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Cyclic four-spin exchange on a two-dimensional square lattice: Possible applications
in high-T, superconductors
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In the planar Cu02 square lattice of new superconductors, the small energy diQ'erence of con-
ducting holes between Cu and 0 sites, compared to the relatively large on-site energy for double
occupancy, might favor cyclic four-hole exchange via intermediate 0 sites rather than superex-
change processes, as in solid He. The properties of the four-spin exchange and Heisenberg
Hamiltonians are compared in two dimensions through exact diagonalization on small clusters up
to 18 spins. Four-spin exchange could explain the large inelasticity observed in neutron and two-

magnon Raman spectroscopy, and resolve some discrepancies between exchange frequencies de-
duced from Raman and susceptibility data.

The presence of two-dimensional (2D) conducting
Cu02 planes with a square lattice of copper atoms con-
nected through oxygen is essential for the physics of
copper-based high-T, superconductors. ' The most com-
mon current picture is a Hubbard Hamiltonian on the Cu
sites with transfer energy t c„c„and on-site repulsion Uc„.
However, for some transition-metal oxides, the energy
difference s=s~ —sd for a hole occupying a metal or an
oxygen site is small compared to the energy U for double-
hole occupancy. It is particularly weak in copper oxides
(e-0.4 eV compared to U-8-10 eV from experiments')
and the role played by intermediate 0 sites must be taken
more precisely into account. The more realistic extended
Hubbard Hamiltonian proposed in Ref. 2 has been recent-
ly applied to new superconductors:3

e =ps.n;.+ t g c;t~,.+ Vg g n;.n,.+QU.n; in;, , (1)

where c;t, c;, and n; represent, respectively, the creation,
annihilation, and number operators for holes on Cu or 0
sites. The e are on-site energies for single-hole occupan-
cy, depending on the 0(a =p) or Cu(a =d) site. t is the
hopping frequency. The U, are on-site energies for double
occupancy of holes. V is the Coulomb repulsion between
first-neighbor holes.

This Hamiltonian includes fundamental correlations in-
volving intermediate 0 sites that are neglected in the sim-
ple Hubbard model. In particular, in the large-U limit,
exchange processes between holes should be very similar
to those occurring in hard-core quantum fiuids. The
large-U energies prevent two holes from crossing on the
same site as shown in Fig. 1(a); but four holes can ex-
change cyclically through eight successive hops via inter-
mediate 0 sites [Fig. 1(b)], involving lower potential bar-
riers (V—1 to 2 eV, s—0.4 eV).

The possibility of "ring exchange" between fermions
was put forward some time ago and was substantiated re-
cently in solid He. Cyclic four- and three-particle ex-

changes account for all unusual magnetic properties of the
bcc solid. Delrieu, Roger, and Hetherington have also
predicted, from simple steric arguments, dominant three-
spin exchange in compact triangular geometries (3D hcp
3He or 2D triangular lattice), leading to ferromagnetism.
This has been confirmed experimentally in the hcp solid
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FIG. l. (a) Pair exchange of two holes on Cu sites via double
occupation of an intermediate 0 site (energy U). (b) Cyclic
permutation of four holes on Cu sites via eight hops involving

single occupation of 0 sites (double occupation forbidden by
U ~). (c) Pair exchange of two holes with U~ cx. (d) Two
isolated interstitial holes cost an energy 2(2V+ e), they can bind
as shown on the right, with a shift of a neighboring Cu hole; the
energy gain is 4 V+ 2e —(3V+ 3e) =V —e.
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(2)

with

(note that most current theories expected Heisenberg an-
tiferromagnetism). These predictions for the 2D triangu-
lar solid are consistent with recent observations of 2D fer-
romagnetism in two He solid layers adsorbed on grafoil.
This model also predicts ferromagnetism in the 2D
Wigner solid near melting; this remains to be tested ex-
perimentally.

