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Phenomenological theory of the superconductivity phase diagram of U, „Th Be13
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Possible phenomenological theories to describe the phase diagram of U& Th Be» based on a
crossing of two different types of anisotropic superconductivity at x =0.018 are examined. In this
description the second transition for x )0.018 is interpreted as a further superconducting transition.
It is shown that measurements of the critical magnetic field support this assumption. The effects of
uniform pressure and the specific-heat measurements are qualitatively in a good agreement with
these theories. The large peak in the ultrasonic attenuation in the low-temperature phase in the re-

gion x) 0.018 is explained by a dissipative domain-wall motion, induced by the sound wave, which
in this case couples in both [001] and [111]directions. The theory predicts nonunitary supercon-
ducting states below the second phase transition. Such states have a finite local spin polarization in

each unit cell, which leads to an explanation of zero-field relaxation rate data in muon-spin-rotation
experiments.

I. INTRODUCTION

Since the discovery of superconductivity in the heavy-
electron metals, CeCuzSiz (Ref. 1), UBe» (Ref. 2), and
UPt3 (Ref. 3), there has been a continuous eff'ort to estab-
lish the symmetry of the superconducting states (for re-
cent revi'ews see Refs. 4 and 5). By using group-
theoretical methods, a complete classification of the pos-
sible symmetries of the superconducting phases has been
obtained by several groups under the the assumption that
the order parameter is constructed only from basis func-
tions belonging to a single representation. ' The
discovery of a complex phase diagram when Th was sub-
stituted for U in UBe, 3 has led to a special interest in this
alloy system. " Several models have been proposed, but
at present there is no consensus on the interpretation of
all experiments. This alloy series, U, Th Be&&, will be
the focus of this paper. Our aim will be to seek a con-
sistent explanation of all outstanding experimental data
within a single phenomenological model.

First, we briefly recapitulate the key experimental re-
sults: (a) specific-heat experiments by Ott et al.
discovered a sharp minimum in the normal-super-
conducting transition temperature T, (x) at x =xo
( =0.018) and a further second-order transition at T,2

( & T, ) for values of x )xo leading to a phase diagram of
the form shown in Figs. 1(a) (Ref. 12), (b) Batlogg et al.
found a pronounced peak in the ultrasonic attenuation
for longitudinal sound propagated along a [100] direction
at T= T,2 and an increased level of attenuation for
T & T, (by contrast, at T=T, there is only a very small
anomaly for x )xo) (Ref. 13). Later experiments by
Bishop et al. showed a similar (but somewhat weaker) be-
havior for longitudinal sound along [111]directions' {c)
Lambert et al. found a marked difference in the pressure
dependence of T, for samples for x &xo and samples
with values of x )xo (Ref. 15) (d) Rauchschwalbe et al.
found a pronounced anomaly in H„{T) at T = T,z with a

marked increase in H„ for T & T,2 (Ref. 16) and lastly (e)
Heffner et a/. found a marked increase in the zero-field
pSR linewidth as T decreased below T,2 in a sample with
x =0.033 ()xo) (Ref. 17).

There are several theoretical proposals to explain part
or all of these results. In the first proposal, Joynt, Rice,
and Ueda proposed that the anomaly in T, (x) arose be-
cause two different representations crossed so that the su-
perconducting states for x (xo and x )xo belonged to
different symmetries. Further, they proposed that for
x )xo, the second transition at T,2 was between two
different combinations of basis functions derived from the
same representation. From this latter proposal they pre-
dicted that the anomaly in ultrasonic attenuation, which
they assumed to be due to a coupling to domain walls be-
tween different superconducting domains, should be ab-
sent for [111] longitudinal waves —a prediction which
was disproved in later experiments by Bishop et a/. ' In
the original ultrasonic study, Batlogg et al. proposed that
the anomaly at T, was analogous to that observed at
itinerant antiferromagnetic transitions, and that transi-
tion was to an antiferromagnetic state. ' The subsequent
@SR experiments by Heffner et al. have been taken as
support for this proposal. ' In addition, a microscopic
model of the coexistence of antiferromagnetism and su-
perconductivity was examined by Machida and Kato. '

However, it is not clear why T, (x) is anomalous in this
model and the H, &

measurements of Rauchschwalbe
et al. pointed to an essential change in the superconduc-
tivity and even an increase in the superconducting con-
densation energy. This led, then, to the proposal by
Rauchschwalbe et al. that there were two essentially
decoupled parts of the Fermi surface with one going su-
perconducting at T, and the other at T,2 (Refs. 16 and
20). However, on microscopic grounds this is not so easy
to understand unless there is a symmetry change at T,z.
Very recently, Kumar and WolAe have examined a
simplified model with crossing s- and d-wave supercon-
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ductivity.
In this work, we wish to return the proposal of Joynt

et al. of two crossing representations and examine within
a Ginzburg-Landau theory the form of possible phase di-
agrams for values of x near to xo. There are very many
possibilities both as regards the symmetries that cross
and the many unknown parameters in the terms in the
Ginzburg-Landau expansion that couple two representa-
tions. A complete investigation would be very tedious
and have little use. Instead we will concentrate on the
simplest examples which are compatible with all the ex-
periments and are most tractable analytically. Even so,
there are many possibilities, and in the end we will only
be able to conclude that this theory can consistently ex-
plain all results but does not uniquely identify the sym-
metries involved. Our proposal, then, is that the super-
conducting state at T (T, belongs to single but diff'erent

representations in the regions x & xo and x )xo, and that
the transition at T,2 is to a state formed by a combination
of both representations. It is on this latter point where
we difFer from the proposal of Joynt et ah. The examina-
tion of this proposal is the purpose of this paper.

