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Two-dimensional quantum Heisenberg antiferromagnet at low temperatures
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It is argued that the long-wavelength, low-temperature behavior of a two-dimensional quantum

Heisenberg antiferromagnet can be described by a quantum nonlinear o model in two space plus

one time dimension, at least in the range of parameters where the model has long-range order at

zero temperature. The properties of the quantum nonlinear cr model are analyzed approximately

using the one-loop renormalization-group method. When the model has long-range order at

T=. O, the long-wavelength behavior at finite temperatures can be described by a purely classical

model, with parameters renormalized by the quantum Auctuations. The low-temperature behavior

of the correlation length and the static and dynamic staggered-spin-correlation functions for the

quantum antiferromagnet can be predicted, in principle, with no adjustable parameters, from the

results of simulations of the classical model on a lattice, combined with a two-loop renormal-

ization-group analysis of the classical nonlinear o model, a calculation of the zero-temperature

spin-wave stiffness constant and uniform susceptibility of the quantum antiferromagnet, and a

one-loop analysis of the conversion from a lattice cutoff to the wave-vector cutoff introduced by

quantum mechanics when the spin-wave frequency exceeds T/h Applyin. g this approach to the

spin- 2 Heisenberg model on a square lattice, with nearest-neighbor interactions only, we obtain a

result for the correlation length which is in good agreement with the data of Endoh

equal.

on

La2Cu04, if the spin-wave velocity is assumed to be 0.67 eV A/h. We also argue that the data

on La2Cu04 cannot be easily explained by any model in which an isolated Cu02 layer would not

have long-range antiferromagnetic order at T=0. Our theory also predicts a quasielastic peak of

a few meV width at 300 K when kg«1 (where k is wave-vector transfer and g is the correlation

length). The extent to which this dynamical prediction agrees with experiments remains to be

seen. In an appendix, we discuss the effect of introducing a frustrating second-nearest-neighbor

coupling for the antiferromagnet on the square lattice.

I. INTRODUCTION

The discovery of high-temperature superconductors has
led to renewed efforts, both theoretical and experimental,
to understand quantum antiferromagnets. Much of this
interest stems from Anderson's original suggestion' that
novel quantum-spin Auctuations in Cu02 layers may be
responsible for superconductivity in doped materials such
as La2 —„Sr Cu04 and YBa2Cu306+ . Since then a num-
ber of possible mechanisms have been suggested in which
the quantum nature of the Cu spins plays an -important
role in producing high-temperature superconductivity.
The aim of the present investigation, however, is to obtain
a better understanding of the stoichiometric insulating
quantum antiferromagnet, in light of recent neutron
scattering measurements ' in La2Cu04. Although the
subject of quantum antiferromagnets is rather old, there
are a number of unresolved issues which are particularly
pressing in the present context. Some of the results re-
ported here were brieAy presented in a recent letter.

Our analysis of the experiments leads us to believe that
the undoped La2Cu04 can be modeled rather well by a
nearest-neighbor 5 = —,

' antiferromagnetic (AF) Heisen-
berg Hamiltonian on a square lattice with a large ex-
change constant J of order 1200 K; in particular, the

interplanar coupling and the spin anisotropies are both
very small. The present estimate for the interplanar cou-
pling J' is 10 J. Such a small J' has very little eA'ect on
the two-dimensional spin fluctuations seen above the
three-dimensional Neel temperature Tg', the critical re-
gion in which J' is expected to have a major effect is ex-
tremely narrow. One can also show that such a small J'
has very little eA'ect on the zero-temperature properties
calculated assuming that the system consists of isolated
Cu02 layers (see Appendix F). However, the interplanar
coupling is believed responsible for the fact that there is

long-range order at finite temperatures, below T~, as even
a tiny interplanar coupling can induce long-range order
when the in-plane correlation length becomes sufticiently
large.

In principle, weak Ising-like anisotropies can lead to
qualitative changes from Heisenberg behavior for an iso-
lated layer. However, experimental estimates of the spin
anisotropy in La2Cu04 suggest that this anisotropy is less
important than the interlayer coupling in this system.

In the present paper, we shall focus attention on the
pure two-dimensional (2D) Heisenberg model and the
properties of La2Cu04 that can be understood using it.
We assume that the dominant interaction in La2Cu04 is
the nearest-neighbor antiferromagnetic exchange, though
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we shall also investigate a model with frustrating second-
neighbor exchange.

For many years it has been generally believed that the
2D S = —,

' AF (two-dimensional nearest-neighbor S= —,
'

Heisenberg antiferromagnet on a square lattice) has
long-range order (LRO) at T =0. In an important paper
Anderson argued that even though the staggered magne-
tization may be reduced, the Neel state is stable against
quantum Auctuations at T=O. A number of recent nu-
merical calculations support this view quite strongly.
Since none of these studies are rigorous, they can be chal-
lenged, however. Indeed, Anderson himself speculated in
a later paper that long-range order could be destroyed by
quantum Auctuations.

There are rigorous results due to Neves and Peres"
based on an extension of the work due to Dyson, Lieb, and
Simon, ' which show that at T =0 there is LRO for
S~ 2, after correction of a minor error in Ref. 11, it has
proved possible to extend ' these results to the case of
S=l. An extension of the proof to S= —,

' has not yet
been achieved, however.

Until recently, accurate experimentaI realizations of the
theoretical model were not known. In this respect recent
neutron measurements in La2Cu04 have . significantly
changed the situation. However, to compare with experi-
ments, it is necessary that we are able to deduce the prop-
erties of the 2D S= 2 AF at finite temperatures. It is
particularly important to use a finite-temperature analysis
in view of the Hohenerg-Mermin-Wagner theorem '

which shows rigorously that there cannot be long-range
order in a two-dimensional Heisenberg system at TAO.

It is illuminating to consider the issues addressed in this
paper in the context of a 1/S expansions'5 '7 for the
quantum spin- 2 antiferromagnet on a square Iattice with
Hamiltonian

/f =J g S; SJ+J"g S; S/,
(i,j & &k, l)

where J & 0 and J"& 0 represent nearest-neighbor and
next-nearest-neighbor couplings, respectively. We may
define the staggered magnetization N such that in an or-
dered ground state

The positive functions a(J"/J), I1(J"/J), and I2(J"/J)
are tabulated in Appendix A. As shown in Fig. 1, the fall-
off in the staggered magnetization with decreasing S be-
comes more pronounced for nonzero J"/J. Although it is
hard to draw precise conclusions from an alternating
series such as (1.3), it is plausible that there exists a criti-
cal value of the spin S =S,(J"/J) below which the stag-
gered magnetization vanishes. There is growing evidence
that S, is less than the lowest physically accessible valueS= 2 for J"=0. It may be possible, however, to choose,J" large enough so that S, & 2, in which case a number
of interesting ideas about "quantum disordered" antifer-
romagnets could be tested for S = —,

' . As stated above,
however, our analysis of the neutron scattering experi-
ments ' strongly suggests that this is not the case for
defect-free La2Cu04.

Note that if the third term in Eq. (1.3) were ignored,
one would conclude that N vanishes at (J"/J) =0.38 for
S= —,'. The presence of the third term, however, invali-
dates such a conclusion. '

The principal purposes of the present paper are (a) to
predict the static and the dynamic properties of the S = —,

'

AP at low temperatures assuming that there is long-range
order at T =0, and (b) to compare our theoretical work
with experiments on La2Cu04.

We begin by constructing an effective continuum field
theory described by a model which is a quantum-
mechanical generalization of the classical nonlinear o.
model. ' The classical model is known to capture correct-
ly the long-wavelength physics contained in the classical
Heisenberg lattice models where the spins are represented
by three-component unit vectors. As we shall argue later,
we expect the quantum-mechanical nonlinear a model
(QNLcrM) to do the same as far as the low-energy, long-
wavelength behavior of the corresponding quantum model
is concerned. In addition to d spatial dimensions, one
needs an extra dimension, the imaginary time dimension,

1.0—

(s;)=+ wa, , N/S

N =S[1—a(J"/J)S '+ (J'/J)Ii(J''/J)

XI,(J"/J)S '+O(S-')l. (1.3)

where Qo is an arbitrary unit vector, independent of the
site, and the sign is opposite on the two sublattices.
When S ~, the spins behave like classical vectors and
the ground state is the fully aligned Neel state with N =S.
The next-nearest-neighbor coupling J" opposes the local
Nc;el order, although it does not change the classical
ground state for small J''/J. For finite S, quantum-
mechanical Auctuations reduce the staggered magnetiza-
tion in the ground state, even if J =0.

In Appendix A we calculate the reduction in the classi-
cal staggered magnetization to second order in 1/S:

1

1/Sc p I/S
FIG. 1. Staggered magnetization W as a function of I/S,

within spin-wave approximation, for different values of the ra-
tios of next-nearest-neighbor to nearest-neighbor couplings J"/J.
The dashed curve is a plausible guess as to how the system may
disorder, for a larger value of J"/J.
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to specify the QNLo. M. The presence of the imaginary
time dimension is a reAection of the quantum Auctuations.
Thus we shall often refer to this model as a (d+1)-
dimensional model. The thickness in the imaginary time
direction is inversely proportional to the temperature, and
hence goes to infinity as the temperature goes to zero. At
T =0, the model is described by a dimensionless coupling
constant which plays the role of 1/S in Fig. l.

Alternately, it is possible to describe the same system
using a "soft-spin" three-component p quantum field
theory in d spatial and 1 imaginary time dimension where
the p field has O(3) symmetry. However, the fixed length
QNLaM is more convenient in d=2 at finite tempera-
tures. For d =2, and at T=O, the system is described by
(2+ 1) or a "three-dimensional" field theory. In this case,
a p theory may have certain advantages over the
QNLoM. Although we shall mainly use the QNLaM,
occasionally we shall use some well-known results from
the p theory.

QNLaM has two independent dimensional parameters:
the local spin stiA'ness constant p, , and the local uniform
magnetic susceptibility g&, in the direction perpendicular
to the local staggered magnetization. For the microscopic
model (1.1) with J"=0 and lattice constant a, these pa-
rameters are just p, =JS a "andy& =6 /4d Ja in the
limit 5 ~. These parameters are defined on a short-
wavelength microscopic scale. We shall see later that
within our scheme it is possible to fix p, and g& for arbi-
trary 5 if we know the corresponding observable macro-
scopic parameters which are the long-wavelength proper-
ties of the system at T=O. Instead of working with p,
and g& it is also possible to work with a dimensionless pa-
rameter go and one dimensional parameter, such as the
spin-wave velocity c.

Given the eA'ective-field theory described by the
QNLoM, it is straightforward to derive one-loop
renormalization-group equations to analyze the model.
We combine the methods developed by Hertz and
Young ' for related quantum spin models with the
momentum shell recursion techniques developed by Nel-
son and Pelcovits for the classical version of the same
model. The renormalization group leads directly to the
correlation length as a function of temperature. Although
the system is disordered at any TWO, one can identify
three separate regions in the parameter space on the basis
of the behavior of the correlation length as a function of
temperature. In the region of greatest experimental in-
terest, which we designate as the renormalized classical
regime, one can do better than a one-loop calculation of
the correlation length. It is possible to exploit the avail-
able computer simulations for the classical lattice rotator
model (CLRM) and the two-loop renormalization-group
equations to compute the correlation length for our prob-
lem. The resulting expression for the correlation length
contains no adjustable parameters. In this renormalized
classical regime, comparison with the CLRM yields also a
number of other useful results pertaining to the dynamics
of the system.

Aside from the principal purposes described above we
have a secondary purpose. We would also like to explore
the low-temperature behavior of the QNLoM in the re-

gimes for which the T=O state has no LRO. As was
mentioned earlier, such regimes might be achieved by in-
troducing frustrating next-nearest-neighbor interactions,
or by introducing several spins per unit cell. This analysis
can also be carried out with the help of the
renormalization-group equations.

In the quantum disordered phase of the nonlinear o.

model, at T =0, one finds that the elementary excitations
are bosons, with a gap in the energy spectrum. The gap
vanishes only at the critical value of the coupling constant
where the transition to Neel order occurs.

Several comments are in order. The first concerns the
validity of the QNLcrM approach. QNLaM is the sim-
plest continuum model with the correct spin-wave spec-
trum at long wavelengths. However, for the theory to be
nontrivial it must also include correctly the interaction be-
tween spin waves. We shall argue later that the interac-
tions between spin waves at long wavelengths are entirely
determined by the symmetries of the model, and are
therefore correctly described by the QNLoM. A micro-
scopic derivation, starting from the lattice Heisenberg
model, of the QNLaM in the S ~ (semiclassical) limit
was first given by Haldane, and later by AfBeck. As
was recognized by these authors, it is difficult to continue
this mapping to smaller values of 5: Even if the form of
the Lagrangian is correct, it is dificult to obtain
sufficiently accurate values for the parameters of the mod-
el from large-S considerations. Moreover, these parame-
ters depend sensitively on the precise manner in which the
continuum limit is taken. As explained earlier, we cir-
cumvent this difficulty by considering the coupling con-
stants as phenomenological input parameters to be deter-
mined from experiments. Thus, it seems reasonable to as-
sert that the long-wavelength, low-energy physics of the
QNLcrM are identical to those of the lattice quantum
Heisenberg model.

There is one remaining point that deserves more careful
attention. Our QNLaM does not distinguish between in-
teger and half-integer spins. It has been argued that one
may need, in addition, certain topological terms in order
to distinguish between integer and half-integer spins. For
the (1+1)-dimensional model this almost certainly seems
to be the case as was first pointed out by Haldane. In
fact, the "Haldane conjecture" that the excitation spec-
trum is gapless for spin chains with half integer spins, but
the spectrum should have an energy gap for integer spins,
appears to have received considerable numerical sup-
port.