We prove that with one hole per Cu site and in the large
U, limit Eq. (1) reduces to an effective spin-exchange
model with dominant four-spin cyclic permutations.
From exact diagonalization on small (up to 18 spins) clus-
ters, we compare some physical properties of this model to
that of a Heisenberg Hamiltonian. We show that there is
an ordinary two-sublattice antiferromagnetic (AF) order
at T=0 which does not correspond to the molecular-field
(MF) expectation and presents more ffuctuations than a
Heisenberg model. We prove that the widths of the exper-
imental two-magnon Raman spectra, which are consider-
ably larger than those expected for a Heisenberg Hamil-
tonian, are consistent with four-spin exchange. We deter-
mine the susceptibility g(T) and find better agreement
with experimental data compared to the predictions of a
2D Heisenberg model for both La2Cu04 and YBa2Cu30s
compounds. From the comparison of g(T) for both mod-
els to experimental data for isostructural compounds, we
argue that four-spin exchange could also occur in some Ni
oxides.

By doping, additional holes are introduced on the 0
sites (the Cus+ configuration is forbidden by the large U
and 0 is more likely) and the system becomes a delocal-
ized Fermi liquid. If the eA'ective screened Coulomb
repulsion between holes is short range, we prove that two
interstitial holes could bind together, as shown in Fig.
1(d), to decrease the first-neighbor repulsion. Such a
mechanism, as recently proposed for finite U, ' could
lead to a large effective attraction of order V-1 to 2 eV,
explaining high- T, superconductivity.

To show the new correlations neglected in the simple
Hubbard model with one hole per Cu site, we take
U,/t~ ee in Eq. (1) and use general perturbation in
powers of t/V and t/e(1 to derive an effective spin
Hamiltonian. Since, in this limit, superexchange is
suppressed, spin-exchange terms only appear at eighth or-
der. Figure 1(b) shows eight successive hops via inter-
mediate 0 sites on a square, leading to the cyclic ex-
change of four holes. Two-hole exchange can also occur
at the same order through eight hops via neighboring 0
sites, as illustrated in Fig. 1(c). The effective exchange
Hamiltonian is
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Pj'and PjkI are two- and four-spin cyclic permutation
operators corresponding to the permutations shown in
Figs. 1(c) and 1(b). They can be expressed as functions
of Pauli spin operators cr; (see Refs. 4 and 6).

J is expected to be one order of magnitude smaller than
EC$Q. For s=0.4 eV, V= 1 .5 eV, t =0.6 eV, we obtain

~ Ksg ~
=0.045 eV =500 K;

~
J

~
=0.0006 eV. For com-

parison, a superexchange process involving four hops and
double occupancy of one 0 site with Un=10 eV [Fig.
1(a)] (Ug„) Uo) would lead to a pair exchange frequen-
cy ~ J„~=4t /Uo(e+ V) =0.014 eV, three times small-
er.

We now compare some properties of a pure four-spin
exchange Hamiltonian [J=O in (2)] with those of a
Heisenberg model on a 20 square lattice. For both mod-
els, we express temperature, energies, and magnetic field
in reduced units T =T/ —8, E = E/k ji—e, H*
= —

y AH/2kjje, with respect to the Curie-Weiss temper-
ature 8 =3K$Q or 6=2J, respectively.

With four-spin exchange only, the zero-field molecu-
lar-field (MF) state has four square sublattices with or-
thogonal magnetizations (t,~, ),~ ) [cf. Fig. 2(a)]. In
a magnetic field H,*—0.43, there is a first-order transition
to a two-sublattice strongly canted phase (s, e) [as in
bcc He (Ref. 6)] with a large magnetization
M =Mo(3H*/8) 'js saturating at H* = —', to the max-
imum value Mo. However, at low field, the MF expecta-
tions can be incorrect in 2D. We have determined by the
Lanczos method the exact zero-field ground state for

and
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FIG. 2. (a) Staggered two-sublattice (M~) and orthogonal
four-sublattice (M~2) square magnetizations in terms of 1/N for
square clusters with N=8, 16, 18 spins. (b) Logarithmic plots
of M&, & for w =1, 2, 3, . . . rows of four-spin cycles in terms of
the row length 1. For each w, an exponent k is deduced from
the straight lines for M~2, ~ —N k; (c) k is plotted in terms of
1/w. For M~, k extrapolates to a finite value and there is no
long-range order. For M~, although less precise, the results in-
dicate possible long-range order (k 0 as w ~).
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small systems of N=4 to 20 particles. For a general AF
phase, with n sublattices Ax, the order parameter is"'

