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The order-disorder transition (antiferromagnetic with conserved total spin) is studied when atom-
ic exchanges result from two processes in parallel, as is the case under energetic particle irradiation:
thermally activated jumps and ballistic jumps. The latter favor fully disordered configurations
(infinite-temperature dynamics), while the former tend to restore some degree of order. The ap-
propriate mean-field phase diagram is established. A tricritical point is identified below which the
nonequilibrium order-disorder transition becomes first order. Stochastic effects are addressed by
master-equation and Fokker-Planck equation techniques. Introducing ballistic jumps by bursts (re-
placement cascades) does not change the steady-state values of the order parameter but definitely
affects their respective stability. Below the tricritical temperature, cascade effects shift the phase
boundary of the first-order transition towards the spinodal ordering line.

I. INTRODUCTION

Nonequilibrium phase transitions, i.e., transitions be-
tween steady states of a dynamical system, rather than
between equilibrium states of a thermodynamical system,
are of interest in a large variety of fields physical chem-
istry, electrical engineering, and materials science.
One example of such nonequilibrium phase transitions in
condensed-matter physics is given by irradiation-induced
phase transitions. . The latter occur when atoms are
ejected from their equilibrium position by nuclear col-
lisions. The configuration of the system results, in most
simple examples, from a competition between
irradiation-induced disorder due to atomic jumps induced
by nuclear collisions (ballistic jumps) and thermally ac-
tivated reordering due to the usual atomic jumps
(thermal jumps of point defects). One may say that the
configuration space of such systems is explored following
two dynamics which act in parallel: the usual thermal
jumps, which favor the occupancy of low-energy
configurations, and the ballistic jumps which occur ir-
respective of the value of the energy of the configuration.
Under the effect of ballistic jumps only, the configuration
space is explored as it would be at infinite temperature.
In a previous work, we showed that, with some simplify-
ing assumptions, in the particular case of the unmixing
transition (ferromagnetic transition with conserved total
spin), the steady-state configuration of the system under
irradiation at temperature T is the thermodynamical
equilibrium configuration of the same system at a higher
temperature T'=(1+y)T, where y is the ratio of the
ballistic to thermal atom jump frequency (respectively,
I b and I, ).

Here we examine the order-disorder transition for the
B2 (P-brass) structure, an interesting one because of its
simplicity and relevance to metallurgy. From a very sim-
ple mean-field description of the thermodynamics and of
the kinetics of this phase transition we build the ap-
propriate phase diagram: the temperature —ballistic jump
frequency plane is shared into two fields, that of the or-

dered and that of the disordered phase. We show that
the phase transition which is of second order in the pure-
ly thermodynamical case becomes first order at low
enough a temperature. The temperature at which this
change occurs (tricritical point) is predicted to be
T, /(1+y*), where T, is the critical temperature and
y* = (1++3)/2. Moreover, using a master-equation
technique, we show how the above phase diagram is
affected by "cascade effects:" indeed, under practical
conditions, ballistic jumps rarely occur individually; usu-
ally a stack of atoms is shifted at once, along so-called re-
placement collisions sequences„" or inside "displace-
ment cascades. " ' ' Depending on the details of the nu-
clear collision process, 10 to more than 100 atoms may
exchange position at once. We show that cascade effects
do not change the steady-state values of the order param-
eter, which are correctly predicted by the deterministic.
kinetic model, but significantly modify the respective sta-
bility of the various steady states. Indeed, the first-order
transition line is shifted towards the spinodal ordering
line when the cascade size increases.

Let us quote that some of the effects we have identified
are reminiscent of what has been observed in the kinetic
Ising model with several competing dynamics, either in
numerical experiments or in an analytical way. Howev-
er, cascade size effects have not yet been studied to our
knowledge.

