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Theory of nuclear relaxation in superconducting high-T, oxides
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In connection with the anomalous temperature dependence of the nuclear relaxation rate I/Tt
of Cu in YBa2Cu307 —y the nuclear relaxation in the system is theoretically investigated, and the
anomalous temperature dependence is found to be explained on the basis of the Bardeen-Cooper-
Schrieifer (BCS) pairing, if the strong correlation eff'ect of electrons is properly taken into ac-
count. The spin fluctuations make the superconducting state gapless near T, and erase the hump
of I/T& which is usually observed in BCS superconductors. The spin-fluctuation vertex is highly
renormalized in the superconducting state and thus I/T&, enhanced by the spin fluctuations in the
normal state, is drastically suppressed in the superconducting state. The above two efI'ects corn-

bined give a sharp decrease of I/T~ below T„which has been observed in the superconducting
state of YBa2Cu307 —y.

I. INTRODUCTION

Extensive experimental and theoretical studies to eluci-
date the mechanism of the high-T, superconductivity of
the superconducting oxides have been made. ' The experi-
mental results show that the electrons in the oxides are
highly correlated due to the Coulomb correlation. Actual-
ly, La3Cu04 and YBa2Cu306 are insulators due to the
correlation, although band calculations show that these
crystals are metallic. The insulating crystals exhibit anti-
ferromagnetic orders of copper spins. If holes are doped
into the crystals, the antiferromagnetic orders rapidly des-
truct and, simultaneously, the electrical conductivity in-
creases. In this case we expect the appearance of a
Fermi-liquid state near the Fermi level. The characteris-
tic feature of the Fermi liquid is the. following. The
copper d-electron levels are close to the oxygen p-electron
levels in these oxides, unlike in other transition-metal ox-
ides. Therefore, electrons can move around the crystals
on the hybridized orbits constituted from the copper d-
electron and oxygen p-electron orbits. The electrons in
the Fermi liquid are heavily dressed by charge and spin
Auctuations, since the large fIuctuations are expected in
such correlated systems.

The measurement of the Aux quantization and the ac
Josephson eA'ect ' show that the unit of the superconduct-
ing current in the oxides is twice the electronic charge.
This fact indicates that electron pairs or hole pairs are re-
sponsible for superconductivity even in the oxide super-
conductors. The coherence lengths estimated from the
upper critical fields are 30 to 40 A. in the basal planes of
YBa2Cu307-y (Refs. 5 and 6) and Bi-Sr-Ca-Cu-O.
These values are shorter than those in usual superconduc-
tors, but much longer than the distance between Cu and 0
ions in the crystals which is approximately 2 A. There-
fore, there is nothing wrong in considering the Bardeen-
Cooper-SchrieA'er (BCS)-type pairing in the oxides. The
specific heat of YBa3Cu307 —~ shows a sharp jump at the
superconducting transition temperature T, . This specific
heat can be explained on the basis of the BCS theory, if
the large contribution from the superconducting fIuctua-
tions as a result of the short coherence length is included.

The experimental results of the tunneling using
La2 —„Sr„Cu04 and YBaqCu307 —y show the clear energy
gaps which are expected from the BCS theory. ' The
temperature dependence of the penetration depth in
YBa2Cu307 —y measured by muon-spin rotation is con-
sistent with the prediction by the BCS theory. "

Only the experimental results which look inconsistent
with the BCS-type pairing are the result of nuclear relax-
ation. Warren et al. ,

' Mali et al. ,
' Kitaoka, Hiramatsu,

Kondo, and Asayama, ' and Imai et al. ' made the nu-
clear quadrupole resonance (NQR) measurements of
YBa2CU307 —y. They obtained almost the same results on
the nuclear relaxation of Cu in the two-dimensional Cu02
layers of the crystals which is called Cull. The supercon-
ducting current is considered to fIow mainly in these lay-
ers. For these reasons we focus on the nuclear relaxation
of Cuber hereafter. The behavior of the nuclear relaxation
rate I/Tt diH'ers from that in usual BCS superconductors
in the following points. (1) The hump of I/T~ which is
usually seen just below T, in the BCS superconductors is
not observed. ' ' (2) The relaxation rate I/Tt sharply
decreases below T, . ' ' Its temperature dependence is
expressed by a power of temperature T" rather than an
exponential, and the value of n is 4.5 and 3 depending on
the temperature range. ' (3) The relaxation rate I/T~ in
the normal state is approximately proportional to T' be-
tween 92 and 200 K. '

To explain the anomalous temperature dependence of
the nuclear relaxation rate mentioned above, Kitaoka et
al. ' used an anisotropic energy-gap function with d-wave
symmetry, and Suzumura, Hasegawa, and Fukuyama'
considered the resonating-valence bond (RVB) supercon-
ducting state with d-wave symmetry. They all use the
mean-field approximation for the calculation of the nu-
clear relaxation rate. However, we cannot use the simple
mean-field approximation in the calculation of quantities
in highly correlated systems such as the oxide supercon-
ductors. The objective of the present paper is to show that
the anomalous temperature dependence of the nuclear re-
laxation mentioned above can be explained on the basis of
the BCS theory, if the correlation efr'ect is properly taken
into account.
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The following is a brief explanation for our mechanism
of the nuclear relaxation. It has been confirmed from the
experiments that the relaxation of the CuII nuclei is
caused by a magnetic origin in entire temperature
range. ' In this case, 1/T~ is expressed in terms of the
imaginary part of the dynamical spin susceptibility of
electrons with the resonance frequency. The imaginary
part of the susceptibility in the copper oxide system is cal-
culated using the following model. Due to the strong
repulsive interaction between the electrons on copper ion
sites, the states situated deeply below the Fermi level are
almost localized at the lattice sites, consistent with the ex-
perimental results of photoemission. In the metallic sam-
ple, along with this localized state, the Fermi-liquid state
appears near the Fermi level. Some attractive interaction
between the quasielectrons yields the superconducting
state in the Fermi liquid. In the system, the spins of
copper ions are almost localized at the lattice sites and
only a small portion of the spin are itinerant. These spins
produce the large spin Auctuations. The spin Auctuations
create a self-energy of the quasielectron. Especially, its
imaginary part works to shorten the lifetime of the
quasielectron. This lifetime eff'ect makes the supercon-
ducting state gapless near T, and erases the hump in the
I/T~ vs T curve. The susceptibilities at low frequencies
are enhanced by scattering of the spin Auctuations and the
quasielectrons in the normal state. However, when the su-
perconducting order parameter develops, the low-fre-
quency part of the spin-fluctuation vertex for the scatter-
ing is very much reduced and thus the enhancement of the
susceptibility is drastically suppressed. The above two
effects combined cause the drastic decrease of 1/T ~