The situation may be quite diA'erent for (2+ 1)-
dimensional models. Based on an extension of a theorem
due to Lieb, Schultz, and Mattis valid for an S= 2 an-
tiferromagnetic periodic chain of length I., Aleck has
argued that integer and half-integer spin systems may
behave diA'erently even in two dimensions. Also, on the
basis of the local SU(2) symmetry of the Heisenberg
model, Zou claims to have shown that the spin- & sys-
tem, in the continuum limit, reduces to a problem of mass-
less fermions coupled to SU(2) gauge field in (2+1) di-
mensions. Recently, Dzyaloshinskii, Polyakov, and Wieg-
mann ' have conjectured that a (2+1)-dimensional field
theory that correctly represents spin-S antiferromagnets
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2ttp, lk~ Tj=C~ae (1.4)

Here, a is the lattice spacing and p, is the actual spin
stiA'ness constant at T =0, i.e., with the quantum Auctua-
tions taken into account. A two-loop classical correction
to the exponential temperature dependence, proportional
to T, combines with a quantum-mechanical correction
factor, proportional to T ', to give the temperature-

must contain in addition to our QNLoM a Hopf term,
i.e., the action must contain an additional term @OH
where 8=2nS(mod2n). Such a term, if present, can in
principle distinguish between integer and half-integer
spins; the situation would be analogous to the topological
8 term in the corresponding (1+1)-dimensional model.
Subsequently, careful analysis of the spin-5 Heisenberg
antiferromagnet on a two-dimensional square lattice has
led a number of authors to conclude that to the extent
that the unit vector field Q(x,y, t) characterizing the con-
tinuum field theory is well defined (continuous) at all
points no such Hopf ter)n exists Ten. tatively, one might
therefore conclude that our QNLoM does correctly repre-
sent the continuum limit of the two-dimensional spin-S
Heisenberg antiferromagnet on a square lattice. Howev-
er, Haldane has argued that once the assumption that
Q (x,y, t) is everywhere well defined is relaxed, it is possi-
ble that an intrinsic dependence on the quantized value of
5 will appear through the creation of hedgehog singulari-
ties. Haldane's analysis suggests a diA'erence between
even and odd integer spins as well as between integer and
half integer, and the QNLoM gives a correct description
of the quantum disordered phase at T =0 only for the case
of even integer spin. (This conclusion is also supported by
a recent analysis by Read and Sachdev. ) Nevertheless,
it seems Uery unlikely that taking these additional topo-
logical sects into account would change our conclusions
for the low-temperature behavior in the parameter region
where there is ¹elorder at T =0. In the ordered phase
the topological defects are massive, and, hence, cannot
contribute significantly at low energies and at long wave-
lengths.

We have remarked earlier that there is much that one
can learn from d=2 classical models. We would like to
further elaborate on this point. We shall see that for
gp & 1, the T-0 state has LRO. In this regime there ex-
ists a length (J (the Josephson correlation length) which
tends to infinity as gp~ 1. Physically, gq is a crossover
length which separates, at T =0, the long-wavelength an-
tiferromagnetic magnons from the shorter-wavelength
critical Auctuations important near go = I. However, for
the values of gp of greatest experimental interest (J turns
out to be of the order of a few lattice spacings. We expect
that quantum critical Auctuations will be unimportant for
wave vectors k such that k & (J '. It turns out, moreover,
that the system will behave like a two-dimensional classi-
cal spin system whenever the additional inequality
k & k&T/A, c is obeyed. Both inequalities are satisfied in
the experimentally relevant temperature range in Ref. 5.

We end our introduction by summarizing our most im-
portant results. In the regime in which the T =0 state has
LRO we find that as T 0, the correlation length g is
given by

independent overall prefactor of Eq. (1.4). The constant
Ct is a "nonuniversal" number in the sense that it depends
on the choice of the system. For example, we expect C~
for the nearest-neighbor 2D S= 2 AF to be different
from a model which contains, in addition, next-nearest-
neighbor interactions. However, once the model is
specificed, Ct can be uniquely determined from a micro-
scopic ca'.culation of the zero-temperature properties of
the system. For the 2D S 2 AF we calculate using clas-
sical numerical simulations and T=O spin-wave theory
that C~=0.5. We find that the correlation lengths deter-
mined experimentally for La2Cu04 can be well fit by the
above formula with 2', =1175 K and C~ =1. (The un-
certainty in C~ is much larger than the uncertainty in p, . )
Since the experiments are not necessarily in the asymptot-
ic low-temperature regime where (1.4) is supposed to be
accurate, and since there are also uncertainties in the
theoretical value, we consider the agreement (see Sec. VI)
to be very satisfactory.

For the 2D 5 =
2 AF we can ~rite

2', =Cp (Ac/a), (1.5)

where c is the spin-wave velocity at T=O, and C~ is es-
timated to be 0.576 from spin-wave theory. Thus the
fitted value of p, implies hc =0.66 eV A. This value of Ac
is quite consistent with the light scattering experiments of
Lyons et al. , who obtain Ac =0.74 eVA. It is also con-
sistent with the recent lower bound on Ac given by the
neutron scattering experiments which is hc )0.6 eV A.

Our other important results include the predictions for
the static and the dynamic structure factors. The results
for the dynamic structure factor are derived within the
context of the dynamic scaling hypothesis. We shall use
S(k) and S(k, co) to denote the static and dynamic struc-
ture factor for the order parameter of the nonlinear o.
model or the staggered magnetization of the quantum an-
tiferromagnet, so that k =0 refers to the magnetic struc-
ture factor at the position of the antiferromagnetic Bragg
peak. Then in the parameter regime where the QNLcrM
has Neel order at T =0 we find

S(k =0) ~ T'g', (1.6)

while the characteristic frequency scale Go which deter-
mines the dynamic structure factor is given by

'k T""
happ =const g 'c .

27zps
(1.7)

We believe that it should be possible to test our predic-
tions for the dynamics as the experiments are made more
precise.

Finally, we would like to emphasize that if we assume
that gp~ 1, so that an isolated layer does not have LRQ
at T =0, then it ~ould be necessary to choose an excep-
tionally large value of the interplanar coupling J', compa-
rable to J, in order to account for the actual observed
(—0.5ps) staggered magnetization as T~ 0 in Laq-
Cu04. For go=1, scaling predicts that the staggered
magnetization M at T =0 due to interplanar coupling is
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given by
' (1+g )/(4 —2g )Jl 3 3

M~ J
where g3 is the correlation function exponent for the 3K
Heisenberg model and is approximately 0. A still smaller
value of M is obtained, for a given value of J', if we as-
sume go& l. A large value of J' is inconsistent with the
fact that the observed spin correlations are two dimension-
al for T& T~. Similar inconsistencies arise if one as-
sumes large Ising-like spin anisotropies to account for the
observed staggered magnetization. We believe that it is
quite likely that any alternate description of the quantum
disordered phase will run into the same difficulties in ex-
plaining the observed staggered magnetization as we find
with the QNLo'M for go ~ 1.

Our conclusions are similar to those obtained in several
recent papers. Arovas and Auerbach have introduced
the Schwinger boson mean-field theory as a useful way to
treat a large class of low-dimensional quantum Heisen-
berg models. They find the same exponential temperature
dependence for the static correlation length [Eq. (1.7)],
but their expression for the characteristic frequency Go
controlling the dynamics differs from ours [Eq. (4.17)l by
a factor of the square root of temperature. Grempel has
applied mode coupling theory to the dynamics, using the
static properties as input. " His results for the charac-
teristic order-parameter frequency coo as well as for the
spin-diffusion constant agree with ours.

II. QUANTUM NONLINEAR o MODELS

A. De6nitions

'

The effective Euclidean action of the quantum-
mechanical nonlinear a model may be written in the
form

I' 2
po CPA

Sdr/h, = ' „dr d"x iVQ i'+

(2.1)

where 0 is a three-component vector field which we inter-
pret as the local staggered magnetization. The constraint

~
Q

~

=1 is understood. There is a short-distance cutoff'
A ' for the spatial integrals, but no such intrinsic cutoff'
exists for the imaginary time variable r. The fact that
quantum fiuctuations exist on all (imaginary) time scales
is an intrinsic part of Feynman path integrals"' that we
would like to preserve. Here p, is the bare spin-stiffness
constant which is defined on the scale A ', and co is the
bare spin-wave velocity at the same length scale. Because
we employ a cutoff' procedure which is not Lorentz invari-
ant, the actual spin-wave velocity c which enters the spec-
trum of long-wavelength excitations at T=O may differ
from co by a finite factor. By contrast, in a Lorentz in-
variant model, one has c =co precisely. This equality also
holds in the present model if the calculations are restricted
to one loop accuracy. The combination p, co =@& may
be identified as the local uniform magnetic susceptibility,

2'
f phcoA f

S,alh = J du d"y iVQ i
+

2go 0 + Bu
(2.3)

where the dimensionless coupling constant go is given by

hcoA' '
g=

ps
(2.4)

Now, when p A coA « I, the configurations that dominate
the partition function are such that Q(x, z) is indepen-
dent of r. Otherwise, the term

~
8Q/Bu

~
would be too

large. In this limit we get

OA2 —d

S,tr/6 .- ' d"y
~
&Q

~

', (2.5)
phcoA 0 2k' T

which is precisely the "action" for the extensively studied
classical nonlinear a model. ' When phcoA is not very
small compared to unity, however, the assumption that Q
is independent of r is no longer valid. The dependence of
0 on z then reflects the quantum fluctuations of the sys-
tem.

It is clear from Eq. (2.3) that the action is formally
equivalent to a classical (d+1)-dimensional nonlinear a
model in which one of the dimensions is finite. As T—0,
the thickness in the imaginary time direction goes to
infinity. It is important to note here the distinction be-
tween Heisenberg ferromagnets and antiferromag nets.
Classically, ferromagnets and antiferromagnets have iden-
tical thermodynamic properties. This is no longer true for
quantum statistical mechanics because one cannot
separate statics from the dynamics of the system in this
case. Since ferromagnets and antiferromagnets differ
with respect to their dynamical properties, their thermo-
dynamic properties calculated according to quantum sta-
tistical mechanics would also be very different. We shall
see later that Eq. (2.3) embodies the dynamics of a
Heisenberg antiferromagnet rather than a ferromagnet.
On the other hand, in the classical limit where Eq. (2.5)
applies, the model is equally applicable to ferromagnets or
antiferromagnets.

The action given in Eq. (2.1) was first derived by Hal-
dane in the large-S limit, starting from the microscopic
nearest-neighbor antiferromagnetic Heisenberg model for
the (1+1)-dimensional case. It was also remarked by

in the direction perpendicular to the local staggered mag-
netization (in units where gpii/h =1). The partition
function Z for this -model is then given by [with
Q(Pn) = Q(0)]

Z~„Z)Q(x, r)a(~ Q
~

—1)e "". (2.2)

Instead of determining p, and co from the large S limit 5

[where p, =JS a and co=241JSa/6 for Eq. (1.1)
with J"=0] we take them as phenomenological input pa-
rameters. Later we shall show how to determine these pa-
rameters from the experimentally observed macroscopic
parameters.

It is instructive to note how the classical limit of this
model is approached at high temperatures. Let us first
rewrite Eq. (2.1) in a dimensionless form by defining

y =Ax and u =Aco~. Then we can write
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him that the derivation of an equivalence between the
low-energy dynamics of the large-spin Heisenberg antifer-
romagnet and the O(3) nonlinear o model is independent
of dimension. Indeed, he gave the definition of the cou-
pling constant go to be (S ~)

2'
go = (2.6)

Haldane also suggested that for smaller values of S it may
be more accurate to replace S by J'S(S+1) in the above
formula. It is also possible to motivate this model by a
direct perturbation theory. Although we have no general
proof, one can check, in the first few orders in perturba-
tion theory, that the two models are identical in so far as
the low-energy, long-wavelength properties are concerned.
The perturbation theory on the quantum spin-S antiferro-
magnetic Heisenberg model can be conveniently carried
out by using Holstein-Primakoff transformation. 3

B. Quantum lattice rotator model

b'p,' pii dQ; + ~0; —Qj~'
26 ~ o i codt &i,j&

(2.7)

where 0; is a unit vector defined on site i of a d-
dimensional hyper-cubic lattice, and the sum P&; j& is tak-
en over all nearest-neighbor bonds on the lattice. The lat-
tice constant b will be chosen small compared to the
"macroscopic" length scales of eventual physical interest,
but need not be simply related to the lattice constant of
the quantum antiferromagnet whose properties we wish to
reproduce. Because the regularization procedure is not
Lorentz invariant, the spin-wave velocity can be renormal-
ized by the quantum Auctuations, and the constant co may
not be exactly the same as the spin-wave velocity c at long
wavelengths at T=O. Equation (2.7) is equivalent. to a

Our justification of the QNLaM will proceed by exam-
ining the long-wavelength, low-frequency properties pre-
dicted by a hydrodynamic analysis of the quantum non-
linear o model, and comparing these with the hydro-
dynamics of the Heisenberg antiferromagnets. %'e shall
see that for all regimes where the long-wavelength proper-
ties of the Heisenberg antiferromagnet have been previ-
ously studied, the dynamic properties are the sarge as for
quantum nonlinear a model, with the exception of the spe-
cial case of half-integer spins in one dimension at T=O.
This gives some support to our use of the QNL&rM in the
region of true interest to us, where results for the Heisen-
berg antifer rom agnet have not been previously
available —viz. the regime of low but firiite temperatures
at d =2.

In order to make the model precise, and to make con-
tact more easily with ideas familiar in condensed-matter
physics, we shall employ a lattice regularization for the
d-space dimensions of the model. Then we may rewrite
Eq. (2.1) as

Lagrangian

b"po ~ dQ;2; codt
+ )O; —0, )'

&ij& b
(2.8)

The hydrodynamics associated with Eq. (2.8) is most
easily worked out using the associated Hamiltonian. Pas-
sage from the Lagrangian to the Hamiltonian is somewhat
subtle, because of' the constraints that the Q; be unit vec-
tors. The Hamiltonian, derived via a limiting procedure
in Appendix 8, is (up to an unimportant constant)

b& '~ [M;[' o~ /O, —0, ['
2 i b g~ &ij& , b

(2.9)

where M;b" is the angular momentum on site i, and g~ is
given by

0 —OI 2gx=pslco . (2.10)

If 0; is interpreted as the orientation of a rodlike rotator
on lattice site i, the quantity g&b may be interpreted as
its moment of inertia. The angular momentum density
M; is related to d 0;/dt by

(2.11)

We shall refer to the model described b'y Eqs. (2.7)-
(2.11) as the quantum lattice rotator model (QLRM).

The classical equation of motion for M; derived from
(2.8) or from (2.9) is

Q, xg(0, —0 ), (2.12)

where gj is the sum over the sites that are nearest neigh-
bors to i. Equations (2.11) and (2.12), together with the
constraints ( 0; ~ 1, determine the classical time depen-
dence of the unit vectors 0;. Note that 0; M; is con-
served by the equation of motion (2.12), while the
definition (2.11) assures that 0; M; =0, for every site of
the lattice.

The Hamiltonian formulation of quantum mechanics
requires that H be interpreted as an operator in the Hil-
bert space X ([S2] ), where JV is the number of sites on
the lattice, and S2 is the unit sphere swept out by 0;.
Quantization is carried out by the usual identification

(2.13)

commutes with the Hamiltonian, and, hence, it is a con-
stant of the motion.

If Q; is treated as a classical variable, then the ground
state of the system has M; 0, and 0; =0, independent

The time evolution determined by the Hamiltonian (2.9)
is now precisely the same as the path-integral formulation
using the Lagrangian (2.8), and the equilibrium density
matrix ~ =Z 'e ~ gives the same correlation functions
as the path-integral approach using the eA'ective action
(2.7). We note also that the total angular momentum

(2.14)
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gp=const ncpb' "/p,p (2. i5)

is sufficiently small. This suggests that there is long-range
order in the ground state of an infinite system, with

&Q;& =N(0) Qp, (2.i6)
PL

where Qp is a unit vector in an arbitrary direction, and
N(0) is a number between 0 and 1. For d=l there is
divergence at long wavelengths, so that &Q;) =0, for any
value of gp. We also expect a quantum disordered phase
with &Q;) =0 at T=O for d & 1, if gp is greater than a
critical value g, .