The outline of the paper is as follows. We begin with a
summary of the standard group theory and then discuss
the pressure experiments of Lambert et al. The form of
the Ginzburg-Landau expansion when there is more than
one relevant representation is discussed in Sec. III. Then,
in Sec. IV we begin the study of crossing representations
with the case (I „I 3), and, subsequently, the cases
(I „15) or (I i, l 4). In Sec. V the crossing of two higher
dimensional representations is treated and some of the
possible phase diagrams are presented in Sec. VI. Then,
we discuss, in turn, the specific-heat experiments (Sec.
VII), the ultrasonic attenuation experiments (Sec. VIII),
H„experiments (Sec. IX) and lastly, @SR experiments
(Sec. X). Finally, we summarize our results in the last
section (Sec. XI).

d(k)= g A,(I, m)d(l, m;k),
I,m

(2a)

g(k)= g A(l, m)g(l, m;k) . (2b)
I,m

The coefficients A,(l, m ) transform under the elements
of 0 like the basis function of I . We can use these
A,(l, m ) as order parameters in a Ginzburg-Landau ex-
pansion of the free energy I'. In the standard approach
we assume that only one I"; of the previously mentioned
irreducible representations is relevant for the phase tran-
sition, namely that for which the transition temperature,

TABLE I. Vpper part: Basis function d( I,m; k) for p-wave

pairing with spin-orbit coupling. The momentum space
[k„,k~, k, I and the spin space [x,y, zI are connected in the
product I 4 r4=r&r3 I 4 I & of the underlain cubic sym-

metry (point group 0). l denotes a unit vector in I direction.
lower part: Basis functions g(l, m;kl for d-wave pairing. In
the cubic symmetry d-wave states belong to the two irreducible
representations I 3 and I & of the point group O.

d(r, rn, ;k)

—(xk +yk~+zk, )v'3

— —(2zk, —xk„—yky )v'6

—(xk —
yky )v'2

(three-dimensional) (see Table I). They can be derived as
the components of the decomposition of the product
I 4 I 4, where I 4 is the vector-and spin-1 representation
of O. Similarly, for the even-parity case the representa-
tion I 3 and I"

s supply an orthonormal basis g(I,j;k) for
the d-wave states (see Table I). An arbitrary gap matrix
can be expanded by using the forms

II. THE CROSSING OF TWO REPRESENTATIONS

h(k)=i g d~(k)&'8~,
J =X,g, Z

b, (k)=i/(k)o ~, (lb)

where o' J denotes the Pauli-spin matrices. Note we have
included spin-orbit coupling derived terms in the pairing
interaction. In the odd-parity case there is a set of ortho-
normal basis functions d(I, m, k) belong to each irreduc-
ible representation I of the cubic point group 0: I

&

(one-dimensional), I 3 (two-dimensional), I 4 and I z

We begin with a brief recapitulation of the standard re-
sults. ' The gap function

b, ii(k)= —. g V
iver

(k, k')(ckrc k~ )
k, yy'

is a 2X2 matrix [ck (ci, ) is the creation-(annihilation)
operator of a Bloch spinor] and V

&
.(k, k') is a matrix

element of the pairing interaction] and with the standard
notation we describe an odd-parity state (p wave) by a
vector d(k), and an even-parity (s wave or d wave) by a
scalar P(k):

—(yk, —zky )

—(zk„—xk, )v'2

—(xk —yk, )v'2

'- (yk. +™k,)v'2

—(zk„+xk, )

'- (=k, +yk. )v'2

Pll, m;k}

—(2k, —k —k )v'6

(I 2 k2)
v'2

v'2k' k,
v'2k, k„
v'2k ky
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TABLE II. Invariant fourth-order terms in the GL expansion corresponding to a single representa-
tion I . The order parameters are successively numerated through all representations (A.;;i =1, . . . , 9).
The coefficients Pi, P;, it;, and rI,' are not determined by symmetry arguments and, therefore, are regard-
ed as arbitrary eligible.

r,
13
14
Is

el~, l'
Pi(1~2I'+1%1')'+P2(~2 ~3 ~2~3 )'
rI (lA, l'l'+i) lA. 'l'+77 (lA, l'lA, l'+ lA, l'lA, l'+ lA, l'lA, l')
pi( I

&I')'+
pi I &'I'+ gi(1~7I'I ~s I'+

I ~s I'I ~91'+
I ~91'I~il')

T,(I, ), is the largest among the T,(I').
The free energy per unit volume can be written in a

Ginzburg-Landau expansion as

F =a A(T) g lA(1 m)l +fr(A ) (3)

()
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\
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FIG. 1. (a) Experimental phase diagram. The phase diagram
shows the behavior of T, in dependence of the Th concentration
x. The empty dots denote the onset of the superconductivity,
the black dots the additional transition. All these transitions
are second-order transitions. The data are from Ref. 4. (b)
Ideal phase diagram. xo separates the region I and II. In re-
gion I, I is the dominant irreducible representation [T,(I,x)
& T, (1 ', x )] and in region II I" is dominant [T,(I,x )

& T,(I",x)].

with A (T)=T/T, —1, and rx is a constant of order
T, N(EF) [X(EF) is the density of states at the Fermi en-

ergy]. The fourth-order terms written as fr(A, ) contain
all combinations which are invariant under all sym-
metries of the system (Table II). The determination of
the minimum of Fr (A, ) for every I leads to a complete
classification of the possible superconducting phases
within the single representation restriction.

