molecules, might only be able to
significantly move when several of the fastest moving
molecules happen to be placed in just the right way. This
requirement is equivalent to the weakening of the inter-
molecular forces when the distance between molecules in-
creases as a result of the primary but faster motion. Ac-
cordingly, the change in the atomic configurations within
a domain would involve a series of stepwise motions, each
subsequent motion possible by the occurrence of the
preceding one. In our consideration, this means that the
applied stress initially biases the motion of the molecules
within the defect or “soft” sites in the matrix of a glass
and the subsequent motions of the surrounding molecules
produce a shear microdomain.

We use Palmer et al.’s” treatment of such motions in
terms of the spin levels and the available degrees of free-
dom. Therefore, we consider that a spin represents a
double potential energy well, and the degrees of freedom
represent the number of molecules able to move in a par-
ticular level of that well. Accordingly, each spin in level
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n +1 is only free to change its state if a condition of oth-
er spins in level n is satisfied. The condition is that the
number of spins in level n, i.e., u, attains one particular
state of their 2" possible states. p, <N,, where N, is the
total number of degrees of freedom, or molecules, in level
n. This gives

Twi1=2"7, ' (15)

or

z n2(,) (16)

Tn+17 T1€XP

In order to keep 7, finite as n increases, Palmer et alt
postulated that the number of spins in level n is deter-
mined by a power law,

In2(p, )=pen %, (17)

where p =1+¢, and 0 <e<<1. Alternatively, we suggest
that a constant value of time, ¢, is required for the sys-
tem to move from level n to level n + 1. This means that
for the system to move from level 1 to level n, the time
required is ¢, =nt;. Thus, n in Eq. (17) may be replaced
by (t,/t;), and

t, |77

(18)
3

In2(p, ) =po

This introduction of the time required for the change
between the levels makes the Palmer et al. formalism*
applicable to the microstructural processes, as it now im-
plies that a change in the level of the system is equivalent
to a time-dependent molecular movement. Therefore, in-
stead of Eq. (17), we use Eq. (18) and by substituting it in
Eq. (16), we obtain

n t -r
o3 ]_} ] . 19
RS

We consider that the total number of levels is high so
that the change in energy between the levels is almost
continuous, and the sum in Eq. (19) may be represented

by an integral
-p
d [i ] ] , (20)
t ,

T(t)=1, exp

7(t)=T1 exp

Ko fln “;t'“

and therefore,

T(t)=T,exp |l

—pl-r
uztn |l a

Thus, when py in Eq. (19) is zero, 7(¢)=7,, the effect
due to correlations are minimum, and when py=1, the
effects due to correlations are maximum. Accordingly,
the relaxation time is an increasing function of time, and
the higher the value of u,, the greater is the dependence
of 7 upon ¢t. These equations thus form a generalized con-
dition for molecular motions, which we now use for a
description of the 3 and a processes.
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B. The B-relaxation process

As proposed in Secs. II and III, each loosely-packed
defect molecule in the glassy matrix can undergo a hin-
dered rotational-translational motion.>'® Thus, for each
molecule in the defect, Ny=1, i.e., that the system has
only one degree of freedom. At such sites of hindered
molecular motions, correlation effects arising from
hierarchical constraints can be ignored since the experi-
mental time is less than 7,. Each molecule involved in
such a motion has only two possible states of energy and
no further conditions need to be satisfied for the oc-
currence of a transition.

The relaxation time, 7(¢) of the molecules forming the
defects is not constrained by the hierarchy of the dynam-
ics at the time scale of 3 relaxation, and is given by
(22)

T(t)=T,=Tpexp

The resulting relaxation process may be identified as a
B- or sub-T, relaxation process. Because the environ-
ment or local arrangement of molecules forming the de-
fect varies as a result of the molecular disorder, U is dis-
tributed over a certain range, in the most simple con-
sideration, according to a Gaussian function

U;

m (23)

Tl,[=TOCXp

with U;=U. Thus the shear compliance due to the 8
process at time ¢ is

)

i

JB(t)ZAﬁ

1,i

1— exp

and its Fourier transform,

Jilio)=Ag 2 {

/ 28 (25)

1+ioT;

and
g, =exp[—(U—U,?/2(AU)*], (26)

where AU is the width of the Gaussian distribution.
Thus

Jplw)=Ag

8
oL ; @7)
275, 2 )/;g
and

Jplw)=Ag | 3,

BT ]/zg,, (28)

where (Ag) is defined in Eq. (14), except that here the
value of the activation volume V, and the elemental
shear Ay correspond only to the activation of defects.