According to the Hohenberg-Mermin-Wagner theo-
rem, ' applied to this model, there can be no long-range
order at finite temperatures, for d ~2. On the other
hand, for d & 2, we expect to find long-range order at
finite temperatures, up to a critical temperature T, of or-
der p, b", provided that gp is in the range where there is
long-range order at T =0. Then for T & T„we have

&Q, &=N(Z ) Q, , (2.i7)

where Qp is an arbitrary unit vector, and N(T), the aver-
age staggered magnetization, is a decreasing function of T
and of gp. The mean value &M) of the total angular
momentum, however, should be 0 in all of the phases con-
sidered above. In the case of the quantum disordered
ground state, which occurs at T =0 for gp & g„ the
ground state is predicted to be rationally invariant, which
means that it is actually an eigenstate of the total angular
momentum with M =0. For gp & g„however, the
ground state (in an infinite system) has spontaneously
broken rotational symmetry, and it is no longer an eigen-
stateof M .

C. Hydrodynamic behavior

1. The ordered state 0 & T & T„d & 2

We wish to predict the long-wavelength behavior of the
quantum lattice rotator model (QLRM) defined above, in
the various regimes of T, d, and gp. To do this we employ
a hydrodynamic theory which is based on the following as-
sumptions.

(a) There exists a characteristic microscopic relaxation
time zz for the system, at the temperature in question,
such that for small deviations from the equilibrium state,
all the microscopic variables in the system will relax in a

of i. Infinitesimal deviations from the fully aligned
ground state are described by a linearized version of the
equations of motion (2.11) and (2.12), which give a linear
spectrum of normal modes, rok =cpk, in the limit k 0,
with two degenerate polarization modes for each value of
k.

When quantum mechanics is included in the analysis,
there will be zero-point fluctuations, and the ground state
will be less than fully aligned. The size of the zero-point
fiuctuations inay be estimated from a harmonic-oscillator
expansion. For dimension d & 1, one finds that the fluc-
tuations &

~ bQ;
~

) are small compared to unity, provided
that the dimensionless parameter

time of order z~ to some quasiequilibrium values which
depend only on the values of the long-wavelength Fourier
components of a small number of slow "hydrodynamic
variables. " Typically, the hydrodynamic variables are the
densities of conserved quantities, and if there is a broken
continuous symmetry in the system, a set of variables that
describe fiuctuations in the orientation of the order pa-
rameter. In the present case, the conserved variables are
the density of angular momentum, which we denote m(r),
and the energy density, which we denote e(r). In the or-
dered phase of the QLRM we define an order-parameter
density n(r) as the expectation value &Q;), for the none-
quilibrium state, averaged over some region of linear size
l, centered about the point r. The length scale l should be
chosen larger than any characteristic length scale for
equilibrium fluctuations in the order parameter, e.g. , the
correlation length. Then we define a local orientation of
the order parameter by the unit vector,

Q(r) =
f
n(r) /

(2.is)

Of course, the magnitude ~n(r) ( will be generally less
than l, due to fluctuations on the length scale smaller than
I.

Note that since g; Q; does not commute with the Ham-
iltonian (2.9), the density n(r) is not conserved. Thus, it
is reasonable to assume that a fluctuation in the magni-
tude of n(r) can relax in a microscopic time rR, to its
quasiequilibrium value, even for fluctuations of very long
length scale. On the other hand, if Q(r) is independent of
position, the energy of the equilibrium system is indepen-
dent of the direction of Q, so there is no reason for the
value of Q to relax in this case. Thus, we include Q(r)
among the independent hydrodynamic variables of the
system, although the magnitude

~
n(r)

~
is not taken ex-

plicitly into account.
(b) The second assumption of the hydrodynamic theory

is that for deviations on a length scale that is large com-
pared to a suitably chosen microscopic length l', the time
derivative of the hydrodynamic variables at any point r
can be expanded as a function of -the hydrodynamic vari-
ables and their low-order spatial derivatives at point r. A
similar assumption is made for the expandability of ther-
modynamic functions, such as the entropy density. The
laws of thermodynamics, the requirements of symmetry,
and the commutation relations (or Poisson bracket rela-
tions in the classical limit) among the hydrodynamic vari-
ables then impose severe restrictions on the equations of
motion.

In the present case, symmetry and thermodynamics re-
quire that for small deviations from equilibrium the entro-
py density S(r) may be expanded in the form

S(r) =Sp(e) ——,
' r '[m (g) 'm+p, (T) ~VQ ~'],

(2.i9)

where higher space derivatives have been omitted from
the expression, Sp(e) is the equilibrium entropy density
corresponding to energy density e, when m =VQ =0,
p, (T) is by definition the macroscopic temperature-
dependent stiA'ness constant for fluctuations in the orien-
tation of. the order parameter, and g is the angular-
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momentum susceptibility tensor, whose Cartesian com-
ponents may be written in the form

finds that, for a =y,z,
ma =p, (T)V V', (2.24)

g.p=@&(T)B.p —[g~(T) gi—i(T)1QaQ p. (2.20)

Note that if one were to add to the Hamiltonian (2.9) a
perturbation of the form —8 M, where 8 is a constant
vector chosen perpendicular to the order-parameter direc-
tion Q, then the condition that the entropy be a maximum
for a given value of the total energy

E = e(r)d"r —8 m(r)ddr (2.21)

dictates the linear response

m(r) =@~(T)8. (2.22)

More generally, g,p may be described as the uniform
paramagnetic susceptibility tensor in units where the
gyromagnetic ratio (gpp/6) has value unity. (In gen-
eral, the value of g& is larger than g~~, so that the orienta-
tion of Q perpendicular to B is, in fact, the stable orienta-
tion, giving the largest entropy for given E and 8.) We
note that the absence of a term proportional to I Q in
Eq. (2.19) is a direct consequence of the time-reversal in-
variance of the Hamiltonian (2.9) for the QLRM.

Equation (2.19) has precisely the form which was ob-
tained in Eq. (6.8) of Ref. 42 for the entropy density in
the Heisenberg antiferromagnet, if Q is interpreted as the
orientation of the staggered magnetization. (The absence
of a linear coupling between I and Q in that case was due
to the invariance under translation by one lattice constant,
which interchanges the two sublattices and changes the
sign of the staggered magnetization. ) The commutation
relation between M and Q; for the QLRM also has the
same form as the commutation relation between M and
the staggered magnetization variable in the case of the
Heisenberg antiferromagnet, because the angular momen-
tum M is the generator of rotations in both cases. Then in
direct analogy to Eq. (2.19) of Ref. 42, one can show that
for a constrained equilibrium state where the conserved
quantity M is diA'erent from zero, where there is no exter-
nal field B, where Q is perpendicular to M, and where all
other quantities have relaxed to their quasiequilibrium
values, the order-parameter orientation will precess about
the direction of M at a rate given by

dQ I
dt gi(T)

(2.23)

(This precession rate is also analogous to the Josephson
equation for the rate of change of the phase of the order
parameter of a superAuid or superconductor in equilibri-
um. )

For definiteness let us now consider small deviations
from an equilibrium state with M =0 and Qllg. The un-
known coefficients for the leading terms in the gradient
expansion of the equations of motion are determined by
Eq. (2.23) and the requirement that the total entropy of
the system is a nondecreasing function of time. Repepting
the procedures described in detail in Sec. 2 of Ref. 42, one

(2.25)

where

V'= s,pyQ pVn~. (2.26)

This leads directly to a linear normal-mode spectrum

tok = [p, (T)/g~(T) I 't'k . (2.27)

2. The ordered phase at T 0, d ~ 2

If Eq. (2.19) is evaluated in the limit T 0, with the
requirements that 1 0 at low temperatures and dSo/
d~=T ', we find that

Be(r) = —,
'

p, ( VQ ~'+ —,
' m (g) ' m, (2.28)

where Be(r) is the deviation from the energy density in the
ground state of the system, and p, and g are the stiff'ness
constant and susceptibility tensor at T=O. We see that
energy density e(r) is no longer an independent hydro-
dynamic variable of the system.

In analogy to the assumptions of the hydrodynamic
theory at T~0, we assume that for low-frequency
motions, all other variables in the system follow adiabati-
cally the hydrodynamic variables. Again, we assume that
the energy and the equations of motion can be expanded
in powers of gradients of the hydrodynamic variables, and
we require that the total energy be independent of time.
Again, we make use of Eq. (2.23), which still applies at
T=O, and we find the equations of motion (2.24) and
(2.25) for the components of m(r) and Q(r) perpendicu-

As shown in Ref. 42, higher terms in the gradient ex-
pansion lead to a damping rate proportional to k 2, which
is negligible compared to cok in the limit k~ 0. In addi-
tion to the vibrational modes, which involve the variables
(m~, Q, ) and (m„Q~), the hydrodynamic theory predicts
two diffusive modes, with relaxation rates proportional to
k, for the parallel magnetization m„and for the heat
contribution to the energy density e.

The validity of the assumption of a finite characteristic
relaxation term rtt for the degrees of freedom neglected in
the hydrodynamic theory actually depends on some subtle
aspects of the system. In actuality, there will always be
some degrees of freedom, such as multiple spin-wave exci-
tations in the antiferromagnet, which relax at a very slow
rate in the limit of k 0 (cf. the discussion in Sec. 10 of
Ref. 42). It is necessary to argue that the slow modes
neglected in a hydrodynamic analysis have sufficiently
small phase space, or are weakly enough coupled to the
hydrodynamic modes that they do not affect the results in
the long-wavelength limit. A detailed analysis of the ve-
locity and damping of spin waves in the three-dimensional
Heisenberg antiferromagnet at low temperatures by
Harris, Kumar, Halperin, and Hohenberg has confirm-
ed the validity of the hydrodynamic theory in that case.



2352 CHAKRAVARTY, HALPERIN, AND NELSON 39

lar to the average orientation 00. We expect that p, and
g& are finite at T=O, so that the elementary excitations
again have a linear dispersion, with the zero-temperature
spin-wave velocity c = (p, lg&) 't .

By contrast, in the limit T 0, we expect that
gi(T) 0, for d) 2. The reason for this is that the
ground state of the system is invariant under rotations
about the Qo axis. Thus, in the ground state, the eigen-
value of Ao M is zero, and there is no linear response of
the ground state induced by a magnetic field 8 parallel to
Qo. There do exist low-energy states, containing one or
more spin-wave excitations, which have values of Qo M
different from zero, and there will be a linear response at
finite temperatures from the altered population of these
states in the presence of 8~0. According to a perturba-
tive spin-wave analysis, however, the density of states for
these excitations is small at low energies, for d )2, so that
the contribution to gt(T) should vanish for T 0. In any
case even for d =2, we expect that gt =0, at T =0, so that
it is difficult to produce variations in the component of m
parallel to Q, and this component of m should not be con-
sidered as an independent hydrodynamic variable at
T =0.

A A

(Q;' Qg) —
(d ()t2 exp( re I(), '

rij
(2.29)

where r,z is the distance between sites i and j and g is a
correlation length which depends on the temperature.

For length scales large compared to g, we expect that
hydrodynamics should apply. There are now four hydro-
dynamic variables, s(r) and the three components of
m(r). Each of these variables relaxes by a diffusive pro-
cess, with relaxation rate proportional to k for k 0.
The density of the order parameter n(r) will relax at a
characteristic rate y„which is finite in the limit k 0.
The relaxation is not described exactly by a single ex-
ponential, however, and details of the relaxation are
beyond the scope of a hydrodynamic theory.

The correlation length g diverges as (T —T, ) " for
T~ T„ in d&2. (The exponent vd=0. 70 for d=3. )
For length scales which are shorter than g the hydro-
dynamic theory cannot be used. If k ' is small compared
to g but large compared to the lattice constant or any oth-
er important microscopic length in the problem, the fluc-
tuations in the order-parameter density n(r) or the angu-
lar momentum density m(r) occur on a characteristic fre-
quency scale which can be determined, using the scaling
hypothesis of dynamic critical phenomena in precisely the
same way as for the Heisenberg antiferromagnet. The
result of this theory is

(2.30)

3. The disordered phase, T & T~

We next consider the paramagnetic disordered phase,
which occurs for T & T„ in d & 2, and any T & 0, for
d ~ 2. In this phase, there is a finite isotropic susceptibili-
ty tensor g,tt=@(T)8,tt, and there are only short-range
correlations for the variable Q;, i.e., for large separations
we have

for 2 & d ~ 4. The dynamic scaling analysis predicts also
the temperature dependence of the order-parameter relax-
ation rate y„ in the long-wavelength region k « g

(2.31)

More detailed results for time-dependent correlation func-
tions in various wavelength regimes, for T T„can be
obtained from a renormalization-group analysis. This
analysis, like the dynamic scaling theory, is identical for
the lattice rotator model and for the Heisenberg antifer-
romagnet. (Quantum mechanics plays no role in any of
these analyses. )

In d =2, we find that the correlation length g diverges
exponentially in 1jT, for T 0, if the coupling constant

go is in the range (go & g, ) where the ground state is or-
dered. The hydrodynamic theory for the disordered phase
cannot be applied to the regime of wavelengths shorter
than g, and the dynamic scaling theory developed for
d ) 2 cannot be applied directly either. We shall argue
below, however, that there should be spin-wave-like exci-
tations with a fairly well-defined frequency, in the regime
k))(, with a spin-wave velocity that is shifted some-
what from the T =0 value, by a factor which depends on
T and k. The temperature dependence of the order-
parameter relaxation rate, in the regime k «g, will also
be deduced from a dynamic scaling argument which
matches the results at the scale k=( '. Again, there
will be nothing in our analysis to suggest a difference be-
tween the quantum lattice rotator model and the Heisen-
berg antiferromagnet. By definition, the nonlinear a mod-
el has identical characteristics to the QLRM, with ap-
propriate choice of parameters, since the QLRM is just a
particular regularization of the QNLaM, and the proper-
ties of the QNLoM are supposed to be independent of de-
tails of the regularization.

4. The qttantunt disordered phase (T 0)

The hydrodynamic theory cannot be applied to the
quantum disordered phase, which occurs in the QLRM
for go & g„ in d & 1, and for all values of go at d =1. The
ground state is an eigenstate of M, with M =0, and it is
separated by an energy gap h. from all other states of the
system. Thus, the uniform susceptibility g is zero in the
ground state, and the energy E cannot be expanded in

powers of m.
The existence of an energy gap is easily seen in the limit

where p, =0, in the Hamiltonian (2.9), with g& held fixed
(go=~). Then the ground-state wave function is the
state where M; =0, for every site i. Excited states may be
denoted by ( f1;,m;)), where l; =0, 1,2, . . . and —I; ~ m;
~ l; are the angular momentum quantum numbers of the
ith site. The lowest excited state, which has degeneracy
3JV, is a state where one of the sites is a "triplet, " with
b "MJ 2t'2 for one particular lattice site j, and M~ =0
elsewhere. The energy "gap" associated with this state is
g2( 0

For p, WO (go& ~), the degeneracy of the excited
states is broken, and the energy gap will be diminished. It
is believed, however, that the gap remains open until
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go =g„where the transition to the ordered phase occurs.
The behavior of the system near the point go g, will be
discussed further below.