The paper proceeds as follows. We first recall the clas-
sical mean-field treatment of the thermodynamics, and
the rate theory of the kinetics' of the order-disorder
transition in the 82 structure. In Sec. III we introduce
ballistic effects in the above rate theory and point to the
occurrence of a tricritical point in the dynamical phase
diagram. The latter is discussed in detail in Sec. IV. A
stochastic description of the transition is introduced in
Sec. V; we build a master equation, the steady-state solu-
tion of which coincides, in the absence of external forc-
ing, with that of the thermodynamical model: both mod-
els yield the same probability distribution for the macro-
states. When the ballistic jumps are operating, a stochas-
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tic potential which do not reduce to the free energy is
found. In Sec. VI a Fokker-Planck approximation of the
latter master equation is introduced to handle cascade
eA'ects. The resulting phase diagram is discussed in Sec.
VII.

II. ORDER-DISORDER TRANSITION
OUTSIDE IRRADIATION:
STATICS AND KINETICS

We consider A and B atoms in 20 sites in a bcc lattice;
0 belong to sublattice a, 0 to sublattice P. We call C
(C&) the B atomic fraction on sublattice a (P) and co the
ordering energy [2co=8(e~„+ezra —2e„z)], where e;J. is
the contribution of an ij pair of atoms to the internal en-
ergy. For the sake of simplicity, we restrict to the stoe-
chiometric composition (which implies C +C&=1) and
to nearest-neighbor interactions. We introduce the long-
range order parameter S =2C —1 and restrict ourselves
to the case 0.5 ~ C ~ 1; S =1 for the fully ordered case
C = 1, and S =0 for the fully disordered case C =

—,'. In
the following, we drop the index a. Simple bound count-
ing gives the free-energy function per atomic site,

f ( C) =2' C ( I —C) + k& T f C lnC + ( 1 —C)ln( 1 —C) ] .
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FIG. 1. Construction of the steady-state degrees of order out-
side irradiation: the solutions of Eq. (3) are at the intersections
of the first bisector ( ) with tanh(ST, /T). The transition is
a second-order one: T/T, = 1.5 (—-); T/T, = 1.0 ( —-—);
T/T, =0.5 ( ———).

At equilibrium (Bf/BC =0)
C

1 —C
=exp[2Pco(2C —1)], (2)

S =tanh(ST, /T), (3)

with the critical temperature T, =co/k~. Depending on
T, /T, Eq. (3) exhibits one or two solutions (Fig. 1). The
transition thus described is of second order.

Equations (2) and (3) may also be considered as yield-
ing the steady-state solution of the following model for
the kinetics of the order-disorder transition outside irra-
diation: since in the B2 structure all eight nearest neigh-
bors of an u site are on the P sublattice and vice versa,
the time evolution of C, which describes the kinetics of
the transition, is written as'

dC = —8I pC (1—Cg)+81' Cp(1 —C ),dt

where I,- is the exchange frequency of one B atom from
sublattice i to sublattice j and C, (1—C ) the probability
that one such exchange extracts one B atom from lattice I

and replaces it by one A atom from lattice j. The
steady-state solution C of Eq. (4), with the notations of
Eqs. (1)—(4), is written as

'2

where p=(k~T) '. From Eq. (2), the values of S which
make f (C) an extremum are solution of the implicit
equation III. BALLISTIC EFFECTS

When ballistic jumps occur in parallel with the
thermally activated jumps, the jump frequencies which
enter Eq. (4) become

I"; =I,q+rb,
where I b is the ballistic jump frequency which does not
depend on the alloy configuration. Let us introduce an
average thermal jump frequency I"„such that [following
Eq. (6))

I &
——l, exp( 2$T, /T), I &

———l,exp(2ST, /T) . (8)

I, is a thermally activated average jump frequency, in-
dependent of the configuration of the system. Since I, is
proportional to the average point defect concentration, it
is a function of the temperature and irradiation Aux. We
define y = I b/I, . The steady-state value of the order pa-
rameter under irradiation S ' is given now as the solution
of the implicit equation

"2
exp(2ST, /T) +y

exp( 2$T, /T)+y—
1+S
1 —S

I &/I &
——exp( 4ST, /T) . —

The steady-state solution of the kinetic model is thus
identical to the equilibrium solution of the thermodynam-
ical model and is obtained by the graphical construction
of Fig. 1.