Returning to the U& Th Be&& alloys following Joynt
et al. , we wish to explain the nonmonotonic behavior of
the critical temperature by a crossing of the values of
T,(l,x) of two irreducible representations 1 and I" at
xo. For x (xo (region I) I' is the relevant representation
for the superconductivity (T,(I,x) & T,(I",x ) }, but for
x & x0, (region II), I" becomes relevant
( T, (I",x ) & T,(I,x) ) [see Fig. 1(b)]. Therefore, two
different types of supeconductivity appear in these two

T, (I,x,P) = T,(l,x) K(I )P-,
T, (I",x, P) = T, (1 ', x) K(I")P—,

(4)

then the experimental values of the coefficients are
K(I )=0.022 K/kbar and K(I")=0.07 K/kbar. Note a
linear dependence is in rather good agreement with ex-
periment. Near xo we can expand T, (I (I"),x) with
respect to x also,

T,(I,x }=T,(l,x )+ca( xxo),

T, (1 ', x) = T, (l"',xo) + b (x —xo ),
with xo=xo(P =0). The linear coefficients a and b are
slightly pressure dependent; though we approximate
them simply by the values at P =2 kbar: a = —15 K and
b =13 K. The critical xo(P) can be calculated now from
the relation

2.5
O

o

o
CL

C

O

r
1

iV

0 2 6
pressure p (kbar)

FIG. 2. The dependence of xo on an applied uniform pres-
sure. The data of the black points are extracted from the exper-
imental results of Ref. 15. The dashed line is the linear ap-
proach in Sec. II.

regions of Th concentration.
The recent series of experiments on the inhuence of a

uniform pressure on the transition temperature in
U, „Th Be&& for different values of x by Lambert et al.
support this assumption. ' They observed a strong
suppression of T, with pressure, but an important result
was the very different values of the coe%cient dT, /dP in
the two regions I and II.

If we write
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T, (l,xo(P), P) = T,(I ', xc(P),P),
I — I"

xo(P) =xc+ P =0.018+0.0017P .
a —b

The form of the P dependence of xo is well described
by this approach (Fig. 2). The deviation for large values
P, however, is due to the pressure dependence of a and b
which was disregarded. The model of a crossing of two
di6'erent types of superconductivity at xo gives a con-
sistent description of the (P, t) phase diagram.

III, THE GINZBURG LANDAU EXPANSION NEAR xp

For values of x =xo, both representations I and I"be-
come relevant since their T, values are nearly equal. The
Ginzburg-Landau (GL) expansion of the free energy,
then, is composed of three parts: two separate parts F„
and Fz for the irreducible representations I and I", re-
spectively, and the terms, which coupled the order pa-
rameters of these two representations,

F(A, ) =F (A(l, m))+F„,(k(I ', m ))

+Fr r. (A(i, m), 7((I"',m )) .

F& and F& are known from Sec. I. The coupling terms
which connect the order parameters must be invariant
under the operations of the point group 0, the time re-
versal, and the U(1) gauge symmetry. No such invariant
second-order terms can be constructed. The order of the
first possible invariant terms is four. They can be easily
formed by considering the fourfold Kronecker products
of the representations.

(Sa)

(Sb)

(8c)

(Sd)

The asterisk denotes the complex conjugation of the
corresponding order-parameter basis. Note that we have
to add the complex conjugate in Eqs. (8b) —(Sd) in order
to satisfy time reversal. In general, before adding the
complex conjugate terms, we can multiply these terms by
global phase factors exp(iy). To fulfill the point group
invariance, we decompose these products and keep only
the I, components with its (Clebsch-Gordan) combined
basis function, which are the only invariant combination
terms of fourth order. Then we select the basis functions
in order to obtain only linearly independent invariant
terms (Table III). Fr „. is a linear combination of these
terms with a set of undetermined coe%cients 8;.

The combinations in Eqs. (Sa) and (8b) can cause new
second-order transitions. The latter terms link the phase
factors of the two-order parameter basis functions, as will
be shown in the following sections. Eqs. (Sc) and (Sd) are
linear in the order parameter of one representation, and
cubic in the other one. They can cause first-order transi-
tions and a "screening"or suppression of some second-
order transitions expected from Eqs. (Sa) and (Sb). Be-
cause of the rather complicated structure of these cou-
pling terms, and the many possibilities, we cannot discuss
the general behavior of the GL expansion. Instead we
will examine only some special cases to show how various
types of phase diagrams can arise.

TABLE III. Invariant fourth-order ter'ms, which couple the difterent representations. These combinations are obtained from the
decomposition'of the fourfold Kronecker products of the two involved representations (r, I ) and the application of the Clebsch-
Gordan- formalism. The 0; and y; are real numbers and not determined coefficients and phase factors, respectively, of these terms in
the GL expansion.