without accompanying a hump, just as observed in the
NQR experiments of Curt in YBa2Cu307 ~. Since the
gapless state appears only near T„ the present result is
consistent with the observations of the energy gap by the
tunneling and optical measurements at low tempera-
tures. '

tion of thermofield dynamics (TFD). ' Following the
TFD formalism, we introduce the Heisenberg field P (x)
which anticommutes with y (x) to incorporate the tem-
perature effect. Then our system is described by the total
Hamiltonian

H=H —0,
where

(2.2)

H =H,.p.,+„d'xUPtt(x)Pjt(x) y)(x) yrt(x) .

We define the thermal doublet:

y (x) for a=1,
y (x)= ~

Pt(x) for a =2,

and, in the Nambu representation,

y( (x) yI'(x)e (x)=
y2 (x) y['(x) t

Hamiltonian (2.2) leads to the equation for +'(x) as

[i8, —e( —V2) r3]e'(x)

(2.3)

(2.4)

'+ (x) =[yP(x), y2(x)], (2.7)

'e (x) = y( (x)t
y2(x) t {2.8)

and o'—is given by

o' (x) =e y f'(x) tyt (x) = ——e"+ (x)r2+'(x),
2

=J(%',%' t) —iUcr' (x)r —'%2'( )xt, (2.6)

where e( —V ) is the bare one-electron energy, z s
(i =1,2, 3) are the Pauli matrices, J[%",+'t] represents
the interaction arising from the interaction term in
HsU~& H&Upped alid %' (x) denotes the doublet tran-
sposed in the Nambu space,

II. EFFECTS OF SPIN FLUCTUATIONS ON THE
ONE-ELECTRON STATES IN THE

SUPERCONDUCTING STATE
with

(2.9)

Assuming that the superconductivity in the oxides is
brought about by a certain interaction other than one via
spin Auctuations, we consider the following model de-
scribed by the Hamiltonian

H =H„p„+ d'xUy7'(x) pit(x) yi(x) yt(x), (2.1)

where U and y (x) are, respectively, the correlation in-
teraction energy constant and the field operator for the
conduction electrons with spin o. In (2.1) H,„p„denotes
the part which is responsible for the superconductivity and
the second term represents the on-site Coulomb repulsive
interaction, i.e., U&0. For the calculations of physical
quantities at finite temperatures we utilize the formula-

1 for a =1,
a —1 for a =2. (2.10)

(2.11)

~ O(p)& being the temperature-dependent vacuum state
(p=l/T). Using Eq. (2.6), we obtain the equation for
S s(x —y),

To investigate the one-electron state in our system, we
first calculate the one-electron Green's function. In the
TFD formalism the causal Green's function at tempera-
ture T is defined by

SÃ(x —y) =&O(P) I Ty:(x)Vt(y)'I o(P)&

[i r), e( V')r3]S p(x ——y) =—i8 i'8"'(x y)+&O(p)
~

TJ—[w (x),e (x)t]e p(y) t
~
0(p))

—iU&O(P) i T~ (x)[r, '~ (x)'le'(x)'i O(P)). (2.12)
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If the self-energy functions ='~(p) and II'~(p) are respectively introduced by the relations

(o(p) I TJ[e «(x),e'(x) t]e p(y) t
I o(p)& - ' d4pg: r(p)s"~(p)e'~ "-»

(2m)' "
and

(2.i3)

IU—&o(P) I
Trr' (x)-lr 'e'(x)tie'P(x)t

I O(P)&= d p+II'r(p)sr~(p)e'~"
(2x)4"

Eq. (2.12) becomes

g [(po —
e~ r3) 8 " :—'-(p)—II "(p)]S'~(p) =8'~

(2.i4)

(2.i S)

with

ep =p /2Irt p .

Now let us consider the self-energy function (2.14). Since the correlation creates the large spin Auctuations in the
low-energy region, we express II'~(p) in terms of the spin-Auctuation Green's function g &(q). To do so, by
introducing the spin-Auctuation vertex function I ~'"~( —p —q;p), we write three-point function
(O(P) I

Tcr' (z) '0 '(x) t+~(y)
I O(P)& in terms of g'~(q) as follows:

' 2
l

(2n)
d 4pd 4q l —e"S'"(p)'r2S'~(p —

q )

+ & g g 4 («q ) ~S 1 r ( —p ) ti &' &&( —p p —
q )S&P (p —

q )]e» —'rx —
&~
-

v i'

C.n

(2.i6)

where 'S'~(p) and 'I ~'"~( —p;p —q) are, respectively, the transposed Green's function and spin-Auctuation vertex func-

tion in the Nambu representation

'S:g(p) —=SPg(p),
'I ~'"«$( —p;p —q) —=r&'g( —p;p —q),

and g P(q) is defined by

(2.i7)

(2.18)

g'~(x —y) —= (O(P) I
Top(x)o~ (y) I O(P)& = d qg'~(q)e'

(2n)4"
(2.19)

The first and second terms in the integrand on the right-hand side of Eq. (2.16) represent, respectively, the improper and

proper parts of the three-point function [see Fig. 1(a)]. Noting the definition of II'~(p) given in Eq. (2.14), we obtain
from Eq. (2.16)

l a & 4II'P(p) = —U d qe'rz'S"( —p —q) 'r28'~+U d q+z2'S '( —p q) 'I ~'"~( —p——q;p)g~'(q) .
(2x) ' (2rr) 4