The nature of the quantum disordered phase of the
Heisenberg antiferromagnet at T =0 is the subject of con-
siderable debate, ' ' as was mentioned earlier in our in-
troduction. Only in the case of d 1 is there general
agreement about the properties of the system. It appears
that for chains with integer spin the ground state of the
antiferromagnet has static and dynamic properties that
coincide with the ones described above for the QLRM, or
the QNLcrM, but this is not the case for —,

' -integer spins.
It is believed that the long-wavelength properties of the
—,
' -integer spin chains are identical to the properties of a

modification of the QNLoM, in which the action is multi-
plied by ( —1)", where n is the topological "skyrmion
number" of space-time configuration. It is known in the
case of spin- —,', and believed to be true for all —,

' -integer
spin chains, that the staggered correlation function
( —1)' J(S; S~) falls off as the inverse of the separation
~i —j~ for large separations, so the system has neither
long-range order nor an energy gap in its ground state.

III. QUANTUM TRANSITION REGION

We now analyze the equilibrium properties of the
QNLcrM using the renormalization-group equations de-
rived in Appendix C. The equations to one-loop order are

This describes a quantum phase transition which has the
critical exponents of a classical (d+ 1)-dimensional
Heisenberg model. For d ~ 2, there are no finite-temp-
erature fixed points, while for d & 2 there is a fixed point
at

t, - (d —2)//Ed (3.3b)

describing a classical finite-temperature d-dimensional or-
dering transition.

The renormalization-group fiows for d & 2 are shown in
Fig. 2(a). When T t 0, the fixed point at g, controls a
transition from the Neel state at small g to a quantum
disordered phase at large g. As discussed earlier, g plays
the role of I/S in Fig. 1. When temperature is reduced for
fixed g & g„ there is a finite-temperature phase transition
along the heavy separatrix controlled by the thermal fixed
point at g 0, t =t, . The shaded region has long-range
Neel order, controlled by the fixed point at the origin. As
d 2+, this thermal fixed point merges with the fixed
point at the origin.

In the remainder of this paper we shall concentrate on
d 2. The renormalization-group fiows are shown for
d 2 in Fig. 2(b), where we have used the definitions
g=g/g, and t =t/2rr. In this case the region of Neel order
collapses to a line at t =0, which terminates at g„where
g, 4ir from the one-loop approximation. For g&g, at
T 0 there is a transition to a disordered phase with a gap

dg (1-d)g+ g'coth(g/2t)
l 2

(3.1a)

dt Kd

dl
=(2 —d)t+ gt coth(g/2t) .

2
(3.1b)

Here, e' is the length rescaling factor, Kd '

=2 'x t I (d/2), and the initial values of the dimen-
sionless coupling constant g(1) and temperature scale t (l)
are go=AcA '/p, and to kttTA" /po. As pointed
out in Appendix C, g/t PkcA is the dimensionless "slab
thickness" of (d+1)-dimensional QNLcrM in the time-
like direction, and obeys the simple recursion relation

9

d(g/t)/dl = g/t . — (3.2)
tc

g, = (d-1) .= 2 (3.3a)

In Sec. V, we shall discuss the two-loop extension of these
equations in the regime in which the T =0 state has LRO.
For the moment we shall use Eqs. (3.1) and (3.2) to dis-
cuss the qualitative nature of the phase diagram.

Note that in the limit T~ 0, Eq. (3.1a) is nothing but
the one-loop recursion relation of the (d+1)-dimensional
nonlinear o model. Similarly in the high-temperature
limit Eq. (3.1b) goes over to the one-loop recursion rela-
tion of the classical d-dimensional nonlinear a model.

The renormalization-group Bows are easy to construct
from Eqs. (3.1). In fact, it is possible to obtain exact
closed-form solutions of these equations for arbitrary di-
mension d using Eq. (3.2). At T =0, there is a nontrivial
fixed point g =g, for d & 1, where g, is given by

9=9/9
d=2

1.0 '

(b)

t = t/27r
FIG. 2. (a) Renormalization-group Aows for the QNLoM for

d )2. (b) Renormalization-group Aows for the QNLcrM for
d ~2.
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in the excitation spectrum, just as for d & 2. Although the
system is disordered at all finite temperatures, we can nev-
ertheless identify three regions separated by crossover
lines. These regions are characterized by the behavior of
the correlation length as a function of temperature.

The correlation length can be calculated from our re-
cursion relations by integrating them until the renormal-
ized correlation length (O) =e 'g equals the lattice con-
stant. For g & 1+t, t (l ) grows faster than g (l ) and it
suffices to choose l* such that t(l ) =2ir. One-loop re-
sults are only weakly dependent on the precise matching
condition. Although this method cannot give correctly the
amplitudes of singular quantities, it does shed consider-
able light on the phase diagram. Using the exact solutions
of Eqs. (3.1) and (3.2) for the case d=2, we obtain for
(=ae',

g
—1 sinh [sinh(gp/r p) exp [—(1 —r p)/r p]] .

ago

(3.4)

The prefactor tp/ago=42//rr(ksT/Ac) is not explicitly
dependent on a. Other choices of the matching condition
would change the coefficient (2/ir) 'i2.

It is easy to show that for the regime 1+t )gp ) 1 —t,
g is asymptotically given by (=const(hc/ksT). At pre-
cisely go =1 we find, within our approximation, that as
T~0,

(3.S)

In fact, this is a far more general result than our method
of derivation suggests. Precisely 'at go =g, the system will
behave like a three-dimensional classical spin system at its
critical point, for length scales less than the effective "slab
thickness" PAc. The order will be broken up by two-
dimensional fiuctuations on larger scales, so we conclude
that for go =g„

klan T
(3.6)

as T~ 0, where C(i is a universal constant of order unity.
When gp & 1 —t it is easy to show from Eq. (3.4) that

the correlation length ultimately diverges exponentially as
T 0. In this regime one finds within the one-loop ap-
proximation that

I~

g = 0.9 exp(2', /kii T),A, c (3.7a)
kgT

which is shown in Appendix C to be the renormalized spin
stiA'ness at T =0 within the one-loop approximation.
Since p, vanishes as gp 1, it is clear that proximity to
the T=O fixed point at g, can greatly reduce the rate of
growth of (. The prefactor hc/ksT in Eq. (3.7a) is the
thermal de Broglie wavelength of the spin waves (divided
by 2x).

Although the result for the preexponential factor ob-

where p, is the actual spin-stiA'ness constant at T =0, re-
normalized by the quantum fiuctuations. We find that

(3.7b)

tained in the one-loop approximation will change when we
consider two-loop corrections in the renormalized classical
regime, the one-loop expression for the correlation length
is nevertheless rather interesting. If one takes the limit
gp/tp 0 in Eq. (3.4), with t«1, one obtains the one-
loop expression for correlation length in the classical 20
nonlinear cr model, which we may write as

g =0.36a exp(2irp, /ka T) . (3.7c)

Qualitatively we learn from Eqs. (3.7) that for the quan-
tum model, g diverges just as it would in the correspond-
ing classical model except for two facts: (a) p, is the re
normalized spin-stiffness constant and contains the effect
of quantum fiuctuations, and (b) the short-wavelength
cutoff' is the thermal de Broglie wavelength hc/ksT rath-
er than a constant times the lattice spacing a.

We now consider the quantum disordered regime
g&1+t In .this regime the solution of Eqs. (3.1) and
(3.2) shows that g(l) grows faster than t(l), and it is
convenient to choose l* such that g(l*) =2; i.e., g(l*)
=2g, . This yields an implicit equation for e' . As to~ 0
(T 0), g is approximately given by the following ex-
pression:

Qgp/2

(gp 1)+tpexp[ —4(gp —I)/tp]
(3.8)

Note that the corrections to the tp =0 value vanish ex-
ponentially fast as tp 0. Thus, we do not expect g to
vary much in this regime as T 0. This exponential
dependence with respect to temperature is the signature of
a gap 5—go 1 in the excitation spectrum for gp & 1.

The overall phase diagram is summarized in Fig. 3.
The central quantum critical region is controlled by the

t = (g/g -1)

QUANTUM V
DISORDERED ~ t (g/g -1)

g g/g
— ~ C

C

(2)

iQUANTUM CRITICAL ]

(&)

:RENOR AL]ZED ~ (1 —g/g )
d+1

CLASSICAL

t = (1-g/gc)NEEL LINE

t = t/2'
FIG. 3. Crossover diagram for the QNLoM at d=2. The

lines marked (1) and (2) are two possible experimental paths for
which the staggered spin-spin correlation length will behave very
differently. As the temperature is lowered along path (2) the
correlation length will become essentially temperature indepen-
dent as it crosses the crossover line. Along path (l) the correla-
tion length will diverge exponentially once it crosses the cross-
over line.
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g~ =p, /c'= lim [AAe '/cg(I)].I~ oo
(3.9)

If one integrates Eq. (3.1a), at T =0, one finds that

g(l ) =4irgpe '/[1 —gii(1 —e ') ] . (3.10)

T =0 fixed point at g, . In this region we have quite gen-
erally g a."Ac/k&T (at low temperatures). The renormal
ized classica/ region is separated from the quantum criti-
cal region by the crossover line g =1 —t. In this regime g
diverges exponentially as T~ 0. The quantum disor
dered region is separated from the quantum critical region
by the crossover line g= I+t. In this regime g becomes
independent of temperature as T 0. Thus, from experi-
ments carried out at finite temperatures it should be possi-
ble to determine the nature of the T =0 state.

The qualitative features of the phase diagram shown in
Fig. 3 transcend the one-loop method described above.
However, there should be quantitative corrections as fol-
lows: The (2+1)-dimensional QNLaM must have a
phase transition to the disordered state at T =0, at some
value g, of the dimensionless coupling constant. The ex-
ponent vd~ i

= v3 should be the same as that of Heisenberg
model in three dimensions which is v3 = 0.7, rather than
the value v3 =1 that one obtains from a one-loop analysis
of the nonlinear sigma model. The Lorentz invariance of
the model at T=O, when an appropriate cutoA' is used,
implies a well-defined excitation spectrum which has the
dispersion relation cok c[k +((T=0) ] '~, in the
quantum disordered state. Thus, there is an energy gap
a =bc&(T =0) ' ~ (gp/g, —1)".

Next, consider the crossover lines shown in Fig. 3. For
gp )g„ the effect of finite temperature will be felt
when one exceeds a crossover temperature T„=A/k e
ee (gp/g, —1) '. For gp & g„we obtain the crossover tem-
perature by first defining, followin~ Josephson, 36 a corre-
lation length (J= (Ac/p, ) '~: ' which separates, at
T=0, the long-wavelength antiferromagnetic magnons
from the shorter-wavelength critical Auctuations impor-
tant near g, . We expect that (J-(1—gp/g, )"' near g„
and obtain a crossover temperature Tx —(1 —gp/g, ) ' by
setting (J equal to the thermal length Ac/k&T = ((g„T).
To one-loop order, c is not renormalized at zero tempera-
ture due to Lorentz invariance. A more accurate calcula-
tion should lead to a finite renormalization of c because of
the non-Lorentz invariance of our cutoff procedure. In ei-
ther case, it is clear that c remains finite even though p,
vanishes at g, . This necessarily implies that the uniform
susceptibility vanishes at the same rate as p, does as
g g, . From the arguments given above one obtains the
crossover lines shown by the dashed curves in Fig. 3 which
differ from the lines obtained from a one-loop approxima-
tion simply because v3 =0.7 instead of 1 as in the one-loop
approximation.

To proceed further within the one-loop approach, we
must determine the coupling constant go. If we choose
gp & 1 and set T =0, then the spin stiffness p, and the
magnetic susceptibility g& approach finite values in the
long-wavelength limit. From the defining relation for g
(see Appendix C), we have then, for d =2,

Hence, from Eq. (3.9), we obtain

1

I+(4~g c/t A)
(3.11)

Thus, in principle, it is possible to obtain go from experi-
mentally measured values of g& and c. To describe an un-
derlying square lattice with lattice constant a when d =2,
one can take Aa equal to J2n. This particular choice con-
serves the area of the Brillouin zone for the antiferromag-
netically ordered state. In our earlier paper we used
spin-wave theory to determine g& and adjusted the spin-
wave velocity c in order to get a fit to the finite-
temperature correlation lengths obtained in the experi-
ment. We chose this particular route because no reliable
experimental value for g& at T=0 is known. Similarly,
from neutron scattering it has not yet been possible to
determine c. Initially, it was estimated from experiments
that Ac~ 0.4 eVA. This bound is now improved to be
hc ~ 0.6 eV A. From light scattering measurements,
however, Lyons et al. estimate hc = 0.74 eVA. Howev-
er, it was also necessary to employ an approximate spin-
wave theory to extract Ac from the light scattering data,
and there are important differences between the observed
line shape and the line shape predicted by the theory. The
details of our determination of gp for La2Cu04 are given
in Sec. VB.

IV. THE CLASSICAL LATTICE O(3) ROTATOR MODEL
AND DYNAMICAL SCALING

Before going further with our discussion of quantum-
mechanical models, it will be helpful to examine the prop-
erties of the lattice rotator model, defined by Eqs. (2.8) or
(2.9) in the classical limit (6 0). We denote this sys-
tem the classical lattice O(3) rotator model (CLRM). As
discussed in Sec. III, this is the correct physical descrip-
tion of quantum antiferromagnets at long wavelengths,
provided g & g, .

Equilibrium properties of the lattice version of the clas-
sical nonlinear cr model have been studied in the past by
Monte Carlo simulations. An alternate approach,
which we believe may be more efficient, is to implement a
molecular-dynamics simulation of the CLRM. In either
case, a classical simulation can handle lattices that are
significantly larger than would be feasible in direct simu-
lations of a quantum antiferromagnet. In Sec. V we shall
employ a renormalization-group analysis to relate the
equilibrium properties of the quantum systems to those of
the CLRM and thereby make predictions for the quantum
system using results of previous Monte Carlo simulations
for the classical model. "

The dynamics of quantum antiferromagnets at long
wavelengths and low frequencies are also described by the
dynamical properties of the. CLRM in the renormalized
classical regime of Fig. 3. After summarizing the known
static properties of the CLRM in this section we shall in-
vestigate the dynamics in the regime of low, but nonzero
temperatures.