(r, I")

(r„r,)

Product

r,*g r, g r,'e r,
r*gr*gr gr
r,*g r,g r,'e r,
r*, g r, g r,*g r,

Invariant terms

[A. , ['(]A,,['+ /A, , j')
e 'A,

&
(Az+A3)+c.c.

e A. , (A3~A3( —2).3~X3~ k3 3) C C.

no I l component

Coefficient

L9l

Oq

03

(r„r.) ri I )r4 (3 r4
I l*rl I 4r4
rl r4r4 r4

r,*g r, g r', er,

I ~& I'(141'+ 141'+ I%I')

e k,* (A, +A, +A, )+c.c.
e'

A& [A4(7(.s*4 As~6 )+7(s(k6 k4 47(,4 )

+A.6(A,4 A, s
—

A, 4A,s"))+C.C.

no rl component

(r„r,) rl rlrs rs
r,*g r,'g r,e r,
r,*e r,g r,*g r,

r,*g r, g r,*e r,

I&, I'( I&7I'+ f&, l'+ I&91')

e A,
*

(A. +~ +A, )+c c

~] [A7(ks A9+A8A9 )+As(A9 A7+A9A7 )

+~9(k7 ks+ A7ks )]+C.C.

no I I component
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Product

TABLE III. {Continued).

Invariant terms Coefficient

p gtg p p g p

13l 3I 4I 4

13I 3I 3&8)14

& I~21'+1%1'}(I) 41'+1%1'+141')
& 141'—1~21')(

I ~.l'+ I
~ I' —2141')

+&3(X2 X3+XP3 )(lzs1' —IX41')

e '{k2 +A, 3 )(k4+Xs+k6)+c.c.
e [(A3 —

A2 )(X4+k,—2Ag)

+2&312 I,, (A,,—A 4) ]+c.c.
e '[A2*[7(4(A,, 7(g

—7(57(g )+7(5(7(5 A4
—

Agley )

—216(A4As —A4A5*)]+&3A3*[7(5(Ag X4 —kgk4 )

~4(~s kg ~sag )] ]+c.c.
e'"[&3zz [Xs(4~4+)18~4)+~4(~s~8+) Pg )]

+13 [X4(A57(8+7(5k')+As(AQA4+AQ)14)
—2A,,(A4 A, 5+A,425 ) ] ]+c.c.

no I ] component

r,*e rsvp rs'e rs

(1)1,
I

'+
I A,

I
')( I)(, I'+

I
k I'+

I
A. I')

(1~31'—1~21'}(1~71'+
1 ~8 I' —21~91')+3 3(4 ~3+4~3 )( I ~8 I' —1~71')

e {g* +g* )(g +k +g )+c c

e [(7(3 —kz
' }(A7+X28 —2A 29)+ 2&3A2*A3*(A8*'—7(7*')]+c.c.

e '[7(,z [7(,7(Ag 71.9+/LgA9 )+7(.g(A9 A7+7(,97(,7 )

2A9(k7 Ag+ A7Ag ) j ++3k3 [Ag(A9 A7+A9A7 )

X7(kg X9+kgk9 ) ] ]+c.c.
e [V3A2 [7(7(Ag Q9+AgA9 ) Ag(A9)17+7(9A7 }]

+7(3 [X7(Ag A9+AgA9 )+kg(A9 A7+ 7&97(7 )

—2A, 9( k7 kg +A 7k/ ) l ]+c.c.
no 1

&
component

p g p pglg p

I 4 14l"4 1 5

(&41'+ I
&51'+ 141'}(1~71'+

I
~81'+1~91'&

(lx I'+ lx I' —21m I')(Ix I'+ lx I' —21m I')

+3(I).l' —l~ I'&& I& I' —l~ I')

(~S ~6—~5~6 )(~g ~9—~g~9 )

+(A,6 k4 —X6A,4 )(k9 k7 A9A7 )

+(A,4 A, s
—A.4A, s )(A.7*A,g

—A.7A, g )

{As A6+ ksk6 )(Ag k9+ Agk9 )

+(A.6 A,4+A,6A, 4 )(A,9 A7+A9A7 )

+(k4 ks+X4A, s )(A.7 A, g+A.7A, g )

e '(A.* +A,* +k*2)(g +A, '+g~)+c c

e [(A.*'+A.* —2A, *')(A,'+7(, —27(, )

+3(7(,4' —A.s )(A,,—A,28)]+C.C.

e [A,s kg AgA9+A47&. Q k7A9+A4)1. 5 X7Ag]+c c.

e '[~4 ~7( i~81' —1~91')+4 ~8(141'
1~71')+ag 4(lt71' 141')] c c.

e [A, *A,*(A2 —7(,') + A, ")1.*(k —A.')
+kg A9 (A,,—A,,)]+C.C.

e'""[X7'X4(
I zs I' —

I z, l')+ Xg*zs(
I z, l'

—
I ~ I ) +a*4( I a I

' —
I t, I')]+C. C.

11[ggg4(g2 g2)+g4g4(g2 g2)

+ 7( 9 )1 5 ( 7( 4 k5 ) ]+C. c.

]0
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IV. THE COMBINATION OF I
&

and I; A. I, and I

In the next three sections the question, whether it is
possible to fit the phase diagram [Fig. 1(a)] with the pro-
posed model will be examined. We will restrict ourselves
to phase diagrams where (1) the state in region I has some
point zeros in the gap in order to explain the T law of
the specific heat in UBe, 3 at low T; (2) at least one addi-
tional second-order transition must occur in region II
below T„but none in region I for small values of
x( (0.015). There is a rich variety of additional transi-
tions possible similar to the situation under uniaxial
stress that we examined previously.

We begin by discussing one of the simplest examples,
namely the crossing of the I, and I 3 representation.
Even for this case a complete analytic solution is not
possible —a fact which reAects the complexity that can
occur in many component CxL theories. Often only nu-
merical investigations are tractable.