1 —C or

which reduces to Eq. (2) if we set S = U(S),
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with

U(S)

[y+exp(2ST, /T)]' [—y+ exp( 2ST—, /T)]'~

[y+exp(2ST, /T)]' +[y+exp( 2S—T, /T)]'~~

(10b)

S' is obtained by a graphical construction similar to
that of Fig. 1, but tanh(ST, /T) is now replaced by U(S)
as defined in Eq. (10b). Simple but lengthy algebra shows
the following (Fig. 2): introducing y'=(1+&3)/2, we
find that (a) for y &y*, U(S) exhibits a single inAexion
point at the origin. The order-disorder transition is of

second order as before; the critical temperature is
T, /(1+y) [see Fig. 2(a)]. (b) For y )y*, U(S) exhibits a
second inflexion point. (c) At T' = T, /(1+ y*), the
second inAexion point merges with the first one at the ori-
gin. Below this temperature, provided y is large enough,
U(S) cuts the bisector S at three points, one of which is
an unstable solution, indicating the transition is of first
order [see Fig. 2(b)]. Indeed, a Lyapunov function X(S)
for Eq. (4) is simply

X(S)= —8 J'[1-~.(1—C)' —r.,C' ]d~, (»)

where C and I;. are functions of the current value u of
the order parameter. When ballistic jumps are operating,
I, are to be replaced by I '; as given by Eq. (7). X(S) ex-
hibits the shapes depicted in Fig. 3, which are reminis-
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FIG. 2. Construction of the steady-state degrees of order un-
der irradiation: the solutions of Eq. (10) correspond to the in-
tersections of the first bisector { ) with U(S} (which is di-
mensionless). (a) T=—500 K& T* and y &y*: y=0. 53 (—-) or
y=1.00 ( —-—); the transition is a second-order one. (b)
T=300 K& T and y~y*: y=2. 84 (—-) or y=3.79 ( —-—),
the transition is a first-order one.

FIG. 3. Lyapunov functions in the presence of ballistic
jumps. {a) T =500 K and y=0. 53 (—-), y=1.00 ( —-—), and
y=1.59 ( ———), (b) T =300 K and y=2. 01 (—-), y=2. 84
( —-—), and y=3.79 ( ———}. Steady states correspond to
extrema of X; the stable one are local minima of% [Eq. (11)].X
is given in ( I, )

' units [Eq. (12b)].
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cent of the shapes of a mean-field free-energy function
for, respectively, second-[case (a)] and first- [case (b)] or-
der phase transitions.

10

Disordered (A2

IV. PHASE DIAGRAM

The steady-state configuration of the dynamical system
is dictated by two control parameters: the temperature T
and the ballistic jump frequency I b which is scaled by
the irradiation Aux. The dimensionless parameter y in
Eq. (9) is indeed a function of I „and T. The tempera-
ture dependence of y is worth further attention, since I,
under irradiation is proportional to the mean point defect
concentration which is itself a function of the irradiation
flux and temperature. Assuming that a steady-state point
defect concentration is obtained by Frenkel pair mutual
recombination, we get

y
—

g (bl )1/2(l )
—1/2 (12a)

with g a geometrical factor, 2b the number of replaced
atoms per cascade, and I „ the mean vacancy jump fre-
quency

I",=I „exp( PE, ) . — (12b)

In Eq. (12b), E, is the vacancy migration energy. In the
following, for numerical applications, E, is set equal to 1

eV, a typical value in metallurgy. Combining Eqs. (12a)
and (12b) we get

y =yoexp(PE„ /2), (12c)

where yo=g (b I & /I, )' . In the following, we will
define irradiation conditions by yo and T. The phase dia-
grams will be drawn in the yo —T plane. The latter form,
although nonuniversal, is more convenient for the experi-
mentalists who adjust independently the irradiation flux
(scaled by I b ) and the temperature T.