(2.20)

In Fig. 1(b) we show the graphical representation of Eq. (2.20). In the following calculations we employ the one-loop
approximation for Eq. (2.20). As discussed in Refs. 21 and 22 the one-loop approximation gives a good description for
strongly correlated systems such as the heavy-fermion systems in the low-energy region. The vertex function is then ap-
proximated in the following form by introducing the renormalized coupling constant U„:

UI.C;rP( —p —q.p) —U 2P)'4P(Pr (2.2i)

(a) Z, o
1,

(b)

P —p —q
Xy Zo yP II' t» =

xy y, p

FIG. l. Feymann diagrams for (a) the three-point function and (h) the self-energy function II'i'(p).
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Thus, in the one-loop approximation we have

11 ~(p) =IIHa„„,—U„2 ', ~d4qz2'Sa ( p—q—)z2ga (q), (2.22)

where

11g = —U d'qa z 'S-( —q)'z &'.i
artree

( )4 2 2 ~ (2.23)

The relation between U and U„ is given in Sec. III. Using the spectral representation for S'a(p) and g'P(q) (Refs. 20
and 23), we can obtain the following spectral representation of the self-energy function II'a(p):

rl a(p) =III',„„„+"dcon(co, p) UF(co)

1

po —co+ l 6

po co

aP

(2.24)

where

with

&(po P) =U' dqo ' [z2'p( —p q)z2D—(q)l [fa(qo)+fF(po+qo)l
d'q

(2n) '
cF (co ) dF (co )

dF (co) cF (co)UF(co) =

1 1

FWTe' —1 e' '+1
cF'(po) =1 —fF(po), dF'(po) -fF(po) .

f, (p.) =

(2.2s)

(2.26)

(2.27)

(2.28)

In Eq. (2.2S) p(p) and D(q) are the spectral functions, respectively, for S'a(p) and g'a(q). Note that p(p) is a 2 X 2 ma-

trix in the Nambu representation.
The spectral function (2.2S) can be rewritten in the form

«po, p) = &0(po, p) zo+ &t(po, p)zt+ &3(po p)z3,
where

1 ~
4no(po, p) = —,

' U„d qT„[z2'p( —p —q) z2D(q)l [fa(qo)+fF(po+qo) l," (2n)3"

(2.29)

(2.30)

(2.31)

(2.32)

At(po, p) = ——U, d qT, [z3'p( —p q)z2D(q)l [f—a(qo)+fF(po+qo)li 2 1' (2z)3"

&3(po p) = ——'U, d qT, [«'p( p q)z3D(q)lffa(qo)+fF(po+qo)l1' (2z)3"
and zo is the unit matrix. The self-energy function (2.24) can be separated into its real and imaginary parts as follows:

with

ri'a(p) =II((„„,+ dco 'P 8 a inn(po, —p)[UF(po)eUF(po)t] a,n(co, p)
pg co

(2.33)

(2.34)

The real part of II a(p) leads to the wave-function renormalization and the mass renormalization, so that the supercon-
ducting transition temperature T, is decreased from that for U=O. On the other hand, the imaginary part of II'a(p)
gives a finite lifetime to the quasiparticle in the superconducting state due to the process of emission and absorption of the
spin fluctuations. As seen in the following this eA'ect brings about a gapless superconducting state near T, and plays a
crucial role in the superconducting state of the superconducting oxides. We assume that the interaction term which leads
to the self-energy function ='a(p) does not break the time-reversal symmetry. In this case = a(p) have no imaginary
part in the low-energy region below the superconducting energy gap in the absence of U. Hence, we approximate ='a(p)
to be real and write it in the form

:"'a(p)+ReiI'a(p) =(1 —Z ')pozo+c z3+5 z], (2.3s)



39 THEORY OF NUCLEAR RELAXATION IN SUPERCONDUCTING. . . 2283

where Zp, cp, and dp are real. Then Eq. (2.15) is rewritten as

g[(Z0 'pp —sz ~z)a & —
1 imII &(p)]S»(p) =a /',

y

with sp =sp —cp. Expressing the imaginary part of II ~(p) in the form

ImiI's(p) = —x[0p(pp, p) zp+ 01(pp, p) zl] [UF(pp)sUF(pp) 1',

(2.36)

(2.37)

where we dropped the contribution from the z3 component for simplicity as is usually done, we obtain the spectral func-
tion p(pp, p) from Eq. (2.36),

where

A (p) o+A (p) +A ' (p)
[(Z 2 2 2 A2 0 0 2+0(1 2)2+4(Z 1 0 0 +6 0 1 )2]

(2.38)

(0)( ) =(Z 2 2+ +p2+ 0 (0)2 0 (1)2)0 (0)+2Z 1 g 0 (1)

A(3)(p) =28'(Zp-ip00 p(0) +d, p0p(i))

~ (1)( ) —2Z
—1 Q 0 (0)+ (Z

—2 2 s2+p2 0 (0)2~ 0 (l)2) 0 (1)

(2.39)

(2.40)

(2.41)

with 0p =+00(pp, p) and 0p' —=@01(pp,p). Since the density of states N, (pp) is given by

1 d pN, (po) - —,', T, [p(pp, p)],
2n '

we have

3 (z
—

2p 2+ &2++2+ 0 (0)2 0 (1)2)+ 0 (0) +2Z
—

lp /) 0 (1)

(2x)3 ~[(Z ' ' —s2 —W' —0""+0"")'+4(Z ' 0(0)+a 0"')']

(2.42)

where

2i 2 1/2

N(()) g (0) P ~P P

2(ap'+ Pp2)

1/2

+po
( 2 ~p

2 ) 1/2+.