' 2 1/2

3 +A, z

A, jGA~

where cr represents Pauli spin- —,
' matrices and

exp( —
—,
'

iai, crJ) are rotation operators which, at
each site, place the local z axis parallel to the MF spin
direction. For ordinary AF order (t, f ) with two alternate
sublattices A ~, A2, we obtain the usual staggered magneti-
zation M~ with a~ =0 and a2 =x. For the four-sublattice
phase (t, , J, ), we take a~ =0, a2=x/2, a3 x,
a4 3z/2, and we call M~ the corresponding order pa-
rameter. Two methods were used to obtain information
about these correlations for N~ ~. Figure 2(a) shows
plots of M~ and M~, in terms of 1/N, for N=4, 8,. 16, 18
spin clusters with periodic boundary conditions as chosen
in Ref. 13. The orthogonal magnetization M& corre-
sponding to the MF state extrapolates to zero at %
whereas the staggered magnetization tends to a finite
value M~ -0.45+ 0.05. We also applied the method pro-
posed in Ref. 12, replacing the "railroad-trestle" lattices
by successive rows of four-. spin cycles, with free boun-
daries. Figure 2(b) shows plots of M~ and M& as a func-
tion of the lattice length for different widths (1,2, 3,4, . . .
ranges). For each width an exponent k is deduced for M~
or M~ —N k. For both kinds of order, k is plotted in

Fig. 2(c) in terms of the inverse width. For M~, k extra-
polates to a finite value for N~ ~, proving definitely that
M& is zero for the infinite system. Thus, the MF state is
irrelevant, which is not surprising since (from the same
methods) our estimation of the exact energy
E/N =0.9EsQ is far below the MF value EMF/N
=0.5EsQ. The values of k for M~ are compatible with
k 0 for N ~, leading to long-range order. In con-
clusion, we predict ordinary AF order at T=O with a
value Mz =0.45 ~ 0.05, appreciably lower than that ob-
tained with a Heisenberg Hamiltonian M~ =0.60." Tak-
ing g=2.2 for Cu + in octahedral sites, ' we expect an
order parameter of =0.45gps/2=0. 5ps, in agreement
with neutron diffraction. '

To obtain further information at finite temperature, we
completely diagonalized both Heisenberg and four-spin
Hamiltonians for square clusters of 8, 16, and 18 parti-
cles' with periodic boundary conditions.

A general result is that the density of states is broader
for a four-spin exchange model, with a much larger num-
ber of low-lying excited states. This could explain the im-
portant inelasticity observed in both neutron scattering'
and two-magnon Raman data.

In Fig. 3, we compare for both Hamiltonians the
squared matrix elements of the two-magnon Raman in-
teraction at T=O for a 16-spin cluster and yy geometry as
defined in H~ Cg;~(E~ r";~)(E2 r";J)S; Sz, the sum be-
ing performed on first neighbors.

Only one level contributes significantly to the spectrum
for a Heisenberg Hamiltonian. It is centered around the
peak predicted within the interacting spin-wave approxi-
mation' (dashed curve). This confirms the validity of
spin waves for this model (note that recent Monte Carlo
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man interaction for 16-spin cluster,

~ tio) and
~ pE) represent, re-

spectively, the ground state and excited state of energy E; the
prefactor C in H& has been taken to 1. Energy is normalized to
—e. (a) Heisenberg model: essentially one level is significant;
it is close to the spectrum expected from spin-wave theory (Ref.
16) (dashed line). (b) The broad spectrum obtained with the
four-spin model is compared to the experimental one in

YBa2Cu306 (Ref. 9) in yy geometry.

simulations" agree with the spin-wave prediction within a
few percent for zero-point spin deviation); also the first
5= 1 excited states that we obtain in our diagonalization
for a few values of k agree with the theoretical spin-wave
spectrum: maximum EM at k = (x/a, 0,0) and E
=0.88E~ at k =(x/2a, 0,0) (we expect E~J3/2 from
spin waves).