For each value of the couple (yo, T) Eqs. (10) may be
solved, e.g. , by graphical means (Fig. 2). Depending on
(yo, T), we get one solution (S=0) or two solutions
(S =0, S =S ') or three solutions (one unstable S„, two
locally stable: S =0 and S =S '). The boundary between
one and two solutions is the (second-order) transition line
in the (yo, T) phase diagram (Fig. 4). The line along
which the unstable solution S„ is degenerated as S=0 is
the spinodal ordering line. The latter merges with the
former transition line at a tricritical point located at y
and T', such that T"=T, /a, I b =(a —l)l",(T*), and
a =(3+&3)/2. Beyond this point, the transition is of
second order, as the thermal phase transition (I b =0).
When three solutions exist, we are in the vicinity of a
first-order transition line. The latter occurs when the
respective stability of the two locally stable solutions is
reversed. The precise localization of the first-order tran-
sition line requires evaluating the respective stability of
the solutions. This will be done in Sec. V. Below the tri-
critical temperature T*, the transition line in Fig. 4 was
drawn from the data of Sec. V. In that region, the transi-
tion should exhibit metastability in the region between
the transition and the spinodal lines. In this region, the
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0.6
T/Tc

1.0

FIG. 4. Dynamical phase diagram. The transition is of
second order beyond the tricritical temperature
T*/T, =2/(3+&3) and first order below T*T,; the dashed
line corresponds to the spinodal ordering line. yo is dimension-
less [Eq. (12a)].

radiation-induced transition should proceed by domain
growth. Notice that the tricritical point is defined in a
universal way [y =(1+&3)/2, T*/T, =2/(3+&3)].
However, the yo

—T/T, phase diagram is material
dependent, since, from Eqs. (12), yo =y *exp( E„ /—
2kT*). In Fig. 4 and in the following we chose T, = 1000
K, which yield yo =1.55X10 . With typical material
values for y in Eq. (12a), the displacement rate at the tri-
critical point would be of the order of 10 displacement
per atom per second, a value typical of high-voltage elec-
tron microscopy or of heavy-ion implantation.

V. CASCADE EFFECTS:
MASTER-EQUATION DESCRIPTION

We now address the question of cascades, which is of
prime interest in metallurgy. We want to check whether
the phase diagram just constructed is changed when
several ballistic jumps occur simultaneously, keeping yo a
constant. In most metallurgical processes (irradiation
effects, shear-induced precipitate dissolution), disorder is
introduced by shifting 2b atoms at once; the frequency at
which such "replacement cascades" occur, per a site, is

r, =rb/b . (13)

+ (N —k ) x —k-x
+P(N+k, t)W~+q ~] . (14)

For addressing such a question, we need a stochastic
description of the kinetics of the transition. This is
achieved using a master-equation technique. " We define
the state of the system by the number N of G. sites occu-
pied by B atoms. Let P(N, t) be the probability of the
value N at time t for given initial conditions. The time
evolution of P is governed by

dP(N, t) = & [—P(»t)(Wx ~ a+W~dt k =1'
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On the right-hand side of Eq. (14), we dropped the a sub-
script. Equation (14) implies that whenever 2b atoms
jump at once, exchanges occur among b sites of both sub- '

lattices. In Eq. (14), Wz ~+k is the probability that the
number of B atoms on sublattice o. increases from N to
N+k per unit time. Such probabilities may be con-
structed from the atomistic jump frequencies I & and I"&

and the cascade frequency I, . In the purely thermal case
(I,=O), k values are restricted to 1, and the JVs are
written as

A. Purely thermal case

r~.(N/0)
I p[(N + 1)/0]

(19a)
Simple iterative use of Eq. (19) yields

20—i —1P(N)
P (0/2)

Equation (18) together with the definition of &by Eqs.
(15) yield for the steady state

2
~N+1 ~N N+1 0—N

~N+1 N N+ 1

~N~N+1
N

Pa

2
N+18", =8Q l-.~

2
NW', =80 —r.~—

(lsa)

(15b)

(15c)

=exp
i =0/2

(2i —1 —0)T,+4

(2i —1 0)T—,
X exp +4 (20a)

'2
0—N+1=sn r,. (15d)

In Eqs. (15), r;~ is a function of N/0 (i.e., of C or of S),
as defined by Eq. (8). The superscript (t) implies we are
dealing with thermal jumps. When replacement cascades
are operating, a ballistic contribution 8' must be added
to the thermal transition probabilities. Assuming a re-
placement cascade consists in 2b atoms exchanging posi-
tion at once with their nearest neighbor, WN N+k is
written as

b N
W „,=8nr, —-b+k . b+k

(2b)!
X

(b —k)!(b +k)!
(16)

~N ~N ~N + 1 ~N + 1 ~N + 1 ~N (18)

Time does not appear in Eq. (18), since we deal with
steady states. We now consider the purely thermal case
(I,=0) and the case of simple ballistic jumps: r, &0,
b =1.