Specifically in this example, it is the term due to the
combination I,g I 3(3) I 3I 3 which forms the main obs-
tacle for a simple treatment.

f= & (T)I~ I'+Pl~ I'+ &3(T)(I~ I'+ I~3I')+P (I~ I'+ I~3I')'

+P~(~2~3 —~2&3 )'+8~ l~~l (f&2l'+ f&3f')+ ' [e' 'Ai'(A, ,+A, ', )+c.c.]

with

03+ ' [e'"A,,*(A,, IA,,I' —2A,,IX, I' —A.,*A,,')+c.c.],2

2;( T)= T/T, ( I;/x) —1 .

In the future we shall use the short notation T; = T,(I;,x). A transformation in the I 3 vector space leads to a more
convenient form of I', setting1, , i—(A,2+I, ', ), A,3= —(A,2

—A,3),2 2

and writing

A,z= loafe' 'cos@, A,3= fife' 'sine/i .

This transformation is closely related to the gap function five of Blount's classification [d(k) —xk„+eyk +&2zk„
&=e' " ]. The new form of the free energy has the advantage that the explicit dependence on the phase factors is re-
stricted to the L92 and 03 terms and is

f= & (T)I&,I'+Pl&, I'+ &,(T)I&I'+Q, I&I'+g, f&, I'I&I'+g, f& II&I', (10)

where Q, =P, —P2cos (2$), Q2=8, +82sin(2$)cos(2$, —$2
—

P3
—y2), and Q3=83sin(2$)cosit cos(((), +$3—2/2 —y3)+sing cos(P, +Pz

—2/3 —y3).

The order parameter immediately below T, should be-
long to a single representation (SR) and at lower tempera-
tures may make a transition to a combined representation
(CR) phase I",eI 3. Neglecting for the moment the 83
term, there are three possible SR states, according as

terms, so that sixth-order terms are required. However it
is beyond our intention to extend the scope of this work
to also examine sixth-order terms.

It is further possible to calculate the CR state from Eq.
(10),

(1 la)

with

3Q2
—

i Q~ z
A i Q2

—2PA3

2PQ i
—

Q2 2PQ
&

—
Q2

(12a)

A3
, la, f=o, it=

2g i

P, &0,

0, —p2)0.

(1 lb)

(1 lc)

T(o)
3 (12b)

As mentioned in Refs. 6 and 7, the order parameter of
Eq. (11b) is not fully determined by the fourth-order

Note that this state is completely determined even for
p2) 0. Considering now the special case T& ) T3 and
82) 0 (y; =0), we see at Tp' an additional second-order
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transition replacing the SR phase of Eq. (1 la). The value
of itj is fixed at rr/4 [as long as IA, I &Oz(A. , I /2Pz, similar
to the condition in Eq. (21)] and Pz+$3=m (P, =0).

If we turn on the 03 term, this additional second-order
transition can become unstable against a first-order tran-
sition to a CR phase, since this term introduces quasi-
third-order combinations of IA, I

which lead to such insta-
bilities. The angle g cannot be fixed in the CR phase, but
deviates smoothly from ~/4. Taking into account, how-
ever, that Qz is zero for the considered values g=m. /4
and Pz=$3=0, we show in the Appendix that the
eff'ective term in IA, , I

and IA, I
related with Q3 do not

prevent the continuous transition at T
&

. This holds true
if the modulus of 03 is not much larger than (92, otherwise
it would be more favorable to choose Pz and P3 so that Q3
adopts the attainable most negative values in the CR
phase (e.g., Pz=$3=m. ). Therefore, in the case of "large"
03 the additional second-order transition is preempted by
a first-order one (a jump from the SR phase with A, =O to
a CR phase with finite A, and the most negative value for
Q3). It is a question of a competition among the Oz and
L93 terms, but it is very dificult to give a good threshold
for the ratio Oz/O3 (see Ref. 23).

Under the other assumption, T3 & T&, a SR phase of I 3

is prevented in the case I3z &0, since we have a finite ad-
mixture of the I

&
component due to the linear depen-

dence of the O3 term on IA, , I
as proved in Ref. 10. In the

case Pz &0, only a first-order transition can take place
from the SR phase [Eq. (1lc)] and the CR phase (see the
Appendix).

Since the continuous attainable CR phase, including
the O3 term (O3 & Oz), has a rather more complicated form
than in Eq. (12), and because of a group-theoretical
reason which becomes obvious in Sec. VIII, we prefer not
to discuss this example further in connection with the ad-
ditional phase transition. For this purpose the next ex-
ample is more suitable.