C. The a relaxation

For the condition, O0<py=1, the requirement for
correlated movements of the molecules is more severe, or
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that the effects of hierarchical constraint are important
and 7(¢) can reach the maximum value, 7_,,. Thus, the
relaxation time at any value of ¢ is greater than 7, the re-
laxation time for the 3 process.

As mentioned earlier here, Palmer et al.* suggested
that the value of p in Eq. (17) must be greater than, but
close to, unity in order to keep 7(¢) from reaching an
infinite value. Since p cannot be a priori determined for
our purposes, we keep p =1 and choose a functional form
of 7(t) against ¢, according to which 7(¢) reaches a max-
imum value, 7,,, at a cutoff time and beyond this 7(t)
remains constant with ¢, i.e., 7(£)=17,,,, if t = 7,,, that is
that 7(¢), instead of reaching an asymptotic limit, reaches
its limit in a finite time. This choice serves the same pur-
pose in limiting the increase in 7(¢) with ¢, as did Palmer
et al.’s” choice of p > 1.

Expanding Eq (21) as a series with p~1 and retaining
only the first term to 7,

T, (29)

Tonan = (127 1) RO (30)
—
()y=r, 0" . (30a)

Substituting Eq. (30a) in Eq. (23) and replacing (1—g,)
by k, we obtain

— /K (k—1/k
Tmax— 70 L1

) exp (31

kkpgT

This equation satisfies the condition that for 7 <t <,

max

() =7t 7", (32)
and for t Z 1., T(t) =7 ...

Thus the hierarchical constraints cause the time depen-
dence of the shear deformation of microdomains (as a re-
sult of thermally-activated Brownian motions) to acquire
the form of a Kohlrausch function.?’ (This development
is different from those given by others,2>~?° which pro-
vides a mathematical model for the Kohlrausch func-

J

J.Y. CAVAILLE, J. PEREZ, AND G. P. JOHARI 39

tion.) The time represented by 7, in Eq. (13) corresponds
to the a process and is governed by the first term on the
right-hand side of Eq. (13), and

7-f‘maxz(’rlt’l(hl)1/K > (33)

i« (33a)

Tf(t)=7?, max

where «, as defined earlier, is less than unity.

The second term in Eq. (13) is related to the
rotational-translational diffusion of molecules with a time
Tp, and corresponds to the viscous flow. The time depen-
dent values of shear compliance due to the anelastic pro-
cess, J,n(2), and the viscous flow, J,(¢), are then given

by
Jo=ali—exp |-t || (34)
anel p K Tf,max
and
J,(n=-4L (35)
Tp

The shear compliance in the a-process J,(t), is the
sum of the anelastic and viscous compliances,

Jo () =T e () +J (1) . (35a)

The growth of a shear microdomain would terminate,
when 7, ...=7p, then for t>7,,..,J, (t)>J,,(t), and
keeping only the first term of the series of J,,,(?) of Eq.
(35)

t

1
Jat)= A |—

t

T

max max

! ' . (36)

The Fourier transform of Eq. (36) gives

Jilio)~ A (10Tpax) i OTpay) , (37)

Tc+1),.
K

where I'(k+1) is a gamma function, and 1<k+1<2.
Therefore, 0.88<I'(k+1)<1, and we assume that
Fic+1)~1.

Thus,

(FoThay) " _

i) A | =" ((0Tp) ! | (38)

I (@)= 1 ' l;i-y cos.(mr/2) e | (39)
G, | [1+y cos(km/2)*+[y sin(km/2) +(@T a0 ']
1 Y sin(km/2) +H (0T ) !

T (o= LT — |, (40)
G, | [1+ycos(km/2))*+ [y sin(km /2) + (@) "1 |

where
Y =(oT,,,) “/k . (40a)



39 MOLECULAR THEORY FOR THE RHEOLOGY OF GLASSES AND . ..

V. THE TIME-DEPENDENT
DYNAMIC-MECHANICAL BEHAVIOR

A. Molecular glasses and low-molecular weight polymers

The complete equation for the dynamic compliance
now involves four terms: (i) the unrelaxed or high-
frequency compliances, i.e., G, ! at t =0, (i) the compli-
ance due to the 3 process which involves the preliminary
step of uncorrelated molecular motions within the de-
fects, (iii) compliance due to the a process as a result of
correlated motions within hierarchical constraints of the
molecules within a shear microdomain which cause it to
become sheared, and (iv) the compliance due to correlat-
ed motions of molecules involved in the diffusion process
that cause the lines bordering the shear microdomains to
lose their identity. We write,