W~+k ~ are deduced straightforwardly from Eq. (16).
We are interested in the steady-state solution of Eq. (14).
The latter is a conservation equation for the probability
at each "site" of the N axis, so that the rhs of Eq. (14)
may be considered as the difference between the net Aux
of probability between sites N —1 and N on the one hand,
and N and N + 1 on the other hand. Since systems with
N =0 or 0 can be neither created nor destroyed, each of
the above Aux must be zero under steady-state condi-
tions. We get

b b

X PN + i —m ~N + I —m ~N + 1+k —m
m =1k=m

b b

X X PN+m ~N+m~N+m —k
m =1k=m

In the particular case where b =1, we get the usual form
of detailed balance,

+21n
i =0/2

(20b)

As we are interested in calculating these probabilities in
the thermodynamical limit, i.e., when 0~ ~, N/0 fixed,
we perform a 0 ' expansion of the rhs of Eq. (20b). Re-
taining the first term of this expansion and taking advan-
tage of Stirling's formula to expand the log term, we get

P(N)
P(0/2)

=exp I
—20[f (C)—f ( —,

' )]/kT I, (21)

where f (C) is the free-energy function defined by Eq. (1).
Under steady-state conditions, the most probable
configuration [P(N) max] corresponds to the absolute
minimum of f (C). In other words the kinetic model just
considered yields the same probability distribution of
configurations as the mean-field thermodynarnical model
of Sec. II. We can therefore rely on the kinetic model to
address nonequilibrium situations.

B. Simple ballistic case: b =1

When both thermal jumps and single ballistic jumps
are operating, Eq. (18) still holds for the detailed balance,
with

W, , =W,',-+W,b, . (22)

From Eqs. (16) and (19), we get

P, 0 N
' r,.(N/0)+r,

(23)
P~ N+1 I p[(N+ I )/0]+r,

We can still obtain P(N)/P(Q/2) in a form similar to
Eq. (20b), but, the g term in the argument of the ex-
ponential will be much more complicated. Following a
standard notation, we get

P(N) =exp I 20[/(S) —P( —,
'

) ]I, (24)

where g (as did the free energy f) only depends on the in-
tensive variable (C or S). g is the sum of two terms: a
configurational entropy term, identical to the entropy in
f [Eq. (1)] and another term which combines energetics
(T, /T) and kinetics (I,/I, ). This latter term is by no
means an internal energy term.

The most stable steady-state configuration corresponds
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to the absolute maximum of g(S) [Eq. (24)]. Respective
stabilities of possible steady states may be assessed from
the respective heights of the corresponding maxima of g.
The technique has been already used to explain stability
inversion of two structures of Ni4Mo under electron
irradiation.

Figure 5(a) gives an example of such a 1b function ob-
tained by numerical summation. It is found that depend-
ing on the temperature, 1b exhibits one or two maxima:
the nonequilibrium phase transition is therefore of
second- or first-order respectively, in fuH agreement with
the deterministic model. In the case where cascades in-
volve more than one ballistic exchange (b & 1) Eq. (17)
must be considered rather than Eq. (18) and the above
procedure does not lead anymore to an analytical expres-
sion of P(X). One implicit equation for P(X) may be
found, ' but it is of poor use for large b values. %'e now
show how a Fokker-Planck equation may be deduced
from the full master equation [Eq. (14)] and lead to reli-
able results. '