2(a +P )

' 1/2

(2.43)

Z
—2 2 g2 ~ (0)2+ ~ (1)2

a~ =
I po —

~
—

p p

pp =2(Zp 'pi)0p" +ap0p"),

(2.44)

(2.4S)

and N(0) is the density of states at the Fermi level in the normal state. In deriving (2.43) we neglected the momentum
dependence of 0„( ) and 0p('). Consider the spectral functions of the self-energy functions (2.30) and (2.31). For the
spectral function p(pp, p) in the integrands we use the BCS spectral function

(
)=Ep+Gpz3+hpzl ( )

Ep Gpz3 ~ppzl ( ) (2.46)

with

Ep =Jsp+hp . (2.47)

Substitution of Eq. (2.46) into Eq. (2.30) and (2.31) gives

0o(po p) =Mo(po, p)+Mo( po, p),
01(po, p) = —Ml(po, p)+M(( —po, p),

where

(2.48)

(2.49)

(2.S1)

d'
Mo(PP, P) = —,

'
U,', D(Ep+, +Pp, P) lf~(Ep+q+Po)+ fF(Ep+q)l, (2.50)

(2z '
fO 3

Mi(po, p) =
z U', ' D(Ep+q+po, p) [f13(Ep+q+po)+ fF (Ep+q)] .

(2iz ' Ep+q

Since the spectral function of the spin-Auctuation Green's function is well approximated by a Lorentzian form in the
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low-energy region, we use the following approximate expression for D(qo, q) in Eqs. (2.50) and (2.S1):
—K2(q)qp

D(qo, q) =
[1 —U„K,(q)]'+ [U„~K,(q)]' '2T, Bfp(Ep)

K2(q) =„ (EpEp+q+ epep+q+ Ap) 8(Ep —
Ep+q )(2z)' EpEp+q P

(2.52)

(2.S3)

2x p p+q En+ E~+~

E~ E~+q
(2.S4)

(a)

O

CL

+ I.O

T/'T =0.98 U„N(O) = 0.7

2.0

For the functions K&(q) and K2(q) we assumed the same
functional form as that in the random-phase approxima-
tion (RPA). In Fig. 2 we show the numerical results for
the density of states, when we neglect the energy depen-
dence of h~ and assume that its temperature dependence
follows the BCS gap equation and Z~ =1. As seen in Fig.
2(a), the density of states is completely gapless near T,.
However, it rapidly approaches a BCS-like density of

I

states as temperature decreases. When the correlation is
weak, the density of states is almost BCS-like in the entire
temperature range as seen in Fig. 2(b). The gapless su-
perconducting state in the highly correlated system is
analogous to the state in the superconducting system with
a sufficient amount of magnetic impurity doping.

In the present model calculation we assumed the fer-
romagnetic spin fluctuations as a result of using the RPA
for K~(q) and K2(q). However, even in the case of anti-
ferromagnetic spin fluctuations the density of states curve
is qualitatively the same as that in the present case be-
cause the antiferromagnetic spin fluctuations also bring
about a finite imaginary part to the self-energy of the
quasiparticles in the superconducting state.

The strong correlation between conduction electrons
reduces the superconducting transition temperature T, in
our formulation. However, T, is not so much reduced in
the high-T, superconducting oxides in the following
reason. In the oxides the conduction electrons are formed
by p electrons in 0 ions and d electrons in Cu ions. The
strong correlation exists between the d electrons. If the
superconductivity is mainly maintained by the attractive
interaction between the p electrons (holes), the transition
temperature may not be so much reduced by the strong
repulsive interaction on the Cu sites. A more realistic cal-
culation explicitly including the effect of p electrons is
now in progress.

U, N(O) = 0.3
III. CALCULATION OF THE LONGITUDINAL

NUCLEAR RELAXATION TIME T]

2.0—
O
z'.

CL

0—

A. Formulation

In this section, based on the results given in Sec. II, we
calculate the nuclear relaxation time T]. When the nu-
clear relaxation occurs by a magnetic origin, the relaxa-
tion time T~ is expressed in terms of the electron-spin
correlation function as

(7„a)'
J dr(cr+ (r,x)a (O, x))e

T1
(3.1)

2.0

FIG. 2. Energy dependence of the density of states for vari-
ous temperatures. (a) U,N(0) =0.7, (b) U,N(0) =0.3.

where y„ is the nuclear gyromagnetic ratio and 4 the
hyperfine coupling constant, and mo the resonance fre-
quency. In the TFD Eq. (3.1) can be expressed in terms
of the spectral function of the spin-fluctuation Green's
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function D(roo, q) as follows:

1
cop/T=n(y„A) 'g D(cop, q)

1 e —1

= (y„W)'Tg
q 070

(3.2)

We now calculate the spin-fluctuation Green's function g'~(q) to obtain D(coo, q). Let us consider a three-point function

&O(p)
~
TrJ+(x)ep(y) q'(z)

~ O(p)) =
(2') 4

d pd q
—s'S'P(p)z z'S"( —p q)z—z

+QQP(q)SPP(p) I f«(ppq) tSyt(+q)eiPy+iqx —i(P+q)z

g, g

(3.4)

where the vertex function I p&(p; —p —q) was introduced to express the proper part of the three-point function. The

graphical representation of Eq. (3.4) is given in Fig. 3(a). The equation for g (q) can be obtained from Eq. (3.4) by
taking the limit of z y as

g'~(x —y) =&O(p) [ Ta+(x)a~ (y) ~O(p)&= ——,
' g&O(p) ~

To+( )xq, (y)q f(y) ~O(p)&zz s
a, b

2
l

(2x) '

Thus, we have the equation

r

d'qd'p —,' e T„[S—~(p)zz'S~ ( p —q)l—c~

+ z g g'~(q)T„[S~"(p)rP~(p; —p —q) 'Sp~( —p —q)zz]sf' e'""-". (3.5)
4@&

r

„d'p ,' p T„[SP'(p)—zz'S~'(—p q)zzl pf'—
2x '