Most of the equilibrium properties of the CLRM, such
as the equal-time correlation functions for the order pa-
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rameter (Q;, QJ) may be directly obtained from a lattice
implementation of the classical nonlinear a model, in
which the angular momentum variables M; are omitted
from the description, and averages are taken over the
orientations Q;. The specific heat of this classical non-
linear cr model differs from that of CLRM only by a con-
stant, kjj per lattice site, which arises from the kinetic-
energy term proportional to M;, in the CLRM. Other
thermodynamic functions, such as the free energy, are
likewise related in the two models by a simple transforma-
tion.

g.tj =g'(s, tj (n;.—n;jj)) . (4.1)

The proof is given most easily if we consider the CLRM
via the limiting procedure discussed in Appendix B: the
constraints

~ Q; ~

=I are replaced by a potential energy
V(

~
Q;

~
) which has a steep minimum at

~
Q; [

= I, while
the kinetic-energy term in (2.9) is replaced by
b"g; ~ p; ) /(2@~), where p; is the linear momentum con-

jugate to Q;. Then, using the definition M; = Q; &&p;, we

have

kjjTg, p
=b"g(M;,Mjp)

J

=b cgygcp „g(pjgp „njyn ) . (4.2)
J

Equation (4.1) then follows from the facts that there are
no correlations between the momenta and the coordinates
in thermal equilibrium, and

(p;„p,„)=(k,Tg')b

B. Order-parameter correlation functions

It will be convenient to introduce an order-parameter
normalization factor No, so that the order parameter of
the system is defined to be NjiQ;. (When we apply our re-
sults to the quantum antiferromagnet, Wp will take into
account the reduction in the order at T =0, due to quan-
tum fiuctuations. ) Then we define the order-parameter
correlation functions S(k) and S(k, co) as the Fourier
transforms of expectation values No(o;(t) nz(0)); viz.

S(k) =b4+e '" "jN'(o" o ) (4.3)

S(k, co) =b dtpe 'No(o;(t) o (0))

A. Uniform susceptibility in the classical limit

There are additional equilibrium quantities of the
CLRM that are only indirectly related to the classical
nonlinear o model. For example, the angular momentum
susceptibility tensor g has no direct definition in the non-

linear o model. However, it is easy to show that in the
CLRM, g is directly related to the average of the moment
of inertia tensor on the individual lattice sites, so that

and j and the expectation values are evaluated at a single
time unless explicit time variables are given [when (4.3)
and (4.4) are probed via neutron scattering in quantum
antifeIromagnets, k represents the deviation from the
wave vector of the incipient antiferromagnetic order].

For d 2 and T~O, the order-parameter correlation
function should fall off exponentially at large distances, as
in Eq. (2.29). This implies that the Fourier transform
S(k) has a pair of simple poles on the imaginary axis, at
k=+ig

The temperature dependence of g, for T 0, should be
given correctly by the two-loop renormalization-group
analysis of the classical nonlinear cr model (see further
discussion in Sec. V). This predicts that for T 0 in the
CLRM,

2~/~t p

g-8gb
2x/E p

where to is the dimensionless bare coupling constant

t 0 -ktj T/p,'.

(4.S)

(4.6)

The dimensionless constant 8& cannot be determined by
the two-loop theory, but it can be determined in principle
by fitting the results of a computer simulation to formula
(4.S). This was done by Shenker and Tobochnik and oth-
ers, who found

Bg =0.01, (4.7)

with an estimated uncertainty of order ~30%. The
renormalization-group analysis also predicts

S(k =0) -8 &'t 'N'/(2jt)' (4.8a)

where 8, is another dimensionless constant, which is not
determined by the two-loop renormalization group, but
which may be determined in principle by a computer
simulation. The numerical results of Shenker and Tobo-
chnik imply

0.018
s 2

~

Bg
(4.8b)

We may note, also, that because there is no long-range
order at TWO for d 2, Eq. (4.1) becomes simply

2 p
gajs 3 gJ ~aP ~ (4.9)

I+ —,
' In(1+x )

f(x) =
1+x

(4.10)

A more accurate form for the scaling function f(x) might
introduce a coe%cient of order unity which multiplies the
logarithmic term. In any case, we note that

In Appendix D, we show using a simple momentum
shell renormalization group22 that S(k) assumes the scal-
ing form

S(k) -S(k =0)f(kg),
with

(4.4) f(x) = lnx/x' (4.»)
where r;J is the spatial separation between lattice sites i for large x, so that S(k) for the classical model actually

I
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vanishes as to 0 for kAO, according to

2to&pS(k) =
2

(classical) .
~0- 0

(4.i2a)

For a quantum antiferromagnet, residual zero-point
motion. leads to a nonzero limit as t0~ 0 when

hc/king T & k

li cWo
lim S(k) =
)0-0 kp,

(4.12b)

Although there are not yet dynamic renormalization-
group calculations appropriate to the CLRM in d 2, it is
natural to suppose that S(k, to) satisfies a similar dynamic
scaling hypothesis, which may be expressed as

S(k,~)—mo 'S(k)@(k4,~/~o) (4.i3)

where too is a characteristic frequency for k =0, and @, by
definition, must satisfy

C(xy) y =i, (4.i4)

for any value of x.
We shall argue in the following subsection that the

characteristic frequency coo must have the form
1/2 0

' [/2
to , p,

cop collst
, 2x,

(4.15)

in the limit (g/b) ~. We may choose the constant in
(4.15) to be unity if we wish, since we have not specified
the width of the function @(O,y ). The essential feature of
the argument is that for kg large, we expect moderately
well-defined spin waves whose frequency should be given,
at least approximately by the results of spin-wave hydro-
dynamics in an ordered phase [cf. Eq. (2.27)],

tok = [p, (k)/g~] 't'k, (4.i6)

where p, (k) is the temperature-dependent renormalized
spin stiffness constant on a length scale equal to k ', and

g& is the renormalized angular momentum susceptibility
on the same length scale. Equation (4.15) can then be ob-
tained by setting k = g ', and using the
renormalization-group results, derived in Appendix D,
that p, (k g ') =top, /2m andy&= —', g~.

The precise form of the function @(x,y) is not known
at present. In principle, it may be determined by fitting
Eq. (4.13) to a molecular-dynamics simulation of the
CLRM. The arguments in Sec. IVC, however, will en-
able us to predict the form of @(x,y) for large values of x.

C. Justification for the dynamic scaling hypothesis

In order to justify the dynamic scaling hypothesis for
the CLRM, let us consider first a length scale A, —=be' in
the intermediate range, which satisfies the inequalities
b«A, «g. In this range, the running coupling constant
discussed in Appendix D, t(l):kgT/p, (l), which enters-
the static renormalization-group equations for the classi-
cal nonlinear a model in d 2, is small compared to the

value t(l*) =2m, which occurs at k=g. Therefore the
order-parameter fluctuations in a wave-vector interval

' & k & 2A.
' are not particularly large. If we divide

the lattice into a set of regions of linear size X, and if we
denote the average of the order parameter in the region
about point r at time t by nz(r, t) then the direction of ni
should not differ too much from one cell to the next.

We expect that on the length scale X,, we can use, at
least approximately, the same type of hydrodynamic
analysis as we used in Sec. II to discuss the spin waves in
the ordered phase at finite temperatures, for d & 2. This
means that for k = I/X, there should be well-defined spin-
wave excitations, with a frequency given by

tok = [p, (l)/g (l)]'t'k, (4.i7)

where g~(l) is a locally defined angular-momentum sus-
ceptibility in the direction perpendicular to ni (r). As dis-
cussed above, we would clearly expect that g&(l) is in the
range —', g& ~g&(l) ~@~. In Appendix D, we show that
gJ (k ( to) 3 gJ +constto for small to, so to an ex-
cellent approximation, we can simply set

z~(l)= 3m~ (4.is)

Using the methods of Appendix D, it is easy to show
that p, (l)-top, is only a weak function of kg, for kg» 1,
so that there is a well-defined spin-wave velocity

c(l ) [3p~ (l )/2g (4.19)

fk 1

I+In(kg)
(4.20)

where ~ is an unknown exponent.
The ratio yk/tok will become of order unity as the wave

vector of the spin wave decreases to the vicinity of g
At the same time, as t (l ) becomes larger, the contribution
to the correlation function S(k, to) from multiple spin-

which varies slowly as a function of kg in this regime.
In order for the hydrodynamic theory to apply with the

renormalized spin-stiffness constant p, (l), it is necessary
that the fluctuations responsible for the renormalization of
p, occur on a time scale short compared to cok '. Since
the renormalization of p, comes primarily from fluctua-
tions with wave vector k' large compared to k, the charac-
teristic frequency of these fluctuations will indeed be large
compared to cok.

In so far as the short-wavelength fluctuations can follow
adiabatically the fluctuations on length scale k ', these
fluctuations will not lead to a very large damping of the
spin-wave motion. The dominant damping of the spin
waves with wave vector k will most likely arise from in-
teraction with other spin waves of comparable wave vec-
tor. The dimensionless measure of the coupling to these
spin waves is given by the coupling constant t (l ). Thus, it
seems reasonable to suppose that the ratio of the spin-
wave damping rate yt„ to the frequency tok, should be pro-
portional to some positive power of t(l ). A matching cal-
culation like that in Appendix D gives t (l ) = [1
+ 2 ln(1+k g )] '= I/1nkg for kg»1. Thus, for large
values of kg, we expect

W
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D. Relaxation of the angular momentum density

Because the total angular momentum is conserved, the
angular momentum density m(r) should relax according
to a diffusion law, with relaxation rate D k, for k « (. If
we use the dynamic scaling hypothesis to match this be-
havior onto the characteristic frequency co&-i, at k =g
we find that the diffusion constant D diverges, for T 0,

D T 1/2g/( P ) 1/2 (4.21)

wave excitations becomes significant. Since the short-
wave excitations can still be assumed to follow the motion
adiabatically, the form of S(k, cp) should be determined in
principle by a self-consistent calculation of interacting
spin waves, on the length scale g, with a characteristic fre-
quency that matches onto the spin-wave spectrum (4.18),
for k) g '. When k=g ', we should find a character-
istic frequency co&-i of order c(l)g, with c(l)
=(3kttT/4ttg&)'/. Since the order parameter is not
conserved, the relaxation rate at k =0 should not be very
different from k=( '. Hence, we are led to the result
(4.15) for the characteristic frequency of S(k, ro) at k =0.

In view of the above discussion, we can put the follow-
ing constraint on the dimensionless function +(x,y). For
large values of x,C(xp) should have peaks at the values

y = + ( —,
' ) '/ x(lnx) ', with a width that is smaller than

this by some power of 1/(lnx). (Here we have chosen the
constant on the right-hand side of (4.15), equal to unity. )

The coupling constant t p is determined by

r

ktiT n —2
/, (0)+ '

ln
' +O(T')

kgT 2x kgT

(s.2)

where A ' is the length scale at which tp is defined, and
p, (0) is the spin stiffness at T=0 which is renormalized
from the bare value by quantum Auctuations. We shall
see later that O(T ) term in the square brackets of Eq.
(5.2) does not affect our evaluation of the correlation
length at low temperatures. In the present section we
shall only explicitly consider the case of two spatial di-
mensions.

It is now immediately possible to take over the two-loop
P function calculated by Brezin and Zinn-Justin. It
must, however, be kept in mind that the renormalization-
group equations derived by them are for the renormalized
dimensionless temperature (coupling constant). Their
renormalization-group equations follow from the invari-
ance of the bare theory under a change of the renormal-
ization point (an arbitrary momentum scale which defines
the renormalized theory) holding the bare parameters
fixed. To be consistent with the momentum-shell recur-
sion method employed elsewhere, in the present paper we
shall consider the Aow of the bare coupling constants with
the change of the length scale holding the physical corre-
lation length fixed. Following Creutz ' it is easy to see
that up to two loops, P functions calculated in either way,
are identical. Therefore, the Aow of the bare coupling
constant is given by

V. APPLICATION TO SPIN- 2 ANTIFERROMAGNETS p t2+p t3 (s.3)

A. Correlation length in the renormalized classical regime

In Sec. III we have demonstrated that, at least to one-
loop order, the QNLaM maps onto a classical problem
with a renormalized spin stiffness p, and a short-
wavelength cutoff of order Ac/keT, provided that the
quantum coupling constant gp is less than its critical
value, the temperature T is finite and not too large, and
the length scale is sufficiently large (renormalized classi-
cal regime). It is clear physically that the identification of
the classical model and the QNLaM in the renormalized
classical regime must hold beyond a one-loop calculation,
so it is natural in this regime to exploit all the results
known for the classical model. In particular, we shall, in
the present section, obtain correlation length for our mod-
el by combining a two-loop P-function calculation with
the available numerical simulations for the classical
Heisenberg model on a two-dimensional lattice.

First, given the O(n) QNLaM at finite temperature, we
integrate out all quantum Auctuations to obtain an
effective classical O(n) NLaM. The calculation is explic-
itly carried out in Appendix E. We find that the action for
the effective classical problem is given by ( I

A I
= 1)

lnt(l) =l —l*.
p2t (l ) p

(5.4)

Here l'* is simply an integration constant. The terms
higher order in t, neglected in Eq. (5.4), are of no conse-
quence to the discussion that follows. I* is now deter-
mined by setting l =0 in Eq. (5.4), and recognizing that
t (0)= t p is nothing but the bare coupling constant. Thus

I*= + lntp.
1 3

p2tp p2
(s.s)

where P2=(n —2)/2tt, and P3=(n —2)/(2'), and e' is
the length rescaling factor. For the O(3) symmetric mod-
el, n =3. In fact, the P function for the O(n) symmetric
model, within the minimal subtraction scheme, is known
up to four loops. It is easy to show that P2 and P3 are
universal, i.e., they do not depend on the precise regulari-
zation scheme used. ' This, however, is not true for terms
beyond two loops. The technique that we use below to
calculate the correlation length for our model is well
known in the context of lattice gauge theory. Since it is
less known to condensed-matter physicists, we shall work
it out in detail.

Equation (5.3) can easily be integrated to obtain

] „d'x
I
vo I'.

2tp " (s. l) Since the NLaM in two-space dimensions, described by
Eq. (5.1), has no intrinsic scale, from dimensional



39 TWO-DIMENSIONAL QUANTUM HEISENBERG. . . 2359

analysis, the physical correlation length ( is given by

)P3/PI' &IP~to
tp e (s.6)

From Eqs. (5.11)-(5.13), we get

t p t o'+ [8(A) —8'(A ) ]t p (s.i4)

where C~ is a pure number which cannot be fixed from the
low-temperature (P2tp« 1) renormalization-group equa-
tions (higher loop corrections cannot help in this respect).
It is important to note that C~ depends on the precise reg-
ularization scheme (i.e., the precise cutoff' scheme) used in
defining our field theory. This statement follows trivially
from the fact that the terms beyond two loops are
nonuniversal in the P function. However, once a cutoff
scheme is specified, C& is also uniquely specified. More-
over, C~ is a pure number, and does not depend on the
coupling constant tp. Thus, in order to complete our cal-
culation of the correlation function, we must find a way to
compute C~. We now describe how this is to be done.

First note that one can invert Eq. (5.5) to obtain

or equivalently,

tp tp [8(A) 8'(A)]tp . (5.15)

8(A) - —p21nA+ 2,
8 (A) = —p21nA+A'.