B. I
&

and I 40r I &

Both combinations (I i, I 4) and (I i, I &) are very simi-
lar. For a reason which will become clear later in Sec. 8,
we concentrate on the choice (I i, I &). Writing again,

ip.
A., =IX~ fe ', the Gl. expansion takes the form in this
case

f=a, (T)fz, fz+pfz, f'+a, (T)(fz, f'+I) I'+fz I')+ '(fz I'+ IX I'+ IX I')'

+g'[I~ I'+I~ I'+I~ I'+21~ I'I~ I'cos(2@ —2(t )

+2
I Xz I I

A 9 I
cos(2cb7 —2@9)+2

I
A s I I k9 I cos(2@8—2/9) ]

+g3( I ~7I'I ~s I'+
I ~z I' ~9I'+

I ~8 I'I ~9I')+ Oil ~i I'(
I
~7I'+

I
~sf'+

I
~9I')

+Ozlilz[la, Izcos(2qS7 —2cbi+yz)+ I X81 cos(2$s —2@,+yz)+ I A9 I cos(2/9 —2@,+yz)]

+Ozl~ill~7ll~sllz91[cos(K&9 f s) cos($ 7 Pi)

+cos($7 $9)cos($8 —P, ) +cos( Ps
——Pz)cos($9 —P i ) ] . (13)

A, , =As=k9=0 .
2(z)', + z)z')

(14)

There are very many possibilities now. We restrict our
attention to the most interesting case 0(4gz(g3. Then
the SR order parameter of I 5 consists of only one com-
ponent (X7, A, 8, A, 9), e.g. , T(o) —T5 1

1 —G G=
1

1 —G
T5

2(zl', +z)z)
(16a)

and the transitions I 5~ I & I 5 and I,~I, I 5 occur at
temperatures

The SR order parameter of I, has the form quoted al-
ready in Eq. (12a). Second-order transitions between a
CR order parameter (I ie I &) and both SR phases are al-
lowed. The CR phase has the order parameter

T(0)
5

1 —G'

T5
1 —G'

T]
2P

(16b)

respectively, where Q =O& —
I Ozl. For the existence of the

CR state it is necessary that

A, Q 2PA5 A~Q —2(g', +zlz)g,
4@~i+nz) Q' — 4P(q', + q', ) Q'—

'V2

2' 2' 0, &0, 4/3( rl', + z)z ) —Q & 0,
=0,$7 —

p 7T f2 37T

2
0, &0,

and, additionally, it is required that for (T& & T5) Q &2p,
and for (Ti & T&)Q &2(z)'i+z)z). Note that these second-
order transitions are not affected by the 03 term, which
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TABLE IV. CR states of the combination (I &, I 5}. These even- and odd-parity states are nonunitary and 12-fold degenerate. The
symmetry is orthorhombic.

Odd-parity states d(k) Even parity states g(k)

02&0

yk, +zkv

(xk +yk +zk, )+ — X —fr
. X ~ zk„+xk, -

xk +yk
v'3 ( k.'+ ky'+ k,')+v'21K,

I

k kv

02&0

yk, +zkv

(xk +yk +zk )+j X; ' X zk +xkx v Q2 '
2

xk +yk,

' (k„'+k,'+k,')+i&2lz,
l

k kv

vanish at all temperatures for this parameter choice.
Therefore, in this case, a series of three consecutive
second-order transitions can take place (e.g. , T& & Ts,
normal —+SR(I, )~CR(I,SI 5)~SR(I 5), where the
third transition only occurs if Q) 2(g', +gz) without
violating the condition for the existence of the CR phase).
Note the symmetry of the F&+ I ~ phase is orthorhombic
and d(k) is nonunitary in this phase (Table IV).

Outside the range (0&4gz & g3) the analysis of F is
much more complicated. Of course there can be addi-
tional second-order transitions in the superconducting
phase, but there are also instabilities yielding first-order
transitions which are rather diScult to treat analytically
and even numerically. We shall not pursue this region in

accordance with the philosophy of this work, which is to
restrict our attention to the simplest cases with phase dia-
grams possibly relevant to experiment.

V. COMBINATIONS OF TWO
HIGHER DIMENSIONAI. REPRESENTATIONS

A. I 3 and I 40r I 5

The behavior of the combinations (I 3, 1 4) and (I 3, I s)
is very similar. So we consider only the former and again
only certain cases. If we use the same transformation for

ip-I 3 as above (A. =
I
A,

I
e '), the GL free energy has the

form

f=fr +fr + ~g I
~l'(

I ~pl'+ 1~51'+
I
~61')+ ~2 I

~ I'»n(2@) [(1~41'+1~51'—21~6I')co»P+ &3(
I ~s I' —1~41'»i»P]

+83IA I sin(2@)[ II+I cos(2/4 —
q&2

—P3)+ IAsI cos(2@5—
P2

—P3)+ IA6I cos(2/6 —
@2

—P3)]

+04IXI Icos g[2IS,I'cos(2P, —2P, ) —Ia, l'cos(2P, —2@,) —Ia, l'cos(2P, —2P, )]

+sin @[2IA6f cos(2qS3 —2@s)—IA4I cos(2/3 —2/4) —
IAsf cos(2@3—2&$5)]

+&3 sin @[I A4 I sin( 2@4—2@3 )—I Xs I
sin( 2@s—2/3 ) ]

—&3 cos'@[ I ~, I'sin(2@, —2@,) —I
A., I

'»n(2@, —2$, ) ]I,

with b,P =
P2

—P3. In addition, there are I 3 I ~ I 4 I 4
terms which have properties similar to the O3 term in Sec.
IV B. For simplicity we have set y3=y4=0. Similarly,
to the previous section there are second-order transitions
between the SR and the CR phases in the case
0&4', &q, and again the other regions of the g2-g3-pa-
rameter plane lead to I 4 states which cannot be simply
analyzed. So we concentrate on this case and also take
P2) 0 in the I 3 part off to avoid the sixth-order terms.