VI. CASCADE EFFECTS: FOKKER-PLANCK
EQUATION DESCRIPTION

dP(X, t)
dt

PV 2)P—ac (25a)

or, equivalently,

dP(X, t) 8 dP
dt BC BC

(25b)

with

In the general master equation (14), notice that b, the
maximum value of k, is much smaller than 0, the max-
imum value of X. Indeed, in the thermodynamical limit,
0 becomes infinite, while 6 is fixed by the physics of the
excitation (cascade size). As a consequence, all terms in
the rhs of Eq. (14), may be Taylor expanded around their
value at X. To the second order in 1/0, and after simple
algebra, we get

b=1
- Qx10

p x1Q
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QxQ

-2
-I x10

-2
-2x1 0 I
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FIG. 5. Stochastic potentials 1( [Eq. (24)] and p [Eq. (30)] for T/T, =0.26 and ) 0=10 with (a) b =1, lt is obtained directly from
the steady-state solution of the master equation; (b) b = 1, P is obtained from the Fokker-Planck approximation of the master equa-
tion; the ( —-—) line represents P —1(; (c) b = 100, the disordered configuration (S =0) becomes the most stable one. 1( and P are di-
me nsionless.
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aC
(25c)

In the Fokker-Planck equation (25b) we recognize a
diffusion equation where the Aux is the sum of a convec-
tion (PV) and of a diffusive ( —2) i3P/BC) contribution.
It is found that

l b

V(C)= —g k(W ~ i,
—W i),

k=1
(26a)

b

2)(C)=
2 g k (Wx ~+i +W~ Jv i, ), (26b)

2Q

on the rhs of Eqs. (26), for k & 1, the W's are given by Eq.
(16). For k =1 the W's are the sum of the ballistic [Eq.
(16)] and thermal [Eqs. (15)] contributions. After some
algebra we found the following expressions for the ballis-
tic contributions:

V "(C)=—b I,(1—2C), (27a)

2) (C) = b I,[2C (1—C) +b (1—2C) ] .
20

(27b)

P(N) I c &(x)
P(O/2) "iy22)(x) (28)

Notice that since the 8 s are all strictly positive quanti-
ties, V/2) is integrable on the interval [—,', C]. The argu-
ment of the exponential scales with Q. The extrema of P
are given by

V(C)=0 or V(C)=0 as 0—+~ . (29)

In the thermodynamical limit (Q~ oo, C fixed), it is
easy to show that the most stable steady-state
configuration corresponds to the absolute maximum of
P(C) given by

(30)

In the particular case where b =1, P(S) is numerically
quite similar to f(S) which appears in Eq. (24), as
exemplified by Fig. 5(b). Such is no more the case when
b & 1. Figure 5(c) exhibits $(S) for b =100, but for the
same value of yo as in Figs. 5(a) and 5(b). Comparing

Notice that for a given ballistic jump frequency
(I b bI, ), th——e cascade size appears as a free parameter
in the Fokker-Planck equation (FPE) [Eq. (25)] because of
the b factor in the diffusion coefficient [rhs of Eq. (27b)].
Therefore, cascade size effects are revealed by the FPE,
while they were not expected from the deterministic
description [Eq. (5)]. We consider now the steady-state
solution of the FPE and show first of all that for b = 1 we
recover a solution which is numerically very close to that
of the master equation [Eq. (24)] as should be expected
the difference becomes significant only in the near vicini-
ty of S =1 [Fig. 5(b)], a value far away from the most
stable steady-state value. The latter is not affected.
When b ~ 1, cascades effects are identified.

The steady-state solution of Eq. (25), provided the sys-
tems are conservative, is written as

VII. EFFECT OF CASCADES
ON THE PHASE DIAGRAM

As previously discussed, cascade effects may inverse
the stability of the ordered configuration relative to the
disordered one, at a given temperature and overall ballis-
tic jump relative contribution y=I b/I, . Therefore the
phase diagram in the yo —T/T, plane is cascade size
dependent. However, it is a simple matter to show that
the transition line is unaffected as long as it corresponds
to a second-order phase transition. Neither the position
of the tricritical point nor the spinodal line are affected.
Indeed, cascade effects shift the first-order transition line
towards the spinodal line. Figure 6 shows the result of a
numerical calculation of the transition line, obtained
from trial and error computations of P.