(3.6)g g'~(q) T, [S~"(p)r V~(p; —p q) 'S~~( ——p q) zz]s—~
g, g, g

Here we use the relation 'zz = —z2. If the Hartree Green's function is used for S'P(p) and the vertex function is approxi-

mated as I P~(p; —p —q) =US«8~~z2, Eq. (3.6) is reduced to that in the random-phase approximation (RPA). To solve

Eq. (3.6) in an approximation beyond the RPA we approximate the vertex function in the following form:

rF~(p; —p —q) =e«(p)e~~( —p —q) zz. (3.7)

Here, the function e P(p) is assumed to have the same spectral representation as that of a fermion Green's function. By
this assumption g't'(q) obtained from Eq. (3.6) is insured to have the bosonlike spectral representation as seen in the fol-
lowing. Substituting Eq. (3.7) into Eq. (3.6) and introducing S'~(p) by

S ~(p) =QS "(p)e "P(p), (3.8)
y

we obtain

g t'(q) =K'~(q) —gg «(q)dL~'(q), (3.9)

(aj (a(p) (To I+ (x%~(yak (z)(a(p)): = zs

FIG. 3. Graphical representation for (a) the three-point function &o$(x)@p(y)@"(z)) and (h) the equation for the spin-fluctuation
Green's function g'P(x —y).
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where

K P(q)= ' , J—d'p—,
' s T„[SP (p)z2'Sp ( —p q—)zp]cp,

K'~(q) =K&(q)s'~'" ~'K2(q)[Ua(qo)Ua(qo)t]'~

L'P(q) =L
) (q) s'8'~ iL2(q—) [Ug(qo) Ug(qo) tl '~,

where

Ki(q) =—tdv1

z"
1

K2(v, q),
qo

K2(q) =zzi 4
—,
'

Tr[p(po p)z2p( po qo p q)z2][fF(po) fF(po+qo)],C d'p

1 ~ 1L i(q) =— dv L2(v, q),
qo

—V

d 4p
L2(q) =~„,2 T.[p(po, p) zap( po qo, p q) z2] [fF(po) fF (po+—qo)],

cia (qo) dz (qo)
Ug(qo) =

d~ (qo) c~ (qo)

0

L P(q) =,gt d'p ,' e —T„[S~(p) z2'S~ ( —p q)z—,]op.

The functions K'~(q) and L'~(q) can be separated into their real and imaginary parts as follows:

(3.io)

(3.i i)

(3.12)

(3.i3)

(3.i4)

(3.i5)

(3.i6)

(3.i7)

(3.IS)

with

ci'i(qo) = ~, dp(qo) = (3.i9)

I

from the self-energy function obtained in Sec. II. Let us
first consider the Hartree term (2.23). In the presence of
a weak magnetic field h, HH„t„, is rewritten in the form

I K, (q)+K2(q)L, (q) K, (q)I.,(q)—
D(q) =—

[1+r. , (q)]'[L,(q)]'
(3.2o)

Let us now investigate the vertex function (3.7) to ob-
tain the functions L i(q) and L2(q) in Eq. (3.20). As seen
later renormalization of the vertex function leads to a
strong temperature dependence in the superconducting
state. In the following we present a renormalization
scheme for I q~~(p; —p —q) by using the Ward-Taka-
hashi (WT) relation which stems from the spin-rotational
invariance of the system.

Consider the WT relation

In Eq. (3.17) P(po, p) is the spectral function of S'P(p).
Thus substitution of Eqs. (3.12) and (3.13) into Eq. (3.9)
gives the following spectral function of the spin-Auctua-
tion Green's function:

I,".P(p p) =US'a~—'z, (3.24)

is obtained from the WT relation (3.22). This is nothing
but the vertex function in the RPA. This result indicates
that the RPA for the susceptibility is consistent with the
Hartree approximation for the one-electron Green's func-
tion. The one-loop correction to the self-energy function
[the second term on the right-hand side of Eq. (2.22)]
leads to a correction to the RPA vertex function (3.24).
When the self-energy function (2.22) is substituted into
the WT relation and the vertex function is renormalized
at p =pF= (o,pF) and T=T, as—

IIH„i„,(p) =Unob'~z3+ —,
' Uhg(0) 8'P+ ho6'~zi, (3.23)

where no is the electron density per spin in the absence of
h. If IIH„t„, is substituted into the self-energy function in

Eq. (3.21) and:-'~(p) is neglected, the vertex function

z2[:-'~( p)+II'~( —p)—]+[:- ~(p)+II ~(p)] z2 ReI +"P(pF, pF) ~
T=T =U„6—'P6Pzp, '(3.2S)

=h g e "g"(0)r~+'P(p; —p) (3.21)
y, B

=hg(0)gr+'P(p; —p), (3.22)
y

where h is an external magnetic field acting on the elec-
tron spin. The derivation of the WT relation (3.21) is
given in Appendix A. In deriving (3.22) from (3.21) we
used the fact that g (0) is real and g" (0) =g(0)s 6
Since the WT relation gives a relation between the self-
energy functions and the vertex function I +'~(p; —p) we
can make use of this relation to obtain the vertex function

e)(p) =J&,(p), (3.27)

0(p) = — dco QA„(co,p),
po co

(3.2S)

where U, is the renormalized coupling constant intro-
duced in Sec. II, we obtain the function e' (p) defined by
Eq. (3.7) as follows:

8"(p) =e (p) 8"—i~&(p) [UF (po) cUF (po) tl ", (3.26)

where
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with

1 1 1 1
A„(p) =U„+, , do) no(o), pF) — dko no(io, p) .