The SR order parameters for both representations have
the similar forms as in Sec. IV. The CR phase can be cal-
culated simply under the condition that O2, O3, and O4
have values so that it is possible to miminize the corre-
sponding parts of the free energy separately with respect

to the phase factors. Thus, let us assume that O2, 03, and
O4 are all positive. This is only one of many possible ways
to satisfy this condition. The phase di6'erence

Ijk3 is determined now only by the Oz term, lead-
ing to the condition

(I~ I'+ I~ I' —2I~ I')sin(&y)

=&3(IAsf —fk„f')cos(b@) .

In this case

f&,f~o, fa, f

= IZ, I=0,
this leads to 5/=2+'/3. The relative phase between the
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1 m——+no, n an even integer, (19)

r3 and I 4 order parameters is determined by the 03 and
04 terms.

6 (2)—

2Q3 2(ni+n~)
Q) 0, —20~+03 —204

Q)(20~+03)
+2Q3

or

(20,+e, ) lx, l'
sin(2$) =

2p, l~l'
(21)

The second equation is only defined if the rhs is smaller
than 1. Minimizing with respect to IA, ; I

we obtain

with

Q, A4 —2Q3A3

4Q2Q3 —Qi

Q, A3 —2Q~A4

4Q2Q3 —Ã

(22)

where we fix the overall U(1) gauge by setting $3=0.
This result leads to a rather simple determination of the
angle f. The 0& term does not contribute and g obeys the
simple equation

[2p, l
al'»n(2q) —(20,+e, ) I x, l'] I xl'cos(2y) =o . (2o)

For
I

A,
I &0 and

I
A.4 I &0, there are two solutions possi-

ble,

cos(2$) =0,

Q2(202+ 03)
Q, +

2

Q, 0&
—204

2Q2

In the next section we will see that the phase diagram
with this choice is an attractive possibility to explain the
experiments. We catalogue the pairing states in the CR
state with the fixed g (i.e., T"' & T & T' ' or
T"'& T & T"') in Table V.

B. I 4and I

Again we concentrate on the parameter choice
0 4 4g2 ( 7/3 and 0 (4gz & g3. In this case the combina-
tion (I 4, I'5) has similar properties to those discussed ear-
lier for (I"

&, I ~). The SR phases take the form of Eq. (14),
and there is a single CR phase with

QA5 —2(rlI+g2) A4

4(»+ n2)(nI+ nz) —Q'

QA4 —2(g(+q~) A~A7'=
4(ni+ n2)( 91+92) —Q

Q, =0,—(202+03)sin(2$) —20&,

Qz P, —Pzco—s (2g),
y y+~ s+46(0

{t'4
—6= .

y+ —,y+, 0~+406) 0,

(24)

Q3=ni+nz .

Let us assume that T4) T3, then we can list the possible
transitions and the symmetry and degeneracy of the
phases: (1) a second second-order transition to the SR
phase of I"

4 (tetragonal, threefold degenerate), (2) a
second second-order transition (T"') leads to the CR
phase with g=m/4 and a relative phase of Eq. (19) (or-
thorhombic, 12-fold degenerate), (3) a third second-order
transition (T' ') appears when the second Eq. (21) is
obeyed, and in this case g varies with decreasing T (or-
thorhombic, 24-fold degenerate), and (4) a fourth second-
order transition (T' ') leads to a SR phase of I 3 with
/=0 or ~/2 (cubic, two-fold degenerate); this last transi-
tion only takes place if 2Q2 & Q „otherwise no energy is
gained by such a transition.

The corresponding transition temperatures are given in
the expression

where

Q =e, +4e, —2leg+406I

The symmetry of this phase is orthorhombic and it is 12-
fold degenerate (Table VI). All properties of the transi-
tions are the same as the case (I „I ~) and the formula for
the transition temperature are easily adapted from that
case.

TABLE V. CR states of the combination (I 3, I 4) These odd-
parity states are nonunitary and 12-fold degenerate. The sym-
metry is orthorhombic.

(yk —zk, )+ X; X(yk, —zk )

T(i) —T4

where

6(&) T4

T3

(23) (zk, —xk, )+ x, x{zk„—xk, )

(xk„—yk } X;y 'X(xky —yk„)
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TABLE VI. CR states of the combination (I 4, I,). These
odd-parity states are nonunitary and 12-fold degenerate. The
symmetry is orthorhombic.

(yk, —zk~ ) — X . ;~ X (yk, +zky )

—(zk —'xk, )+ —X ';~ 'X(zk +xk, )

— —(xk~ —yk, )+ — X '
—;~ 'X(xk~+ykx)

VI. PHASE DIAGRAMS

In the last two sections we showed that under certain
conditions it is possible to obtain additional second-order
transitions below the onset of the superconductivity by
considering the behavior of the order parameter in the
combined GL expansion. We wish now to investigate if it
is possible to fit the experimental phase diagram of
U, Th„Be,3 with these models. Our description will be
qualitative, if only because we have to extend the region
of validity of GL theory and extrapolate the results in or-
der to compare with experiment.

As a first example, we consider the case (I „I5). In the
identification of the SR phases in regions I (x & xc) and II
(x & xo), we must keep in mind that we need an SR state
with point zeros in the gap for UBe&3. Therefore, in re-
gion I, I 5 should be dominant with a SR state, e.g. ,
d(k) —yk, +zk». Our next question regards, which
phase is reached at the crossing point (x =xc) immediate-
ly below T, . We assume that the condition for the ex-
istence of the CR phase is satisfied at least in region II
(i.e., 413(r1', +gz) —

Q )0, and 2(ili+gz) )Q, since
T, ) T5). In this case a second-order transition [T', ']
takes place between the SR phase of I, and the CR phase
of I &&I ~. Two dift'erent phase diagrams are possible

then, distinguished by the condition 2P) Q and 2P& Q.
In the former case, the transition [T(~ '] between the I ~

and I &+I 5 phase occurs in region I and the phase dia-
gram has the form pictures in Fig. 3(a). Since for x =xo
it would appear that the T, line has a rather large slope,
the T~& ' line would be even steeper, and so would not
enter far into region I. In the latter case this transition
happens as a third second-order transition in region II
[Fig. 3(b)].