Analytically, the spinodal line (which becomes the
transition line beyond the tricritical point) is defined by
the condition that P(C) has an infiexion point for S =0,
i.e., for C =—,',

Q2p
2aC

(31)

From Eqs. (30) and (27), simple algebra shows that for
C = —,

' the coefficient of b which enters i) P/BC because
of X and M)/BC vanishes. Therefore the spinodal line is
not affected by the cascade size. Similarly, the tricritical
point is defined by the condition

g4y
4

C =1/2
(32)

For the same reasons as above, the latter condition does
not depend on b per se. Therefore cascade size effects
only alter the first-order transition line.

Figs. 5(b) and 5(c) shows that, whatever the cascade size
b, the system exhibits two stable steady-state
configurations (maxima of P): one with S =0 (disordered
state), one with S&0 and independent of b T.his is to be
expected since the extrema of P correspond to V=O in
Eq. (28). As discussed before, V only depends on the
overall ballistic jump frequency bl, [Eq. (27a)] and not
on b alone. Therefore the possible steady states of the
system are not affected by b when yo is kept constant.
%'hat is being altered by the cascade size b is the respec-
tive stability of the above steady states. Indeed, b ap-
pears as a free variable in the noise term 2) [Eq. (27b)].
The higher the noise, the shallower the extrema of P.
Since X) varies with the degree of order S, the various ex-
trema of P are not affected by the same amount, and sta-
bility inversion may be observed on increasing b. Such is
the case in Figs. 5(b) and 5(c). In Fig. 5(b), with b =1,
the disordered state S =0 is metastable (local maximum
of P) while the ordered one, S =0.83, is stable (absolute
maximum of P). The reverse is true for b =100, yo being
kept constant. Notice that, for finite values of 0, phase
coexistence in this context [P,„=P(S,)=P(S2)] does
not imply, because of the preexponential term, equiproba-
bility of the two mesoscopic states S] and S2. '
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VIII. DISCUSSION AND CONCLUSIONS

Cascade size e6'ects are of practical relevance in metal-
lurgy. They have been qualitatively identified in several
cases of irradiation-induced phase transitions. As an ex-
ample, it is well known that it is "easier" to amorphize a
crystalline sample by ion (cascade producing) than by
electron (small replacement sequences) irradiation. '

Similarly, in the first phase diagram under irradiation
ever published, ' one of the coexistence lines was shifted

FIG. 6. Cascade size effect on the low-temperature part of
the dynamical phase diagram ( T/T, & 0.422, y«yo ). Increas-
ing the cascade size b, at constant yo, slightly shifts the first-
order transition line towards the spinoda1 ordering line. yo is
dimensionless [Eq. (12ait.

by several hundred degrees when going from e to ion ir-
radiation. The above phase transitions are still too com-
plex to be addressed quantitatively by the present model.

However, the present work has derived a technique
which should be of more general use than the very simple
phase transition just studied. Work is in progress for
more complex order-disorder transitions, with several
competing structures. Taking spatial heterogeneities into
account is the next challenge.

For the time being, we have shown, in the prototype
B2 order-disorder transition, the following points. When
ballistic atomic jumps act in parallel with thermally ac-
tivated jumps, (i) the phase diagram exhibits a tricritical
point at about 0.42 the classical critical temperature; (ii)
cascade size is of no inhuence on the steady state values
of the order parameter. The respective stability of the
various steady states, however, is altered by the former.

Before the tricritical point (T &0.42T, ), the phase
boundary line in the yo —T phase diagram is sensitive to
cascade size e6'ects. For a given value of the frequency
factor of the ballistic to thermal jump frequency ratio,
the larger the cascade size the higher the transition tem-
perature. The phase boundary line is shifted towards the
spinodal line.

From the experimental view point, going from light-
particle to heavy-particle irradiation at constant Aux will
mainly aftect the displacement to replacement frequency
ratio and as a consequence yo. The shift of the first-
order transition line wi11 appear as sma11 correction, at
least for the parameters values used in this study.
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