(s.i6)

(s. i7)

Explicit calculations of B's are given below. We therefore
get

t p
= t p

—(A —r4 ') t p . (5.18)

It is not difficult to guess that the general forms of the 8's
are given by [note that A(8/8A)tR =0 must yield the P
function]

—=Pal*+ ln[l*+0(tp)] .1 ~ 3

Ep P2
(s.7)

Now substituting Eq. (5.18) in Eq. (5.10), we get

This is an interesting equation. It is precisely of the form
that a direct loopwise perturbation theory would yield for
the dependence of the bare coupling constant with scale.
To see this more clearly, we rewrite Eq. (5.7) using Eq.
(5.6). Thus,

1 1

[ ( g) ]
p2ln(Cg/Cg)

Simplifying Eq. (5.19) we get

Cf/C
(A' —A)le

(5.19)

(s.20)

—=P2 ln (A&/C~) + In [ln(A&/C~) + 0(tp) ],1 3

fp P2
(5.8)

—,=P21n(A(/C~)+ in[in(A(/C~)+0(tp)] .1 3

P2

From Eqs. (5.8) and (5.9), we obtain

(s.9)

and represents the fact that tp decreases logarithmically
with increasing A. Recall that we are holding g constant.
Most importantly, note that only a one-loop calculation is
necessary to define C~—i.e., the two-loop correction does
not redefine C~. Now imagine that the same calculation is
carried out with a diA'erent regularization scheme. This
would yield instead of Eq. (5.8) the following:

Therefore, one-loop calculations of the finite parts to the
counter term Z~ immediately yield a relation between the
constants C~ and C~. If by some means we can compute

C~ in some regularization scheme, only one-loop calcula-
tions are necessary to determine the constant in any other
regularization scheme.

A more general version of the above conversion is now

easy to obtain. Consider two theories in which not only
the regularization schemes diA'er, but also the scales of
definitions of tp and t p. Let these scales be respectively A
and A'. Then for the correlation length we would get

4 (t )P3tP2 &tP2~o
tp e

A
'

———=p21n(Cg/Cg) .1 1

l'p gp
(s.io)

t

, %Span et ~ P3~P2 i~P2~0 (s.2i)

fp
t~ ZZi

Ep

Zi
(s.i i)

The de6nition of the renormalization factors Zi is the
same as that of Brezin and Zinn-Justin. Later we shall
see that to one-loop order

Z, =i+8(A)t, ,

Z I
= 1+8'(A) tp .

(s.i2)

(s.i3)

The next step in the calculation is to find a relation be-
tween t p and t p. For this we need simply a one-loop per-
turbation theoretic calculation. We need to compute re-
normalized coupling t~ for the bare couplings tp and tp,
and demand ttt be identical (equivalent to holding physi-
cal g fixed), i.e.,

Instead of Eq. (5.10) we would have

ACg———,=p2ln
t p gp A'Cg

(5.22)

Similarly, Eq. (5.18) will be replaced by

tp =tp [(A 2')+P21n(A'/A)]tp .'

This will now lead to the equation

(5.23)

(s.24)

1 ACg=p21n
tp tp[I [(A A')+P2ln(A'/A)]tp] A'Cg
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Once again, we get prefactor. Specializing to the case n =3, we have

(~ -~)/p
C»

(5.25) C mom 6C 2', (p)/ko T

p, (0)
(s.28)

The conversion factor C~/C~ between the lattice regu-
larization scheme and the Pauli-Villars regularization
scheme for O(n) NLoM was given by Parisi. In what
follows we shall work out a closely related conversion fac-
tor. Since t p defined in Eq. (5.2) was obtained by a sharp
momentum cutoff scheme (cf. Appendix E), we need to
calculate the correlation length using the same cutoff pro-
cedure. This cutoff scheme is also consistent with the dis-
cussion in Appendix C, as well as the remainder of the pa-
per. From Eq. (5.6) we immediately get (recall that the P
function up to two loops is universal)

Since n =3, in this case,
r

g =aCgtpe (s.3o)

C»
' is thus left undetermined.

On the other hand, the classical Heisenberg model
(three-component unit vector) on a square lattice provides
O(3) invariant regularization of the O(3) NLoM. In-
stead of Eq. (5.26) we now get (a —= lattice spacing)

CL (t ~ )P3t8f i&Pz&o (s.29)

C IOA1

) P3&Pz i&t)~~o
tp e

A
(s.26)

Note that 2zC» ——8» defined earlier in Sec. IV. Given the
fact that we know C~ we can use Eq. (5.25) to calculate
C» ', i.e., use

where C»
' is a constant specific t p the momentum cutoff

scheme. Substituting for Pi, Pz, and to from Eq. (5.2), we

get

(g morn gE)p=e 2

2mC»
(s.31)

' i/(n —2)
hc kaT

=C» '
ks T p, (0)

2zp, (0)
exp

(n 2)kt) T—
(s.27)

where we have neglected logarithmic corrections in the

To calculate A ' and A we need to compute Z~ ' and
Zi, respectively. Zi was already calculated by Parisi. 54

We give here some details since his paper contains a num-
ber of printing errors.

The one-particle irreducible part I for the lattice model
can be written in one-loop approximation as

I (k,H) =—,Gp '(k)+ QGp(p)+g Gp(p) [2 —cosa(p„+k„) —c s o(pa~+k~)]+H —1, (5.32)
tp p p a

where following Brezin and Zinn-Justin we have introduced a magnetic field 0 as the infrared regulator. The lattice
propagator Gp(p) is given by

(s.33)Gp(p)-
2

z (2 —cosap„—cosap~ ) +H
a

The renormalization factor ZLi is now easy to calculate (our definitions are the same as those of Brezin and Zinn Jus-
tin ), and we get

to
Zi =1 — (n —2)ln

4x
32 + Z j

Ha
(5.34)

where we have used the facts that

t x/a I m/a

Z Gp(p) z „ t, dpx„ t, dpy
P K '"-"

H+ (2 —cosp„a —cost a )2

1 E 1

2x(I+Ha l4) 1+Ha l4

and

1 32
4x Ha 2

(s.3s)

g cosap„Gp(p) = ln
1 32

p 4& Ha 2
—x, H~O. (5.36)

K(x) in Eq. (5.35) is the complete elliptic integral of the first kind.
The one-particle irreducible part in the one-loop approximation for the momentum cutoff model is given by

2
1 (kz+H)+ (n —1)H+kz I d q 1

tp 2 «(2~)' q'+H (s.37)
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A simple calculation then yields

A
(n —2)ln

4z H
(s.39)

The loop integral is now given by

d q 1 1 q
dgu A (2Ã) g +H 2~ 0 g +H

1 Aln, H~ 0. (5 38)
4x H

and

Z, =1+0.158/2S+O(1/2S) (5.48)

O(1/2S) terms in Z» and Z, are expected to be small if
the system is well into the ordered phase at T 0. For
S=

2 we get Z„=0.448, if we ignore the correction terms
in (5.47). It is interesting to compare this value with that
obtained by Lines using random-phase approximation
which is 0.523. Using the relation p, c g~(0), we can
write

From Eqs. (5.34) and (5.39) we get

~mom p
1

~H
'

and

(s.4o)

p, =JS Z, (S)Z„(S)—=JS Z, (S) .

For S = —,
' we get, using (5.47) and (5.48),

p, =0.15J.
Alternately, we can also write

(5.49)

(s.so)

I

A = —
P2

gE'

+ln 32
2(n —2) H

Therefore, we get from Eq. (5.31)
Cmom CL /glen/2(n —2)

' 1/2

(s.41)

(s.42)

2', =Cp, (s.sl)
a

where Cp, =2xSZ„Z,/J8. For S —,', C~ —=0.576. Final-
ly, the expression (5.44) for the correlation length can be
written for the 2D S=

2 AF as

For n =3 2xpg/kg Tj=C~ae (s.s2)
C mom =CL~32en~2

= 27.2C(L . (s.43)

Combining Eqs. (5.28) and (5.43) we get, finally, for our
QNLcrM, in the renormalized classical regime,

g =J32e (2+C~ ) exp . (5.44)
ac 2~p. (o)

2', 0 gT

As mentioned earlier in Sec. IV, 2zC~ ranges between
0.01 and 0.013, with a quoted uncertainty of the order of
30%; the quantities p, (0) and c are the spin-stiffness con-
stant and spin-wave velocity of the quantum antifer-
romagnet at long wavelengths and T =0.

It is to be noted that the uncertainty in the prefactor in
the one-loop approach, as discussed in Sec. III, is now
completely eliminated.

where C~=-o.s and 2np, is given by Eq. (5.51) with
Cp —=0.576.

Equation (4.8) for S(k =0) can now be applied directly
to the quantum antiferromagnet. One obtains

S(k 0) C, 2 s, 4+Ps(k, TkgT

ps
(s.s3)

where

(s.s4)

The results of spin-wave calculations and other analyses of
the S=

2 antiferromagnet give No =0.31, in units
where the fully aligned Neel state would have No= —,'.
[Note that for ksT» J, one has S(k) =3a /4, with our
definitions. ] Combined with our previous estimates this
gives

C, =4.3. (s.ss)

g (o)=,z„(s)
8Ja

(s.4s)

8J~a Z (S)C (s.46)

where the correction factors are given by

Z =1 —0.552/2S+O(1/2S) (s.47)

B. p, and g~ for the two-dimensional S 2 antiferromagnet

We use spin-wave theory to calculate p, (0) (—:p, ) ap-
pearing in Eq. (5.44). We know from the work of Ogu-
chi' that for the spin-S antiferromagnet on a square lat-
tice with lattice constant a and nearest-neighbor exchange
constant J, at T =0,

(s.s6)

in the limit where g~ oo.

The results of Sec. IV for the dynamics of the classical
lattice rotator model can also be applied to the quantum
antiferromagnet. As for the static problem, we identify p,
of the CLRM with the zero-temperature spin stiffness p,
of the antiferromagnet, g4 is identified with the zero tem-
perature g~(0) of the antiferromagnet, and the lattice
constant b is a constant times thermal wavelength
(hc/k~T). Dynamic results which were expressed in
terms of the product (kg), without explicit reference to
other parameters, can of course be carried over directly.

The result (4.15) for the characteristic frequency at
k 0, becomes in the quantum system

&/2

coo- const g 'c
2%ps



2362 CHAKRAVARTY, HALPERIN, AND NELSON 39

The dynamic scaling function @(x,y), which appears in
Eq. (4.13), should be the same for the quantum antifer-
romagnet and the CLRM. Since this function is not
known at present, however, it may be helpful to guess a
simple form, with several adjustable parameters, which
then may be fit to experimental data. One such form, con-
sistent with the dynamic scaling hypothesis, is

r

S(k,~) -S(k) rm + . , (5.57)
N Qk

—l 0 co+ Qk EO

where 0 is chosen to be a constant times coo, independent
of k, and

,= (-', ) '"[1+—,
' in(I+k'g')] '"

(I 2+ $g 2) 1/2

2%ps
(5.58)

where 8 is a second adjustable parameter, introduced to
permit a non-Lorentzian line shape for k =0. A better ap-
proximation would allow the damping 0 to depend on k in
such a manner that the spin-wave width can increase with
increasing k, as discussed in Sec. IV. Note that for large
values of kg, the position of the spin-wave peak ak con-
tains no adjustable parameters, in the limit of small
ksT/2'„assuming that the zero-temperature parame-
ters p, and c are known.

It is possible to compare our results with those obtained
by Manousakis and Salvador from a Monte Carlo simu-
lation of a 5 =

2 nearest-neighbor Heisenberg model on a
square lattice. Since our expression for g should be valid
when 2zp, /kgT)) 1, we compare the results obtained by
them at their lowest temperature T/J =0.4. For this pur-
pose we write Eq. (5.52) as (S= i )

0.94J/Ta — ~e (5.59)

We find for T/J =0.4, g/a =4.9 instead of 13 as found by
them. In spite of the uncertainties in C~, the difference
seems difficult to reconcile. By contrast, at T/J=0. 5 we
get g/a =3.1 which is close to the value 3.4 obtained by
Manousakis and Salvador at that temperature. Thus,
the discrepancy might be explained if they have overes-
timated the increase in g between the temperatures
T/J =0.5 and T/J =0.4.

In principle, one might also compare Eq. (5.53) for
S(k =0) with results from Monte Carlo simulations of
the S=

2 antiferromagnet. However, a serious problem
arises because the value of ke T/2rrp, is only of order —,

' in

these simulations. The renormalization-group analysis
employed by Shenker and Tobochnik suggests that for
moderate temperatures it may be a better approximation
to replace to by tp/(I+to/2rr) in the preexponential fac-
tors of (4.5) and (4.8a). In this spirit, one should then re-
place (5.52) and (5.53) by

2', /I/. ~ T
C~ae

1+ (ke T/2np, )

S k
C,a '(ks T/2rrp, ) 'e

4 . 561[I+(k,T/2~p, )]'
The correction to S(k) is particularly large.

VI. COMPARISON %'ITH KXPKRIMKNTS
IN La2Cu04

The experimental dependence of the correlation length

g obtained in Ref. 4 as a function of temperature is shown
in Fig. 4. The data plotted here are for their "best sam-
ple,

" i.e., the sample with highest Neel temperature
T~ =195 K. In our earlier paper we attempted to fit the
data with the one-loop result given in Sec. III. In this ap-
proach, well within the renormalized classical regime, one
can write

g =0.9 exp(2np, /ks T),hc
gT

(6.1)

where 2', =C~ (Ac/a) with C~ =-0.576 as shown previ-
ously. The preexponential factor in the one-loop approxi-
mation cannot be reliable. Nonetheless, we obtained an
excellent fit with Ac =0.425 eV A.

One of the major emphases of the present paper has
been to show that this preexponential factor in the renor-
malized classical regime can be fixed unambiguously if
one combines classical Monte Carlo simulation results
with the two-loop calculation. This was discussed exten-
sively in Sec. V. None of the uncertainties encountered in
the one-loop approach appear anymore. We now obtain
for g the expression

(=C~a exp(2trp, /ksT), (6.2)

where the lattice constant a is 3.8 A and C~=0.5. The
uncertainties in the classical simulation may lead to as
large as 30% uncertainty in C~. With a better simulation
of the classical problem it may be possible to determine C~
more accurately. Moreover, there may be of the order of
10%-15%uncertainty in the spin-wave approximations at
T =0 that we have used to determine Z~ . This, in turn,
would lead to additional 10%-15% error in C~ as well as
10%-15% error in p, . Furthermore, one must bear in
mind that the, formula (6.2) is valid asymptotically, i.e.,

0.03—

0.02—

0.0 t—

100 200 300 400 500 600
T(K)

FIG. 4. Inverse correlation length ( ' as a function of tem-
perature T. The data are taken from Ref. 4. The solid line is
the fit (/a =A exp(B/T), where A =1, and B =1175 K.
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for 2', /ka T» 1.
The data can be fit very well with the formula (6.2)

with 2', =1175 K and C~=1. This implies Ac =0.66 eV
A using Eq. (5.51). The fit shown in Fig. 4 is nearly iden-
tical to that obtained with the one-loop formula (6.1) and
A, c =0.425 eV A. The value C~ = 1 should be compared to
the theoretical value C~ =0.5 that we obtained in Sec. V.
Given the uncertainties discussed earlier and the uncer-
tainties in the experimental data we find the results to be
extremely reasonable. Note that Ac =0.66 eV A corre-
sponds to J= 1200 K.