_ 1
J(t)—G

FJ ()T e (8)+J,(2) . (41)

u

Theoretically calculated curves for J(¢) and G(t) are
shown as a function of time in Fig. 1, and G’ and G’ are
shown as a function of frequency in Fig. 2(a). In Fig.
2(b), the mechanical loss tangent is also plotted as a func-
tion of frequency. These curves show the three regions of
rheology, namely, the 8 process, the anelastic process,
and the viscous flow, each of which is observed in glassy
materials. The value of the various parameters are:
A=3X10"1° Pa”!, A,=1X10"" Pa”!, U=60
kImol™!, AU=5 kImol™ !, k=0.30, Tmax— 0 sec, and
T =355 K.

log10(d/do)

log10(G/Go),

_4 s 1 1
=S -3 -1 1 3

log1oltime(sec)]

FIG. 1. The theoretically calculated values of shear modulus
G and shear compliance J plotted logarithmically against time
(see text for details). G is shown by dots-containing curve and J
by the smooth curve.
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a process

viscous flow

log1o(tang)

anelasticity
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-2 . . L L
-5 -3 -1 1 3
log1olf(Hz)]

FIG. 2. The theoretically calculated values of: (a) the real
and imaginary parts of shear modulus, G’ and G"', respectively,
and (b) the tan¢ plotted logarithmically against frequency. Pa-
rameters used in the calculations are given in the text and are
the same as in Fig. 1. G" is shown by the dots-containing curve
and G’ by the smooth curve.

B. The entangled and cross-linked polymers

We now consider an extension of Eq. (41) to include
both the rubber-elastic and terminal zone behaviors of
the entangled, or cross-linked, polymer chains, and when
the entanglement effects become low enough to allow the
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long-range diffusion of a polymer chain. The motion of
chain segments is equivalent to the restricted motions of
molecules, as mentioned earlier here. For this we use the
rubber elasticity theory given by Doi, Edwards and
deGennes.’®*! The rubber modulus Gy relaxes with a
time 7,, which is the time for the disengagement of a po-
lymer chain from its reptation tube according to the
Doi-Edwards-deGennes model.**3! 7, is given by, 7,
=L2%,, /m*q*ky T, and G at time ¢t >>7, by

Gr()=Gp S —— exp(—1/1,) . “2)
e T4
As t— o, Gg(t)—0. Here, L is the length of the tube
along which the chain reptates; §,,, the molecular friction
coefficient, and ¢ is taken as an odd number in the
theoretical description. The effect on G due to the rubber
modulus can be taken to be in parallel, as illustrated in
Fig. 3, with the combined effects of shear microdomain
formation and the diffusion that leads to viscous flow.

The diffusion of monomeric segments in an entangled
chain or cross-linked polymer is restricted to within the
points of entanglements or crosslinks. When the distance
between the entanglements is high, the segments can ac-
quire one of the many conformations or configurations,
each of which has the same entropy.

In Eq. (41), when t <<y, J(t):Gu_l. But when t ~ 7,
J(t)gGuwl-i—JB(t). Furthermore, when 75<<t <7/ ..,
J(t)=J e (2) and for ¢ > 74 1, J (£) = J, (2). Clearly, the
use of the parameter k is made only in the time range of
Tp<<t <Tf max- As was mentioned earlier in Sec. III, the
shear microdomains are continually nucleated in the
viscous flow region and their growth ultimately leads to
the loss of identity of lines that border them. But as long
as the strain rate is low and spontaneous structural relax-
ation or physical aging does not occur, the number of de-
fect sites do not change, and therefore the conditions of
correlated movements remain unchanged for molecular
or atomic glasses and low-molecular weight polymers.

For high-molecular-weight polymers with entangle-
ments and junction points, the local shear that appears
near the defect sites causes a decrease in the degree of

Gu

AAAA
WV

FIG. 3. A schematic representation of the rheological behav-
ior given by the theory including the entropic elasticity or
rubber modulus and viscous flow allowed by the chain disentan-
glements.
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freedom of the chain segments as the segments become
locally extended. Therefore, as the shear strain increases
(or equivalently when the time for the applied stress in-
creases) in the viscous flow region, i.e., when t > L4 maxs
correlation effects should increase, or in our formalism «
should decrease. As an approximation, we suggest that k
decreases linearly with #, according to

(t _Tf, max)

k(t)=k |1—a , (42a)

7—f, max

where a is an empirical constant, and combine Eq. (42a)
and Eq. (33) for the condition that 7, =7, ... Thus we
obtain (see Appendix I for this derivation)

() = (Tf g XE'Y, 43)
where
-
y=1—aln(—L222 (43a)

1

and O<y<l,and O<xk<y<]l.