X(0) po" po ~ /, =0, T=T, X o po" po
(3.29)

Here, Qo(co, p) is given by Eq. (2.30). The details of the above renormalization procedure is presented in Appendix B.
Let us now calculate the longitudinal nuclear relaxation time T~. From Eqs. (3.3) and (3.20) we have

1 2 g K2(~0 q)+K2(coo q)Li(roo, q) —Ki(mo, q)L2(coo q)
q [[I+L~(coo,q)] + [L2(roo, q)] (a)0

y, A T

Since coo is quite small, we take the limit coo~ 0. Noting

%coo + d pK2(~o, q) = „,2 T.[p(po, p) ~2p( —po, —p —q) ~2]T " 2~ (e"~ +1)2

K2(q),

&~0 d p
P0/T

L2(roo q)=,r T.[p(po, p)r2p( —po, —
p —q)r2]

2x '
(e +1)'

L2(q),

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

from Eqs. (3.15) and (3.17), we have

I. , (q) =L, (o,q), K, (q) =K, (o,q). (3.36)

To simplify the numerical calculation we make a further
approximation to Eq. (3.35). Since in the numerator of
Eq. (3.35)

~ K2(q)L/(q) —K](q)L2(q) ~ (&K2(q), (3.37)

K2(q) +K2(q)L ~ (q) —K& (q)L2(q)=x y„A [1+I., (q)]'
(3.35)

where

(
11"dq 1

[1+L,(q)] V " (2z) [1+L&(q) 1
(3.40)

Here, the integration by q is performed within the sphere
with the radius of a cutoff' momentum q„ i.e.,

(
1 = 3 2

dq -

2
. (3.41)[1+I., (q)]' 8~'q,' " [1+I., (q)]'

I

Furthermore, we approximate Eq. (3.38) as

1 1=x(y„A)', „dpo
T~ 1+L, q

S 0/T
x 2 T. Zp(po, p)r2Zp( —po. p')

L P P S 0/7+1

(3.39)
where

we approximate Eq. (3.35) by

(3.38)

The value of q, is chosen as q, $0=5 in the following nu-
merical calculations, where (0 is the superconducting
coherence length at T=O K. Substituting the spectral
function (2.38) into Eq. (3.39) and assuming particle-hole
symmetry, we finally obtain the following result for T].

=x(y„A)'
2 „dpo[N~ '(po) +N, ' (po) (3.42)

where

( 2+ p2) I/2

W,"'(po) =W(0) n,"'
2(a~2+ P~ )

&/2
( 2+p2) 1/2+

2(a'+ p')

&/2-

(3.43)

( 2+p2) 1/2

m,"'(,) =W(0) -n,"'
2(a'+P')

Here a~ and P~ are given in Eqs. (2.44) and (2.45).

1/2

+pp
2+p2) 1/2+

2 (a~2+ p~2)

' 1/2

(3.44)
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8. Numerical results

In Fig. 4 the numerical results for the temperature
dependence of I/T~ are plotted for various values of the
normalized coupling constant U„N(0), N(0) being the
density of states at the Fermi level in the normal state.
When the value of U„N(0) is small, a hump is observed
just below T, as in the usual BCS theory [Fig. 4(a)l. This
hump originates from a sharp peak of the density of states
above the energy gap (Fig. 2). As the value of U„N(0) in-
creases, the hump gradually shrinks and finally disap-
pears. As seen in Fig. 4(b), when U„N(0) further in-
creases, I/T~ has an extremely sharp drop just below T,.

To see the origin of the temperature dependence of I/T~
mentioned above, we erst examine the contribution from
the "bubble diagram, " i.e., the integral on the right-hand
side of Eq. (3.42),

J dp [N (p ) +N ' (p )]e /(e +1)
(3.45)

As can easily be seen, this function is reduced to the BCS
expression for I/T ~ in the limit of U~ 0, i.e.,
~ 0) ~(1) O.

O 2.0
Z',

L I.o

(3.46)

Therefore, the function (3.45) has a hump structure as
seen in the curve for U„N(0) =0.3 in Fig. 5, as I/T ~ of the
BCS theory has. On the other hand, the function for
U„N(0) =0.9 has a monotonic decrease with decreasing
temperature, as seen in Fig. 5. This monotonic decrease
comes from the fact that the density of states has no peak
structure in the gapless region near T,. Thus, the disap-
pearance of the hump in the I/T~ is understood to come
from the gapless nature of the superconductivity due to
the strong correlation. The sharp drop of I/T~ just below
T, for large U„N(0) is caused by the enhancement factor
in front of the integral in Eq. (3.42),

I t I I I

(
1

4+ (q1) I' ) (3.47)

0.5 0.6 0.7 0.8 0.9 I.Q

TJ'T,

40-

3.p

O

AJ

~ 2.Q
ac

I=
l. p

as seen in the following. This factor has a large value in
the normal state, yielding the large value of I/T& as ob-
served in the experiments. In the superconducting state
this factor rapidly decreases with decreasing temperature
when U, is large. This temperature dependence comes
from that L & (q) is negative and its magnitude rapidly de-
creases in the superconducting state. This fact is easily
seen in the weak-coupling case because L~(q) is propor-
tional to the irreducible spin susceptibility of the super-
conducting electrons. The temperature dependence of the
renormalized vertex function A, (p) is also important for
the temperature dependence of L

& (q ). In Fig. 6 we
present the numerical results for A„(0,pF). As seen in this

D
+0.5—L
LL

0.5 0.6 0.7 0.8 0.9 1.0
TJ' T

FIG. 4. Temperature dependence of 1/T~ in the supercon-
ducting state for the parameter values, (a) U,N(0) =0.3, 0.5,
and 0.6, and (b) U„N(0) =0.7, 0.8, and 0.9.

0 l I I

0.5 0.6 0.7 0.8 0.9

FIG. 5. Temperature dependence of the "bubble diagram. "
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I.O—

gcL
O

p 5

U„

FIG. 7. Graphical representation of the equation for the ver-

tex function I P~( —p —q;p).

0.5 0.6 0.7 0.8 0.9 I.O

TET,
FIG. 6. Temperature dependence of the renormalized vertex

function A, (0,pF).

figure, A„(0,pF) has a strong temperature dependence and
its value is much reduced in the superconducting state for
large U„. This dependence comes from the temperature
dependence of the last term on the right-hand side of
(3.29). This term increases with decreasing temperature
because the absolute value of the spin susceptibility g(0)
decreases as superconductivity develops. As seen from
Eq. (2.30), the term is on the order of U„. Therefore, in
the case of large U„ the strong renormalization of the ver-
tex function occurs. Physically, this renormalization
effect for the vertex function in the superconducting state
can be understood in the following way. The number of
the low-energy excited states in the one-electron channel
decreases as the energy gap develops with decreasing tem-
perature in the superconducting state. This causes a de-
crease in the probability that the low-energy spin Auctua-
tions scatter the electrons. In the case of large U, the
spectral density of the spin fluctuations is large at low en-
ergies. Therefore, the renormalization effect at low ener-
gies is stronger in the strong correlation case.