The experimental data cannot, however, be fit if we as-
sume that the T =0 state is disordered, as was pointed out
earlier. For example, if go =1 we have argued that, quite
generally, g '=kBT/Cghc, where C~ is a universal
number of the order of unity. From the experimental data
shown in Fig. 3 such a linear temperature dependence of

' passing through the origin can be immediately ruled
out. If our scenario of the quantum disordered phase is
correct it would be even harder to fit the data with gp & l.

It is natural to ask how our theory does with respect to
other known experimental facts. Since we have assumed
the validity of spin-wave theory at T =0 we would predict
a staggered magnetization of 0.6pg per site at T=0. Re-
cent quantum Monte Carlo simulations (see Reger and
Young, and Gross, Sanchez-Velasco, and Siggia in Ref.
9) seem to find a staggered magnetization rather close to
the spin-wave result. Similar conclusions were also
reached by Huse I 1 and Shankar and Murthy. ~ Ex-
perimental results for the staggered magnetization vary.
The largest staggered magnetization observed so far in
La2Cu04 is 0.5pg, while for the sample for which the
correlation length data is shown in Fig. 4, the T =0 stag-
gered magnetization is 0.35pg.

Because the Neel temperature of La2Cu04 is extremely
sensitive to impurities and defects (e.g. , oxygen vacan-
cies), it might be incorrect to ignore the effects of impuri-
ties even in the best samples which have been studied so
far. Quenched impurities become defect rods in the time-
like direction of the QNLoM which destroys the Lorentz
invariance of the model. We expect that at the quantum
transition point there will be new critical exponents dom-
inated by randomness. Recently some progress has been
made in understanding the role of quenched impurities
well into the ordered phase. By means of a
renormalization-group analysis it has been shown that for
small randomness random couplings are irrelevant, but
random fields are relevant for the long-distance properties
of the quantum antiferromagnetic ground state in two di-
mensions.

The experiments also show a transition to three-
dimensional Neel order at TN =195 K, which is quite like-
ly to be triggered by a weak exchange coupling J' between
the Cu02 planes. The transition should occur when
J'(Np/S) (g/a) = kgT~, where Np/S is the reduction in
the T=O staggered magnetization relative to the Neel
value induced by 2D quantum fiuctuations. Using
g(T~) =200a from experiments and (Np/S) =0.36 we
find J' to be 0.015 K as compared to J= 1200 K, i.e.,J'—10 J. A simple mean-field treatment of weakly
coupled planes of quantum spins, as discussed in Appen-

dix F, shows that such a small value of J' has a negligible
effect on our estimates for p„g~, and Np/S at T=O.
Such a small J' has also very little effect on the 2D fluc-
tuations seen above T~. For transitions which are driven
by small interplanar interactions, coupling large two-
dimensionally correlated regions (in the present case the
linear dimension of such a region is of the order of 200a),
the critical region may be expected to be rather narrow.

In contrast, if we had assumed gp ~ 1, so that the iso-
lated layer has Np=O, then it would be necessary to
choose a very large value of J', comparable to J, in order
to account for the actual staggered magnetization ob-
served in La~Cu04. Scaling predicts that Np/S
ce(J'/J) "' "', for gp-1. Here, g3 is the familiar

(&+~,)/( —2~, )

critical exponent for the 30 Heisenberg model. A large
value of J' would be inconsistent with the fact that the ob-
served spin-correlations are two dimensional for T & T~.
Similar inconsistencies arise if one assumes that the ob-
served magnetization is due to perturbations which break
the spin isotropy of the Heisenberg Hamiltonian.

In Sec. IV we have elaborated on our predictions for the
dynamics of the system based on dynamic scaling hy-
pothesis. Presumably, with better experiments it would be
possible to test these predictions. For kg «1, theory pre-
dicts a quasielastic peak of a few meV width at 300 K.
The failure to observe a quasielastic peak in experiments
so far may indicate a disagreement with our theory.

VII. CONCLUSION

Motivated by recent experiments on La2Cu04 we have
examined the low-temperature properties of two-
dimensional quantum antiferromagnets. In what follows,
we briefly summarize the main points which we tried to
make in our paper.

(1) The low-temperature properties of the two-
dimensional S = —,

' nearest-neighbor Heisenberg model
can be well described by the quantum-mechanical non-
linear o model. Such a model is the simplest continuum
model one can think of which has the correct symmetry,
the correct spin-wave spectrum, and the correct interac-
tion between spin waves at long wavelengths. This model
also has a quantum disordered phase which bears some
resemblance to the various hypothetical states that have
been described as RVB states.

(2) It is at least a reasonable hypothesis that the or-
dered phase of the QNLoM has identical properties to the
ordered. phase of 2D S= —,

' AF. It is more questionable,
however, whether the disordered phase is an accurate
description of the disordered phases of quantum antifer-
romagnets (which may exist for 2D antiferromagnets with
frustrating interactions, even if it does not exist for the
nearest-neighbor square lattice case). Indeed, in 1D we
believe that there are differences between the cases of the
integer and the half-integer spin which require at least an
extension of the QNLcrM in the half-integer case. Never-
theless, it seems most worthwhile to explore the conse-
quences of QNLoM as it stands.

(3) Spin-wave calculations and other theoretical work
predict that the system is ordered at T=O. However, at
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finite temperatures there will necessarily be a finite corre-
lation length. These features are shared by the QNLaM
in the appropriate range of coupling constants.

(4) The one-loop approximation should be qualitatively
correct but not quantitative in the quantum regime, which
corresponds to the (4+1)-dimensional classical model.
However, the scaling result that g =Cgh, c/k(3T for go =1,
and the statement that g (Cg A, c/kgT for go & 1, should
be correct even for a proper calculation of the model.

(5) A calculation to two-loop order gives a correct
description of the classical 2D Heisenberg model at low
temperatures. The two-loop correction only affects the
preexponential factor for the correlation length. A similar
correction for the renormalized classical regime was ob-
tained in the present paper. This is the regime of greatest
interest for the actual experiments. The correlation
lengths obtained in neutron scattering can be fit quite well

by our theory with very reasonable choices of spin-wave
velocity and coupling constant. It seems di%cult, howev-
er, to fit the data with this model if the coupling constant
is in the range where there is no order at T =0.

(6) The combination of the large observed correlation
lengths in the temperature-disordered phase of La2Cu04,
and the two dimensionality of the scattering, make it seem
very unlikely that the observed staggered magnetization in
the 3D ordered phase could only be the result of interlayer
coupling or anisotropy.

(7) The evidence so far seems most consistent with the
assumption that the 2D S=

2 nearest-neighbor Heisen-
berg antiferromagnet on a square lattice has order at
T =0.

(8) Based on dynamic scaling hypothesis we have also
made predictions of the dynamics of the system which can
be tested in the future with more precise and refined ex-
periments.
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APPENDIX A: SUBLATTICE MAGNETIZATION OF S
AF ON A SQUARE LATTICE WITH NEXT-NEAREST-
NEIGHBOR ANTIFERROMAGNETIC INTERACTION

Let us rewrite the Hamiltonian (1.1) in the following
form:

(A2)

ff=JQSJ S(+J"g S) S)+J"QS(.S(
&j, && &j,j'& &l, l'&

+ h ( Q S~ + h 2+S(', (A 1)j
where the sites fj,j') C 2 and the sites [l, l'J C 8. h( and
h2 are the magnetic fields acting on the two sublattices.
Introducing Holstein-Primakoff' transformation given by

SJ+ =42Sf~(S)aj, S(+ =J2Sb(+f((S),

Sj=S—aj+aj. , S('= S+b(+b(—,

where f~(S) =(1 —n~/2S)'( [similarly for f((S)], we
now expand &' in powers of 1/S. A straightforward calcu-
lation then leads to an expression for the ground-state en-
ergy. A derivative of the energy with respect h& then
leads to the sublattice magnetization given by (h( 0,
h2 0):

NS 1 1 1(S),= 1+————g2 s 2 1v k ia2 y2
&

yk(1 r„) ' '—
1 &

akrk —
yk

'

k (ak —yk) N k ia2
(A3)

where pressed in terms of the coe%cients

a(J"/J) = 1+ 1 g ak

~ k iak-yk
(A7)

rk and yp are given by

r =& geikb

and

(A5)

yk(I —r, )
( 2 2)3/2

ak rk 'yk
2

I2=-
k iak —y,'

(A8)

(A9)

geik 8 (A6)

Here 8' are nearest-neighbor lattice vectors on the sublat-
tices A or 8; 8 are the nearest-neighbor lattice vectors on
the original square lattice.

As discussed in Sec. I, the expansion (A3) can be ex-

which are tabulated numerically for a variety of values of
J"/J'in Table I.

Numerical evaluation suggests that (S,)~ can be made
to vanish by increasing the ratio (J"/J). The results are
shown in Fig. 1. It does not of course follow that the state
reached by varying J"/J is necessarily a quantum disor-
dered state, e.g. , the state reached may be an antifer-
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TABLE I. a(J"/J), I~(J"/J), and 12(J"/J) as a function of
J" J.

The angular momentum associated with each lattice site is

a(J"/J) I, (J"/J) I2(J''/J)
M; r;xp;. (86)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

0.196
0.212
0.231
0.253
0.282
0.319
0.369
0.441
0.559
0.805

0.581
0.686
0.826
1.02
1.29
1.69
2.36
3.57
6.29

15.9

0.260
0.271
0.283
0.297
0.314
0.334
0.361
0.397
0.451
0.554

romagnet with a vector in the [10] direction rather than
the [11]direction.

Jl

r;=r;Q;

with Lagrangian

X([r;j,[r;j)- —,
' mg

dr;(t)
dt

——,
' K g i r; —

r~ i
—g U(r; ) .

&ij& i

(81)

(82a)

Here, the notation is intended to suggest "particles" with
mass m and displacements [r;j connected by Hookean
springs with spring constant E. Each particle also sits in a
potential well,

U(r) =~[) r i' —1]', (82b)

and we shall ultimately be interested in taking the limit of
large k. When X ~, Eq. (82b) reduces to Eq. (2.8)
with the identifications

m bdpo/ 2 bd 0

bd —2p0

(83a)

(83b)

With constraint of fixed lengths relaxed, we can
proceed in the usual way to define the canonically conju-
gate momentum

APPENDIX B: HAMILTONIAN FORMULATION OF
THE QUANTUM NONLINEAR cr MODEL

To see how Eq. (2.9) follows from (2.8) in detail it will
be useful to first soften the fixed-length constraint and
work with variables of arbitrary length, namely

We now quantize (85), by setting

p,
t Bri'

Just as in treatments of diatomic molecules with separa-
tion r;, ' we can separate the quantum mechanics associ-
ated with (85) into a "vibrational" part, describing the
radial degrees of freedom r;, and a "rotational" part, asso-
ciated with the jQ;j.

To carry out this separation formally, we write the
kinetic-energy terms in (85) as

I p; I'=,'
+p', ,

iM I (88)
r,

where

p, ,
= —h,

2 r;
1 8 8

r r)r; 'Br;

is the radial part of the momentum-squared operator.
When k ~, the spacing between vibrational energy lev-

els associated with p„, and U(r;) becomes large and all r;
will be locked into the lowest harmonic-oscillator level
with negligible fluctuations about ir; =1. In the limit
the Hamiltonian becomes

Me g + —,
' E g i Q; —QJ i +const, (89)

i 2m &i j&

where the constant is due to the energy of the lowest-lying
radial levels. Upon recalling the identifications (83), we
are led immediately to Eq. (2.9).

APPENDIX C: ONE-LOOP RECURSION RELATIONS FOR
QUANTUM-MECHANICAL NONLINEAR cr MODEL

AND THE RENORMALIZKD SPIN STIFFNESS

We follow Nelson and Pelcovits and use moinentum-
shell method to derive the recursion relations. To get a
more general set of recursion relations than that given in
the text, consider S,tr in which we add a magnetic field,
i.e.,

0 A

p& t'"
d - 2+ 1 BQ+2' Jo C

p. (84)
~pg

dr d"x a(x, r)J 0 J (Cl)

and Hamiltonian

e=gp; r; —Z

+ —,
' K g i r; —rj i +Q U(r; ) . (85)

i 2m &i j& i

where we have defined the vector Q=br, aj; ~ is a
(n —1)-component vector. For the O(3) model n 3.
Note that H has the dimension of energy. It is understood
that the space integrals are cut off at short distances by a
wave-vector cutoff A.

The partition function Z is given by
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Z= ~ (, ) n (, )QS['(x, )+ '(, ) —1]e
aJ X, T

fO 1=„n (, )Q-"' v 1 x'—(x, r)
exp

u „~ (~ 8 ir)
dxp d x (8@&) +

2g no 1 —m

r +u fO

exp li dxo d xJl —x

(c2)

where

Acgo= A
Ps

Hi "'"'
h=

6
and

(C3)

(c4)
= (1 —d)g+ —,

' Kd(n —2)g
Jl+h

coth g 41+h
2t

(c»)

where Kd ' =2 'n i I (d/2). If we define h =hg, then
we get from Eqs. (C8)-(Cl 1)

u =PhcA. (cs)

and integrate out x &, thereby generating an effective ac-
tion involving only x&. The q's are then rescaled so that
their range is restored to 0 & q i

~ 1. The x&'s are also
rescaled, by the spin rescaling factor g. The procedure is
identical to that given by Nelson and Pelcovits and we
obtain

u'=ue (cs)

Now xp and I are defined to be dimensionless variables,
and 8„—= (8o, 8i, . . . , 8d) are the derivatives with respect
to these variables, and the wave-vector cutoff in (C2) is
unity.

To proceed further we expand the factors (1 —m )
and 41 —a in Eq. (C2). We then expand x's as

d"k
x(xp, x) = g „„x(co„,k)e'"""'+'"", (C6')

n= —~ 2K

where the Matsubara frequencies co„are 2xn/u(n =0,
~ 1, ~ 2, . . . ). We now break up the x fields as follows:

'x& (co„,q), 0 & i q i & e
x(co„,q):—'

(x)(co.,q), e & iqi &1,

dt =(2 d)r+—, Kd(—n 2)gr—1

VI+
coth Jl+ h

2t

(c14)

=2h+ —,
' Kd(n —3)hg

VI+I
coth jl + li

2t

2

4
(c16)

Because p, defines a correlation length (J in the Neel
phase for g & g, via the Josephson relation

C
J

ps
(c17)

(cl5)
where we have defined t =ksTA" /p, . Note that the di-
mensionless slab thickness in the imaginary time direction
is u =PkcA=g/t, and hence scales trivially as given in
Eq. (C8). If we set H=O we obtain the recursion rela-
tions given in Sec. III.

We can use these recursion relations to calculate the re-
normalized spin stiffness p, at T =0 when d =2 and n =3.
We shall need Eq. (C13) in this limit, which reads

P 2 —(1+2)l u +I=q e loop
go go

(hu)'=g e '[hu+
& hgo(n —1)I|00&] .