It follows that J, . () of Eq. (41) is determined by the
initial value of «, as E—Tf maxe The correlated motions
become more constrained as ¢ further increases and this
would cause an increase in 7, (¢) with time according to
Eq. (43). The rate of increase in the constraints which is
caused by the local segmental extension as the strain in-
creases is thus determined by the parameter Y.

In physical terms it means that when the distance be-
tween the junction points is small, the local percentage
extension is large and x becomes more time dependent,
which in turn causes y to become small. As the distance
between the junction points is increased, y—1 and
Tp=Ts max- Thus there is a correlation between the
hierarchical constraints and the molecular weight of a
polymer. By substituting Eq. (43) in Eq. (35), we obtain
for a rubbery polymer

t

(44)

TD, max

The total compliance J*(iw) at a temperature where
viscous flow begins is equal to the sum of J 5 (iw), and the
compliance due to the a process and viscous flow

Lo . 1
J*(iw)=Jj(io)+ 3
[OT pax

X

+4

. —K
LT max
K

-X
] , (45)

where J; (iw) is given by Eq. (24).

The 71, of the equations given in Secs. III and IV may
now be related to the experimentally observed mechani-
cal relaxation time, 7,,, as defined by the Cole-Davidson
function in the form given by Ferry (in Ref. 5). This form
gives,

1
J*(iw)=J}(iw)+
(iw) gliw) G

[1+ClioT,) *+liwT,) ],

u

(46)



where
C:(KX/K/X)(AGu)_(X/K_I) . (47)

C is a constant for a material at a given temperature.
Thus,

Ton =Tmaxl AG,, /K) 7179, (48)

and the ratio, (7,, /7., ), has a fixed value at a given tem-
perature.
Since (G, —Gg)=G,, Eq. (45) may be written as

J' () '
G'(w)=—""—+Grlw), (49)
RN TIRCETTINTI
G0)=—32) 4 Guiy), (50)
J'(0)P+J"(0)?
, - 1 —x KT
J'(o) JB+———-Gu 1+(w1,) cos =~
+C(arr,,,)"Xcosl;—T~ , (51)
and
" — g 1 —K _l_(_‘ll
J" () JB+Gu (07,,) "sin >
+C(mm)‘Xsinl‘2f~ , (52)

where J and J; are given by Egs. (27) and (28). Gy and
- Gy are obtained by a Fourier transform of Eq. (42)

G (@)=Gy z—aizfﬂ;g‘ /2g~ (53)
I RV U
and
" COTe’j
Gr(w)=Gpy %m‘zﬁe’j—gj /?gj. (54)

g; represents a Gaussian distribution of g where the sta-

tistical weight g; of each process with time 7, ; sums up

to unity, i.e., 3, =1. This is a necessary simplification
J

because L, the length of the reptation tube, itself has a

distribution because the characteristics of the strands of a
polymer chain are also distributed.

4 T T T T T T T T T
g
ot a
flow p
8] L L I s L L s
0 2 4 6 8
(G"Go)

FIG. 4. Complex plane plots of the theoretically calculated
G’ and G’ (see text for details). The plot shows the -, a-, and
the chain disentanglement regions of a polymer.
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A complex plane plot on a linear scale of the calculated
values of G'' and G’ is shown in Fig. 4. In it, the 8 pro-
cess is at the highest value of G’ and at the highest fre-
quency, the large region at intermediate frequencies is the
a process and the smallest region at the lowest frequen-
cies and lowest modulus is the rubber plateau disentan-
glement. The values of the parameters used in the calcu-
lations are: U=60 kJmol™!, AU=5 kJmol™!, T =355
K, A=3X10"' Pa, Az=1X10""" Pa, x=0.95,
k=0.30, 7,,=8 sec, and (G,/Gg)=10. The value of
(G, /Gg) is 102—10* for most polymers, but has been
used here as 10 in order to clearly show the three process-
es on the same plot.