The above numerical results were obtained using the
ferromagnetic spin fluctuations for the spin-fluctuation
Green's function. The similar temperature dependence of
the enhancement factor (3.47) is also expected in the sys-
tem with antiferromagnetic spin Auctuations in the
strong-coupling case as discussed below. Roughly speak-
ing, the temperature dependence of L ~ (q) is given by the
product of the "bubble diagram" corresponding to a
single-particle, hole pair excitation and the vertex func-
tion I +~r(p; —p —Q). Although the "bubble diagram"
with a wave number much larger than the inverse super-
conducting coherence length is not affected by the onset of
superconductivity, the sharp decrease of the enhancement
factor just below T, is expected to arise from the tempera-
ture dependence of the vertex function in the system with

large antiferromagnetic spin Auctuations in the following
way. The equation for the vertex function I +~"(p; —p—q) can be expressed as shown graphically in Fig. 7 in
terms of a new vertex function I f"'"'(p,p+Q —q;q, Q).
This vertex function describes the process that the spin
Auctuations decay into an electron, hole pair and other

IO

Ljpo

L
.9

f0'
0.5 0.6 0.7 0.80.9 l.O

TET,
FIG. g. Temperature dependence of I/T~ in a log scale.

spin fluctuations. Let us consider the case that the wave
number Q in the second term in Fig. 7 is close to the zone
boundary (the wave number of the antiferromagnetic spin
fluctuations). When the wave number q of the internal
spin fluctuations is close to the zone boundary and q =Q,
I $""' is expected to be small because the scattering be-
tween the particle and hole pair is almost a forward
scattering and, thus, this process is suppressed in the su-
perconducting state. Hence, a large contribution to the
vertex function comes mainly from the scattering process
with small q. As given in Ref. 27, a study of the WT rela-
tion originating from the spin-rotational invariance shows
that the vertex function I f "'(p,p+ Q;0, Q) carries a fac-
tor I/g(0) in the paramagnetic state. Since

~
I/g(0) ~

in-
creases the superconducting order parameter develops,
this process is expected to give a strong renormalization of
the vertex function I +~r(p; —p —q) even for the antifer-
romagnetic spin fluctuations in the superconducting state.
Therefore, we may expect the sharp decrease of the
enhancement factor even in the system in which antiferro-
magnetic spin fluctuations dominate. The calculation of
I/T~ in this system is now in progress.
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IV. COMPARISON WITH THE EXPERIMENTS

In this paper we investigated the effects of the spin Auc-
tuations on the superconducting state and calculated the
nuclear relaxation time T~. In the case of large U, the
large lifetime effect arises from the self-energy correction
due to the spin fiuctuations, bringing a gapless supercon-
ducting state near T, . As a result the hump of 1/T i which
is usually observed in BCS superconductors disappears
and the inverse relaxation time 1/Ti monotonically de-
creases with decreasing temperature below T, . The de-
crease just below T, is extremely sharp. This sharp de-
crease comes from the fact that the enhancement factor of
the electron-spin susceptibility rapidly decreases as the su-
perconductivity develops. Especially, the renormalization
effect for the spin-Auctuation vertex function plays an im-
portant role for the drastic decrease of the enhancement
factor. The importance of spin fluctuations to the nuclear
relaxation of Cu has also been pointed out by Imai et aI. '

Let us now discuss the experimental results for 1/Ti of
CuII in YBa2Cu307 —y in the light of the calculated re-
sults. As mentioned in the Introduction, the 1/Ti vs T
curve for CuII shows no hump and a sharp decrease just
below T,. The value of 1/T~ is much larger than the value
estimated from the Korringa relation. To compare with
experimental results which are usually plotted on a log
scale, we plot the logarithm of the values of 1/Ti and T in
the case of U„N(0) =0.8 and 0.9 in Fig. 8. As seen in Fig.
8, the curve shows no hump below T,. When temperature
decreases from T„the curve sharply descends near T, and
tends to the BCS value at low temperatures. This temper-
ature dependence is in good agreement with the experi-
ments of NQR of Cu tr in YBa2Cu307 —~. '" ' It is noted
that the observed uniform susceptibility in YBa2Cu307 —y
is not much enhanced compared with the value of the
Pauli paramagnetic susceptibility. ' This fact indicates
that the enhancement of I/Ti in the normal state is
caused by the antiferromagnetic spin fluctuations. Their
wave number are about (4 A.) '. The superconducting
coherence length (0 is about 20 A in the ab plane and 2-4
A. along the c axis. Hence, the simple RPA calculation
cannot account for a sharp decrease in the temperature
dependence of 1/Ti just below T, . It is essential to take
account of the strong temperature dependence of the
spin-Auctuation vertex function.

In the present theory the Knight shift is proportional to
E~ (0)/[1+L ~ (0)] K& (0) and L i(0) being given by
(3.36). Since the enhancement factor 1/[1+Li(0)] is
drastically reduced in the superconducting state, we pre-
dict a much steeper decrease of the Knight shift below T,
than that expected from the BCS theory. Actually, the
very steep decrease of the Knight shift of Cu Ir has been
observed in the superconducting state of YBa2Cu307 —y
by Kitaoka, Hiramatsu, Kondo, and Asayama. '

The gapless superconducting state appears only near T,
and the superconducting state with the energy gap
remains at low temperatures. Therefore, the present
theoretical result is consistent with the experimental re-
sults of tunneling and optical measurements in which the
clear energy gaps have been observed at low tempera-
tures. '

As seen in the present paper, the anomalous behavior of
the nuclear relaxation observed in YBa2Cu307 —y is ex-
plained on the basis of the BCS pairing if the strong corre-
lation effect is taken into account. Consequently, we con-
clude that together with other experimental results of the
oxide superconductors the BCS type pairing is still re-
sponsible for the high-T, superconductivity even in the ox-
ides. However, for the origin of the large binding energy
accountable for the high transition temperature we may
need some other mechanism than the phonon mechanism.
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APPENDIX A

The WT relation at finite temperatures (3.21) can be
easily obtained by extending the derivation at T=O K, so
that we derive the WT relation at T 0 K in this appen-
d1x.