With a four-spin Hamiltonian, many levels contribute
significantly to the Raman interaction and lead to a much
broader spectrum [Fig. 3(b)]. The experimental spectrum
observed at T=20 K in YBa2Cu306 (Ref. 9) is compared.
Its large width agrees quantitatively with the four-spin ex-
change predictions and is inconsistent with a Heisenberg
model. Similar results which are not reported here are ob-
tained by diagonalization of an 18-spin cluster. From the
frequency corresponding to the maximum of the spec-
trum, which is close to that obtained with a Heisenberg
model, we deduce a Curie-Weiss temperature 6= —1500
K for both YBa2Cu306 and La2Cu04, hence, KsQ= —500 K.

For both Hamiltonians, the inverse susceptibility
g '(T*) for a 16-spin cluster (solid line) is plotted in
Fig. 4. In the high-temperature range T~ (8 ~, these
curves are compared to Pade approximations of high-
temperature series expansions to 4th and 10th order for
two- and four-spin exchange respectively (dashed lines).
All plots are in reduced units g* =g/yew,
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FIG. 4. Inverse susceptibilities for 2D Heisenberg and four-
spin Hamiltonians. T is normalized to —6 and g to the Curie-
Weiss value at —6. Solid lines are from 16-spin cluster diago-
nalization and dashed lines are Pade approximants to high-
temperature series expansion. The dash-dotted line is the
Curie-Weiss law. The arrow shows the T=O susceptibility,
roughly extrapolated from calculations on 8, 16, 18-spin clus-
ters. Experimental data are compared for 2D spin- —,

'

Cu(C5H5NO)6 (BF4)2 (Ref. 20) (&& ) and spin-1 La2Ni04 (Ref.
19) (0) and KzNiF4 (Ref. 20) (&). The cross (+) represents
the susceptibility of La2Cu04 around e/2 =750 K:
@=1.6X 10 emu/mol is taken from Ref. 18, taking into ac-
count a diamagnetic contribution of —10 emu/mol. Inset
shows the magnetization curves M* =M/Mo vs field 0* for
%=16 spins (solid line) and N =18 (dashed line). The dash-
dotted line represents the magnetization expected in the N —~
system, with a erst-order transition to a strongly canted phase
(~, ~) at H,*—O.OS.

gcw =N(gpa/2) '/2k'
~
8

~
representing the Curie-Weiss

value at T = T/ ( e ~
=1. The Curie-Weiss law is repre-

sented by the dash-dotted line. As already observed in bcc
He, four-spin exchange enhances the susceptibility. The

large deviation ( —25%) from Curie-Weiss (CW) law at
T*—1 observed in the 2D Heisenberg model is
suppressed and g (T*) obeys Curie-Weiss law down to—

~~8 ~. At lower temperatures g* further increases up to
@*=1.5 for T*=0.5. In contrast, the 2D Heisenberg
susceptibility presents a broad maximum just below

~
8 (

with g* =0.75; its value at T =0.5 is g* =0.6.
The Raman data give 8= —1500 K within either a

two- or four-spin exchange model. Taking this value, we
expect at T=750 K a susceptibility of g = 1.5gcw=2.2 x 10 emu/mol with four-spin exchange and
@=0.6gcw =0.9 && 10 emu/mol with a Heisenberg
Hamiltonian (we take g =2.2 for Cu + ion). For
La2Cu04, taking into account the diamagnetic suscepti-
bility of the ion core gq;, = —10 emu/mol, ' one should
expect a small negative experimental susceptibility,

g,„~=—0.1 x 10 emu/mol, for a Heisenberg model and
g«„=1.2X10 emu/mol with a four-spin exchange mod-
el; this latter value is in better agreement with experimen-
tal data' around 700 to 800 K. Similar values per Cu +

mole can be deduced in YBa2Cu306 and the same con-
clusion holds. Unfortunately, reliable experimental data
are limited to a narrow temperature range around 500 to
800 K ~

~
8 ~/2 where both compounds are stable and

where g is not perturbed by 3D ordering or paramagnetic
impurities.