VI. THE TEMPERATURE-DEPENDENT
DYNAMIC-MECHANICAL BEHAVIOR

Temperature dependence of 7,, for the a process, or
local diffusion of a polymer chain, can be related with the
temperature dependence of the time 7(7) required for a
configurational transition in the Adams-Gibbs formal-
ism'* given by Eq. (8),

B
CpksT

H)=-"— exp . (55)

Tmax» D€ing the mean time required for the diffusion lead-
ing to the loss of the local mechanical stress, is given by

l
Tmax ™ 2 (56)
where / is the mean distance between two regions con-
taining the defect, and v is the velocity of diffusing mole-

cules, given by the Stokes-Einstein equation

__DF
kBT ’

v (57)

D is the diffusion coefficient, and F is the applied local
stress on a molecule or a monomer segment. Since

E

=—, 58

7 (58)
where E is the mean elastic energy of the lines bordering
the shear micro domain,

1%k T

Tmax= DE N 4 (59)

7(T) in Eq. (6) is related to the average distance of dis-
placement of a monomer by,

)\’2=D1— s (60) :

where A is of the order of the dimension of a molcule or a
monomer. Thus,

2

1 kgT
Tmax™ |3 E T) . (61)
Equations (48), (55), and (61) can be combined to give
2 —1/k
h|1 AG, B
=2 |- —Z 62
T (1) E | - exp Cok,T (62)
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For the a process at T <7, that is in the
isoconfigurational glassy state, 7,,, is given by Eq. (31),
which on substitution in Eq. (53) gives the measured re-
laxation time by
—1/k
AG" T(l)/Kt(IK—l/K)

T (t)= exp (63)

kkpT

Accordingly, at T < Ty, 7 follows an Arrhenius be-
havior. At T'=T,, the values of 7,, of Egs. (62) and (63)
become identical, or equal to ~ 10*s. The preexponential
term in Eq. (63) is ~ 107 % and is approximately constant
in a narrow range of temperature.

The temperature dependence of the [B-relaxation pro-
cess is given by Eq. (22)

The calculated curves of G, J, G', G", and tan® in
Figs. 1 and 2, and the calculated complex plane plot of G’
and G'" in Fig. 4, have a remarkable resemblance with
the experimentally measured dynamic-mechanical behav-
ior of glasses and amorphous polymers.> Experimental
tests for the quantitative validity of the theory for poly-
mers are presented in a separate paper and limitations of
our formalism are pointed out there. Nevertheless, it is
instructive to recall that the parameter «, ), and pu, are
interrelated in our theory and only one parameter p in
Eq. (29) is necessary for experimentally testing its validi-
ty.

VII. EXPERIMENTAL CONSEQUENCES

An analysis of the rheological data on a variety of po-
lymers has successfully been made by J. Y. Cavaille*? us-
ing this theory in the glass-rubber transition range. Nev-
ertheless, the theory leads to several other experimentally
testable predictions, some of which are given below.

(1) We assumed that the concentration of defect sites
remains unchanged during the viscous flow, a condition
that is expected when shear propagation occurs as a re-
sult of Brownian motions. Therefore, no change in
volume is anticipated as a result of the viscous flow of a
glass at a relatively high temperature such as 7°>0.75
Tg. However, since thermal diffusion, which allows
viscous flow over a long period, also allows physical ag-
ing and densification of a glass during which the number
of defects, or “‘soft sites” decreases, the volume of a glass
would slightly decrease by an amount which corresponds
only to the effect of physical aging. This can be tested for
two samples of a glass kept at the same temperature and
for the same duration, but one under a load and the other
without (for example, in zero gravity). The decrease in
the volume of the two samples is expected to be the same.
Furthermore, if the two samples after the above treat-

~ment are subjected to a shear stress, both should begin to
yield at the same magnitude of stress which would be
higher than that for the sample which was not physically
aged.

(2) A quenched glass would contain a higher concen-
tration of defect sites and therefore would begin to flow
at a relatively low temperature than a normally cooled
glass. This is anticipated because a larger concentration
of defect sites would require a relatively small growth of
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shear microdomains before their merger with other simi-
lar domains nucleated at other sites.

(3) Deformation of a glass at low temperatures and
high shear stresses for a period too short to allow
Brownian diffusion would create quasipoint defects simi-
lar to the defects or “‘soft sites” considered in this theory.
This may occur by one of the two mechanisms, namely,
(i) creation of microloops ahead of the advancing border-
lines of the microdomains®? and (ii) the trailing of a series
of sessile jogs by the expanding loops.’* Therefore, a
physically aged glass would recover its original volume
and strength of 3 relaxation on plastic deformation of a
high magnitude (such small changes in volume have now
been detected, by Pixa et al,*® in a deformation range
where crazing does not occur). Such a glass would also
show viscous flow at a lower temperature or in a shorter
time than an undeformed glass.