Consider the generating functional of the Green's func-
tion.

(A2)

fO

W(q, gt) =— (dy&yt)exp i d x[L(x)+ —,
' hcr3(x)+rit(x)y (x)+yt(x)rl (x)] (Al)

where g (x) and ri (x) are the source fields, L (x) is the Lagrangian density of our system and is assumed invariant un-
der the spin rotation, y exp(iso;) y, and o3(x) and N are defined by

03(x) = y) (x)y) —
yY (x)yt (x)

r

(dy+yt)exp i„"d x[L(x)+ —,
' hcr3(x)] (A3)

For an infinitesimal spin rotation

y(x) y(x) +ieo; y(x),
the variation of the generating functional (A 1) is given by

(A4)

6W'[ri, ref] =i~ d4x8( —,
' hyt(x)(o3, o;)y(x)+ [qt(x)cr;y(x) —yt(x)cr;q(x)])„„t, (AS)
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where

( )„„1=— (dy&yt)( )exp iJ d X[L(x)+ —,
' ho.3(x)+zit(x)y (x)+yt(x)q (x)] (A6)

Since the transformation (A4) is only a change of integration variables in the functional integral (Al), the variation
(A5) should vanish. Thus, in the case of o; =o+, Eq. (A5) leads to the relation

g d'x(ri7 (x)yi (x) —
liras (x)gi (x)+ha+(x))„„g=0.

In the Nambu representation Eq. (A7) is expressed as

d'x(rilt(x) yj(x) —yt(x)qj(x)+ho+(x))„„1=0.
Operating 8 /b, (xl)crib(X2) on Eq. (A8) and taking the limit of ri, ri 0, we can derive the relation

Z3S(x 1 x2) zl zl S(x2 x 1 ) Z3 = l d xz3(0
~
To+ (x)+(x 1) '+(X2)

~ 0(p)) z3 .

We define the Fourier transformation of the three-point function as

(A7)

(AS)

(A9)

(0
~
Tcr~(x)+(xl)'+(X2) ~0) = [i/(2m) ] d pd q[ —iS(p)z2'S( —p —q)

+i@(q)S(p)I +(p; —p —q)'S( —p —q)]e' "' ' " ' "', (A10)

Substituting Eq. (A10) into Eq. (A9), we obtain

Z2'S '( —p)+S '(p)Z2=hz2 —hg(0)I +(p; —p) .

(Al 1)

Eq. (B3) is rewritten as

1 1

hg(0) " po+h/2 —ro

Since S '(p) is written in the form

S '(p) = (pll+ —,
' ) —

eF Z3
—=(p) —II(p), (A12)

1

po h/2 ro
Qo(ro, p) .

(ss)
Eq. (A 1 1) gives the WT relation at T=0 K,

z2[:-(—p)+II( —p)]+ [:-(p)+II(p)]'Z2 =hg(0)I (p; —p) .

Here, we also used the relation

Qo( —ro,p) = Qo(co,p) . (B6)
(A13)

AppENDIx B

In this appendix we derive the renormalized vertex
function (3.29). We assume that the real part of the ver-
tex function I P~(p; —p) takes the form

Rerg~(p; —p) =A(p)o«a«Z2,

In the case of no external field, Eq. (BS) is reduced, by
taking the limit of h 0, to

1
fO

A(p) =U
0 ~ dm — Qo(N p) (B7)

X o po po

Let us now renormalize the function A(p). When the re-
normalization condition (3.25) is imposed on the vertex
function, A(p) have to satisfy the relation from Eqs.
(3.25), (Bl), and (87):

Re[Z21I'S( —p)+II 1'(p) Z2] =hg(0)A(p)8 1'Z2. (B2)

and the magnetic field dependence of:- ~(p) is negligible.
In this case the WT relation (3.22) becomes

U„=A(0, pF )
r

1

g(0) 8po"
dco Qo(co, pF)

pp co po 0 T Te

A(p) =U+ dco
hg 0 "

1 + 1

pp copp co
Qo(co, p;h),

(B3)

where Qo(co, p;h) is the spectral function of the self-
energy function along zp direction in the presence of h.
Since we have the relation

This equation gives the following relation between the zp

component of II'~(p) and A(p):
r

Thus, eliminating the bare coupling constant U in (B7) by
the use of Eq. (B8), we obtain the following renormalized
function A„(p):

A„(p) =U„+ 1

g0 8po

dco Qo(ro, pF)
pp co Po 0 T Tc

Qo(m, p;h) = Qo(m ——,
' h, p), (B4)
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The function e'~(p) in Eq. (3.7) can be obtained as
follows. Using Eq. (3.26), we have

Rei.j~(p; —p) a«a«= e, (p)e, ( p—)+~'e(p) e(p)

In the low-energy region where we are concerned with the
S e'T

second term is very small, because e —1 =0 for p0=0.
Thus, neglecting the second term on the left-hand side of
Eq. (Bl 1), we have

S e'T
(Bio)

p p/T+

Considering Eqs. (B 1) and (B1 0), we request the relation,

e"~'—l
''

ei (p)ei ( —p)+ tr'8(p) 8( —p) =A, (p) .

ei(p) =j'A, (p). (B12)

&(p) = — dco QA„(p) . (B13)

Here we assumed e~(p) =e&( —p) for simplicity. The
spectral function 8(p) can be obtained from the dispersion
relation,
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