(c9)

(clo) p, (gp) =e 'p, lg(l)]. (cls)

and because c is unrenormalized, the spin stiffness satisfies
the simple renormalization-group scaling equation

e 1 (n 1 )Iioop
go

u
(cl 1)

The looP integral I1„p is given by

d"k 1
loop

n = -" (2~) k -+ co„+hgp
d 2 2

The spin rescaling factor g can be easily determined by
noting that hu must scale trivially, i.e., (hu)'=g(hu).
Thus, we get

We shall evaluate this relation by following the T =0 tra-
jectory in the Neel phase in Fig. 2(b) down the g=g/g,
axis until g(l) 0 as l ~. In this limit [analogous to
the S ~ limit in the mi'croscopic model defined by
(1.1)], nonlinear corrections vanish and we can replace
p, [g(l)] on the right-hand side of (C18) by its bare value,

p, [g(l)] =p, (l) =[bc/g(l)]A. In this way we derive Eq.
(3.8b),

p, (gp) = lim e 'p, [g(l)'1(~ oo

Kgu && kd —
1

, dk
Qk +hgo

coth —Jk +hgo
2

(c12)

= A, cA lim [e '/g(l)1(~ oo

0 go
4z

(c19)
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where we have used the solution of Eq. (C16), namely,

goe (c20)g(l) =
(i —e ')go

4x

hw

4 jp,'Z',
(c2i)

z~-z~ &— A, A

4xjp,'g'
(C22)

N««hat h&/ jp, g& =go, and that both p, and g& are
predicted to vanish at g„although their ratio c ps/g~
remains Anite.

Equation (3.9) follows from dividing both sides of Eq.
(C19) by c . Thus, according to the one-loop approxima-
tion, the long-wavelength spin-stiffness p, and the perpen-
dicular susceptibility g~ at T =0 can be written in terms
of their bare values as

gO) = t(i).
2K

(D6b)

Upon using (D2) and integrating the exponential with
n =3, we find

S(k, t.) =e" i—
' 2

S[e'k, to)].

We evaluate the static structure factor on the right-hand
side of (D7) at l =l* to insure that the correlation sum
in Eq. (DS) becomes nonsingular either because g(l)
=e 'g(to) =O(1) or because of a sufficiently large res-
caled wave vector k(l) =ke'. These requirements are
satisfied by choosing I =l* such that

g
—2(t ) 2I +k2 2I

When (D8) is satisfied, we can approximate S[e k,
t(i*)] by

and Pelcovits to finite k and find

1
I

S(k, t 0) =exp 2l — tl (i')dl' S[e'k, t (l )], (D6a)

with

APPENDIX D: RENORMALIZATION-GROUP ANALYSIS
OF THE STATIC PROPERTIES OF THE

CLASSICAL LATTICE ROTATOR MODEL
S[e' k, t(l*)]= (D9)

In this appendix, we shall use the renormalization-
group approach to discuss the static properties of the clas-
sical lattice O(3) rotator model (also called the nonlinear
cr model) in two dimensions. We shall derive an explicit
expression for the static structure factor using the one-
loop approximation, but many of the results will also be
correct more generally in the asymptotic low-temperature
limit, as will be indicated at the end. We shall work with
the classical limit of Eqs. (3.1), and use in particular the
limit of Eq. (3.1b) as g 0 in d =2,

S(k,«) = toe 2t [1 —(tol'/2')]
g-'(i*)+k'(i*) (D10)

When Eq. (D8) is solved for l*, we can use (D4) to put
(D10) into a scaling form, namely

which has the Ornstein-Zernicke form when t(l*)
=O(l), and which gives the correct behavior S[k(l*),
t(!*)]= (tl*) k/(i*) as t(l*)~ 0 for fixed k(l*).
Upon substituting (D9) in (D7) using (D2), we find

dt 1

dl 2x

with solution (t 0 =ke T/p, )

(Di) t 2(2
S(k, to) = f(kg),2'

where

(Dl 1)

t(i) =
i —(t./2~)i

(D2)

The correlation length, measured in units of the lattice
constant b, obeys

f(x) = i+ —,
' ln(i+x')
I+x (Di2)

&(to) =e'&[t(l)], (D3)

and we choose I =I* such that t (I*)=2m insuring that we
are well out of the critical region to~ 0. Assuming for
simplicity that g(t =2') =1, we find the standard result

(( ) (2m/to) —
1 (D4)

We now use a similar matching procedure to calculate

S(k, to)= b"ge '"""&a; n—,&, (DS)

where k is measured in units of b . Here, and in the rest
of this appendix, we set the parameter No=I in Eq.
(4.3). It is straightforward to generalize Eq. (3.13) of

t max

in(i/k)
(D13)

Different choices of matching conditions than (D8)
would give rise to slightly difI'erent scaling functions, al-
though all reasonable choices will have f(x) cL lnx/x for
large x, as in Eq. (4.10). The qualitative behavior of
S(k, to) as a function of temperature is sketched in Fig. 5.
For fixed k (the deviation from the antiferromagnetic
wave vector in a neutron scattering experiment), one ini-

tially has S(k, to) —e "with decreasing to, but eventu-
ally S(k, t 0) rolls over and tends to zero like
S(k, to) = to/k . [In a quantum system, S(k, to) ap-
proaches a ftnite constant at to=0, reliecting the zero-
point fluctuations. ] The maximum in S(k, to) occurs
when kg = 1, i.e., at
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S(s,to}
5(0, to }—to 0

deviation of the perpendicular susceptibility g& from its
isotropic value. From Eq. (4.1) we have

2 0
gap 3 apgi+ ~gap ~

where

~Zap 3 ~ap (tria t1jp)

(D19)

(D20)

is the traceless deviation of the uniform susceptibility
from isotropy. It is sufficient to study Bg„(k,tp), since

yy 2 8P . The scaling behavior of Perturba-
tions like /ig„was also determined in Ref. 22. Using Eqs.
(3.5) and (3.6) of this reference, we find that (for general
n)

bg„(k, to) =exp „' t (l')dl' 8g„[e'k, t (/)]
2~ ~0

' n

a~,.[e'l, t (l)] . (D2i)

and

S(l,t. ")= 27K

in(i/k)k'
(D14)

We can determine the wave-vector-dependent spin
stiffness p, (k, tp) needed to implement the dynamic scal-
ing hypothesis in a very similar way. The
renormalization-group homogeneity relation for the spin
stiA'ness, in d dimensions, is quite generally

p, (k, tp) =e" "p [e'k, t(l)] . (DiS)

When k= g
' and d=2, we can use the l defined by

Eq. (D8) and approximate the right-hand side of (D14)
by kttT/t(/*). If we use Eqs. (D2) and (D4) we find
within one-loop approximation,

j,(k, t.) = g(kg),
kgT
2x

g(x) =[1+—,
' In(1+x )].

(D16a)

(D16b)

In a similar manner, we can discuss the quantity
N(k, tp) =(

~ ni k -i
~
) where ni(r) is the order parameter

at some instant of time averaged over a region of diameter
k centered at point r, as discussed in Sec. IV. Scaling re-
lation for N(k, tp) can be extracted from Eqs. (2.12) and
(2.13) of Ref. 22, and for O(n) models is found to be

N(k, tp) =exp t(l')dl' N[e k, t(l)]
' n —1/2

1 — l N[e k, t(l)] . (D17)
2K,

When /* is given by (D8), with k =g ', W[e' k, t (l*)] is
of order unity and we have using (D4)

N(k g ', tp) —to" (Di8)

Finally, we derive an analogous scaling relation for the

o kBT/

FIG. 5. The qualitative behavior of S(k, tp) as a function of
temperature for classical lattice rotator model.

(D23)

gi(k, T)
0gJ

= —+—1+ ln(l —e ' )
2 1 kaT —Ack/kg T

3 3 2 Traps

3

(D2S)
This ratio increases monotonically from 3 to 1, as
k~ ea. The ratio lies between —', and —,

' provided that
r w 021

hck (D26)
kgT a

Finally, we note that the procedures used in this appen-
dix can be readily generalized to include corrections of
two-loop order and beyond. Although the preexponential
factor in the expression for the correlation length is
modified by the two-loop correction, and the functional
form of the dependence of S(k, tp) on the parameter kg is
not precisely given by Eq. (D12), Eq. (Dl 1) which relates
the temperature dependence of S(k, tp) to the tempera-
ture dependence of g is valid in the limit to~ 0 for any
fixed value of the product kg. Similarly Eq. (D16a) gives
the correct form of p, (k, to) in the limit tp~ 0, and Eq.
(D16b) is correct for kg large, but Eq. (D16b) is only ap-
proximately correct for kg of order unity. Equations
(D18), (D23), and (D24) also remain valid, 'to leading or-
der in t0, for t0~ 0, when corrections to the one-loop
equations are included.

Upon evaluating this expression at l=/*, for to~0 at
any fixed value of the product kg, we find

Bg„(k,tp) cx: tp. (D22)

Thus for n =3, for fixed finite kg, we find

q.p= -', S.p~' [I+O(tp')].
Note that (D18) and (D22) can be combined to give the
general relation

ag„(k,«) ~N(k, «)'""" " (D24)

For the quantum antiferromagnet, the short wavelength
behavior of g,p(k) is obtained more accurately if one
writes l =ln(kgT/Ack) and replaces the sharp cutoff of
the integral in (D21) at l'=0 by a soft cutoff, provided by
the spin-wave Bose occupation factor, as in Sec. V. One
then finds that for k & g
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APPENDIX E: DERIVATION OF EQUATIONS
(5.1) AND (5.2)

~ & (q), to„-o,
n con~q

Ã~ (co„,q), co„&0. (El)

If we can integrate out a& (co„,q), we would have a theory
involving only ~& (q), which no longer contains any quan-
tum fluctuations signified by the nonzero Matsurbara fre-
quencies. Note that in contrast to Appendix C, we do not
break up the q space into shells. Thus, x& (q) contains all
wave vectors q. (As in Appendix C, we define q to be di-

I

In this appendix we show that given our O(n) invariant
QNLoM at any finite temperature t&0, we can integrate
out all quantum fluctuations to obtain an effective O(n)
invariant classical NLoM. The resulting classical prob-
lem is defined by Eqs. (5.1) and (5.2). For our purpose it
will be sufBcient to demonstrate this mapping to one-loop
order.

The calculation described below follows along the same
line as those given in Appendix C. This time we break up
the a field as

n~o" (2n)" k +co„+hgo

The spin rescaling factor g» is given by

1 —
—,
' (n —1 ) (go/u )I t, .

(E4)

(Es)

The remaining notations are the same as that given in Ap-
pendix C. At first sight the appearance of spin rescaling
factor g» may seem unnatural. One should, however,
note that by integrating out all quantum fluctuations we
have reduced the value of the magnetization. g» is noth-
ing but the reduction factor. To see this more explicitly
let us calculate (o) to one-loop order:

mensionless, and confined to the range 0~q &1.) In-
tegration of ir& (co„,q) is carried out in one-loop approxi-
mation and yields [cf. Eqs. (C9) and (C10)]

IP

I

+I,i, (E2)
go go

(hu)'=g, 'p, [hu+ —,
'

hgo(n —1)1»l . (E3)

The calculation is identical to that in Appendix C. Here

(n &
=

&Jl —~'(x, z)) = 1 ——,
' g (x'(k, to ))-1—go n —1 "dk 1

u 2 pg" (2~) k +co +hgo

go go d"k 1=1 — (n —1)I» = (n —1)
2u (2n)" k +hgo

(n —1)1»go
2u

go ( 1)
~ d k 1

2u ~ (2~) k /hg
(E6)

(E7)

and

The last line in Eq. (E6) is correct to one-loop order,
which is what we are considering here.

Combining Eqs. (E2) and (E5), and Eqs. (E3) and
(E5) we get, respectively,

= " —(n —2)I»,
go go

I

To one-loop order we, therefore, have Eqs. (5.1) and
(5.2). Here p, (0) is the one-loop renormalization of the
spin stiffness at T 0 due to quantum fluctuations [cf. Eq.
(C21)]. Explicitly, as in Eq. (C21), we get

p, (0)-p, 1 —(n —2)o AcA (El 1)4',o

For n 3, we get the same result as that in Eq. (C21).

(hu)' hu 1 — (n —1)I,t,
2u

(Eg)

+ ln
1 —exp[ —[u Jhgo+ (u/ jhgo) l]

1 —exp( —u jhgo)

1+hgo
ln

2n hgo
(E9)

In the limit that the magnetic field (infrared regulator in
this case) goes to zero, we get

r

u

go

(n —2) king T
p, 0+ ln (El0)

%'e are now going to concentrate on the problem in two
spatial dimensions. For I» one obtains

u k
IEA

= dIc
Jk'+hg,

APPENDIX F: MEAN-FIELD MODEL OF
INTERPLANAR COUPLINGS AT T 0

In this appendix we show how to solve a generalization
of the quantum nonlinear cr model (2.3) in which an
infinite number of 2d planes are coupled together with
nearest-neighbor interplanar coupling J'. A discretized
version of the model will be solved at T=0 in the mean-
field approximation. In general, corrections to the mean-
field results will be small, because the equivalent classical
system is three dimensional when J'=0 and four dimen-
sional when J'&0. We shall see that, unless the couplings
are adjusted to place g very close to g„ there will be negli-
gible corrections to the staggered magnetization of an iso-
lated 2d layer for 0 & J'/J &( 1.

Our starting point is a stack of 2d quantum antifer-
romagnets, each described by an eff'ective action like Eq.
(2.3) with P ~. If Qt(y, u) is the order parameter of
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the 1th layer, the total effective action is
r 2

8 11t (u, y)~ ff/ft =2 tju d'y
I &11i(u, y) I'+

2gp u
+J'nt (u, y) O(+ i(u, y ) (Fl)

We regularize (F1) by replacing the continuous variables
(u, y) by a (1+2) dimensional cubic lattice of sites [r;J
with lattice constant b. The resulting model is, up to an
unimportant constant,

I

tion is readily found to be

W = coth —1+ J'b 1V
6b go

gp 3

$ 3
A AS,tr/ft — g g at(r;) Ot(r, )

gp I (ij)
+J'QQQ((r;) nt+i(r;).

n i
(F2)

6b [I+(gp/3) J'b 1N
(FS)

If %p(gp) is the solution of this equation when J' =0, the
solution for J'&0 is

&.1r/ft gg nt(r;) ht(r;),
gp I i

where the local field is

(F3)

The mean-field approximation amounts to the replace-
ment

N=Np gp 1+ J'b
3

go J'b ' dlV'o(go)
=Np gp

3 dgp J' =0
ht(r, ) = [6+2gpJ'b -'l&Ot (r, )&:—[6+2gpJ'b ]N. (F4)

The self-consistent equation for the staggered magnetiza-

The derivative dNp/dgp only becomes large very close to
the three-dimensional critical point. Away from this
singularity the corrections to Np(gp) will be of order J'/J
times a constant of order unity.
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