We also compare, in Fig. 4, the experimental suscepti-
bility for two AF compounds with lower

~
e

~
which are

isostructural to LazCu04. For La2Ni04 (Ref. 19) (cir-
cles) g is strikingly close to the four-spin exchange predic-
tions. Although spin-1 Ni + has two holes per site, we ex-
pect that small s and strong on-site hole repulsion should
still favor four-particle correlations. We have not calcu-
lated the g curve for spin-1 and four-spin exchange but we
expect the same behavior as observed with spin —,

' (the in-
crease of g with four-spin exchange is already seen in
MF). In contrast KzNiF4 (Ref. 20) (triangles) exhibits
the usual 2D Heisenberg behavior. From relation (2) our
interpretation is straightforward: four-spin exchange
dominates when s is weak (in Cu-O, Ni-O, Ni-S). s is
much larger in halogenures like Ni-F, with stronger ionic
bonding and superexchange would then be predominant.
Note that the exotic phase diagram of NiSz, has been in-
terpreted with four-spin exchange. '

The inset of Fig. 4 shows the magnetization for N=16
and 18 spins at T=O. A first-order transition to a state
with large magnetization M-O. SMO occurs at 0,*—0.25
proving that the MF strongly canted phase ( s, z ) is
relevant at high field. This critical field decreases with N
(H,*=0.46 for N=8), a rough linear extrapolation pre-
dicts H,* of order —0.05 (within a factor of 2) for
N~ ee, corresponding to 100 T in La2Cu04 (8= —1500
K) and -30 T in LazNi04 (e= —500 K). Its experi-
mental observation would be, as in bcc He (Ref. 6) the
best evidence of four-spin exchange interactions. This fer-
romagnetic tendency is characteristic of four-spin ex-
change. (The solution of the four-spin exchange Hamil-
tonian on a N =4 spin cluster gives two degenerate singlet
and triplet ground states; the degeneracy is removed for
N & 4 but states with total spin S~ N/4 remain relative-
ly close to the singlet ground state. )

By doping La2Cu04 with Sr, or going from 06 to 07 in
Y-Ba-Cu-O, additional holes are introduced on 0 sites in
the 2D planes. With infinite U, in order to move, an inter-
stitial has to push away a neighboring hole (like for two-
particle exchange) and this reduces its mobility. Hence,
we expect a Fermi-liquid behavior with TF of the same or-
der as exchange frequencies. '

An isolated interstitial increases the energy by 2V+ c; if
we consider a pair of interstitials they tend to bind togeth-
er as shown in Fig. 1(d) with a repulsive shift of a neigh-
boring Cu hole. Thus, the pair energy is 3V+3e instead
of 2(2V+ c). This strong attraction of order V —s can in-
duce superconductivity. This type of process has been
previously proposed for finite U, it also exists in the
infinite-U limit. ' However, it is important to determine
the limits for localization of such pairs as a function of t,
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and V. We emphasize that this attracting process
disappears with second-neighbor Coulomb repulsion. It
works if the Coulomb repulsion is screened, which is quite
probable in these compounds with a high dielectric con-
stant.

A similar pairing process between interstitials could
eventually occur in Ni compounds. However, it would be
of a different nature. In that case, in Fig. 1(d), two 0
holes are separated by a magnetic Ni+ ion in 4d
configuration (instead of a 4d' nonmagnetic Cu+). As a
consequence of Hund's rule, the Ni+ ion would polarize

the surrounding 0 holes (only 0 holes with spin parallel
to that of Ni+ can move on Ni site) and singlet pairing
would be suppressed.

For U , the extended Hubbard Hamiltonian, Eq.
(1), can lead to antiferromagnetism with unusual proper-
ties and superconductivity. In 2D, this model could apply
as well for new superconductors and He adsorbed on a
substrate. Although 2D He is usually triangular, some
appropriate substrates could stabilize a square lattice and
provide an interesting analogy to new superconductors
with interplay of antiferromagnetism and superiluidity.
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