(4) According to Eq. (30), as k—1 or py—0, T,
This means that at high temperatures where the number
of soft sites is large and correlation effects are small, the
a process would merge with the 3 process at a tempera-
ture when p,=0. Thus at high temperatures, only one
relaxation process is observable at T >>T,. This predic-
tion was also made from a different but qualitative con-
sideration®'® and can be tested by dielectric and mechan-
ical relaxation measurements at sufficiently high frequen-
cies.

(5) Since the value of the parameter Y is determined by
the number of entanglements and junction points, its
value should be found to decrease with increase in the
number of cross links and junction points in a polymer.
In general, this value should be lowest for epoxies and
partially crystalline polymers, higher for entangled
chains, and should be equal to 1 for molecular liquids and
low-molecular weight polymers. Thus the angle of the
low-frequency intercept of the complex plane plots of G*
(in Fig. 4) should depend upon the number of entangle-
ments, junction points, and crystallinity in a polymer,
and the shape of this plot should change with with the
number of entanglements, junctions points, and crystal-
linity.

—)'Tl.

VIII. CONCLUSIONS

A theory for the rheology of the glassy state can be for-
mulated by considering that the structure of a glass con-
sists of randomly distributed regions of high-entropy,
low- and high-density sites, or defects, with an average
concentration of ~10% at T' <T,.

The defects or “soft sites” undergo shear deformation
on the application of a stress. - This leads to the nu-
cleation of shear microdomains and appears as a f3 pro-
cess. If the duration of the applied stress is long and/or
the temperature is high, these microdomains enlarge
through hierarchically constrained motions, so that the
relaxation time is a function of time. After their extend-
ed growth, the merging of the microdomains nucleated at
several sites leads to an irrecoverable macroscopic defor-
mation or viscous flow. The premise of the theory is that
B process is the precursor of the a process and viscous
flow.

An extension of the theory to amorphous polymers in



which the directionality of the covalent bonds restricts
the number of configurational states of monomers, and in
which junction points due to cross links and chain entan-
glements exist, can be made and the existence of both the
[3- and the a-relaxation processes in them can be account-
ed for. Several consequences of the theory can be experi-
mentally tested by new experiments.
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APPENDIX

In Eq. (42a) when ¢=7, .., «(2)=k; and when
t > Tf max Tp becomes a function of time because of the
dependence of k on t. Thus,

() =T = (72§10 (A1)
Substituting x(z) in Eq. (1) from Eq. (42a),

T =[ryef ey T ) (A2)
where

8=t =74 max - (A3)

For small values of 8¢ and a, Eq. (42a) may be written
as

ﬁ ~= |1+ % (A4)
Substituting for «(¢) in Eq. (A2) and writing

X =adt/T¢ max » (AS)
we obtain
T ()= (1t 5™ )V gk = Lyx /R (g o3yt /) (A6)
In Eq. (A6), when k =k

(ryt {7 =1 (A7)
and

(Tt f =7 - (A8)

Therefore,
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—(x+x?)
XX)’

TD(t):T}j—nfax(tl ( (A9)

when x is small, x? is negligible and, therefore, we may
write

(=T r, (A10)
or

To()=Tf maxd Tr, max /1) 5 (A11)
or

Tp{t)=Tf max €Xp[x In(7p 10 /21)] . (A12)

Since x is small, the exponential in Eq. (A12) may be
written as, (1+x In7, ..., /t;) and thus

Tf, max

1+x1n (A13)

Tp(t)=T7/ maXA

1

Now, replacing x by its original formula in Eq. (A5), and
writing for

b=aln(r; /1), (A14)
(V=T | 14 22 (A15)
T f, max
Since a is small, and if 8¢ is also small,
‘ bét | _ ot r
1+ =~ 1+ R (A16)
T f, max Tf, max

Eq. (A12) becomes

(=T b (Tf e 88 (A17)
Substituting for 8¢ from Eq. (A3),

() =T b et (A18)
We define a quantity Y as

x=(1-—b), (A19)
so that by substituting for y in Eq. (A1S5),

(=78 X, (A20)

where 7, .., is the time at which shear microdomain be-
gin to merge. For ¢ <7, ..., k is constant and can be
measured by the high-frequency intercept of the complex
plane plot in Fig. 4.
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