From the discussion of the specific-heat measurement,
we will see that Q (i.e., the parameters 8;) is x dependent
(Q decreases with increasing x), whereas the other param-
eters P, gi, and rlz are roughly independent of x with the
relation 0&P&r)', +gz (indeed this relation excludes the
case 2P&Q). Therefore, the Ti ) line decreases rather
strongly for x &xo, but soon becomes Hatter because of
the flattening of T5(x) and the further decrease of Q(x).
The qualitative form of thee phase diagrams is clearly a
possible representation of the experiments.

Entirely equivalent phase diagrams are found also in
the combinations (I i, I ~) and (I 4, I ~), so that it is not
possible to distinguish, on these grounds, between these
possibilities. We can, however, say that the phase dia-
gram in Fig. 3(a) looks the most relevant experimentally
because of the relation (p & g'i+ ilz).

Also, a similar behavior is expected for the combina-
tion of the representations I i and I 4(I ~}. In Sec. IV A a
particular case was presented where we have shown that
three second-order transitions, in addition to the
normal-superconductor transition, can take place.
Here we want to only consider the case that seems
most relevant experimentally, Q & 2(p, —

/3z) and

Q & 2(q, +i)z), where we assume that the phase in region
I in I 3 phase with P2) 0. In this case, a CR state mini-
mizes the free energy, when x =xo. Its form depends on
the value of G' ' in Eq. (23), e.g. , if (0& G' '& G' '&1)
then f (the relative phase of this state) is fixed, but if g
(1 & G' ' & G"') then g is temperature dependent. In the
former case there are two second-order transitions rather

CP

O
L
0)
CL

E
OP

(a)
~ ~ ~ ~ + 'I

III

r

e ~
~ I

~ ~

I

(D

CD
CL
E
CD

~ i

(b)

Th concentration x

FIG. 3. Phase diagrams for (I &, I 5). We consider only the
two cases at the crossing point xo: (a) 2(g', + i)z) & 2p & Q,
4p(rl', + r),') & Q' (T', ' line in region I}. (b) 2(g', +g,') & Q & 2p,
4P(i)&+gz)& Q (TP' line in region II). Q is assumed to de-
crease with enlarging x.

Th concentration x

FIG. 4. Phase diagram for (I 3, I 5). Two di6'erent cases are
considered: (a) 0 & G"' & G"' & 1. (b) 1 & G"' & G" '. G ' js
defined in Eq. (23).
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(1 & G' ' & G'") then g is temperature dependent. In the
former case there are two second-order transitions rather
close to each other in region I (T' ' and T' ') and only a
single one in region II [Fig. 4(a)]. In the latter case the
T'2' line lies in region II rather than in region I [Fig.
4(b)].

VII. SPECIFIC HEAT

We begin our discussion of the experimental data with
the measurements of the specific heat of U, Th Be}3.
In the region II these show very clearly two separated
discontinutiies marking the two second-order transitions.
Although the description of our phenomenological calcu-
lations is only qualitative at the second transition for a
sample with x =0.033 in region II, we will still compare
the experimental data with our results in order to esti-
mate some of the parameters in the. theory. The specific-
heat C is given by the second derivative of F with respect
to the temperature

0.8

~ 0.6
0)

~04
E

0.2—

I i I i I i I i 1

l 2 5 4 5
Th concentration x (at. %)

BFC= —T
aT2 ' (25)

so that we can calculate the discontinuties of C at the
transition points for the example (I „I~) using Eqs. (12)
and (15) at the various transitions.

ACo =
2(g, +tl~)T5

(%~I 5, T=T~), (26a)

bC = (%~I",T=Ti),
2PT,

(26b)

a TI" 2Qr —
2pr

' —2(r) i+ r)2)
AC. =

T2i Q —4p( gI +g2)

I,tE I „T= T',") . (26c)

considering the free energy F per mol. The specific-heat
discontinuity at (X~S) transition generally scales with
the normal-state specific heat, i.e., the ratio hC /T,
should be independent of T, which is rather well

Note the ratio T, /T5, denoted by r, is not observable ex-
perimentally. The value of a is estimate to be

a=0.8X10 T J K mol

FIG. 5. The x dependence of T,(I &,x}. The values of
T, (l"&,x) derived in Sec. VIII and catalogued in Table VII are
plotted. The dashed line shows the x dependence of T, (I ~, x).

confirmed by the measurement of b,Co/T~ and AC, /T,
in region I and II, respectively. The values of the ratios,
however, show a clear di6'erence between the two regions
(see Table VII). This supports further the proposition
that there are two diA'erent types of superconductivity in
the two regions. From the knowledge of the magnitude
of the discontinuities of the specific heat, we can estimate
2(q', +t)z), 2p, Q, and r Using da. ta from the Refs. 4 and
12, we give the results in Table VII for x =0, 0.017, and
0.033. We have only one x in the region II because other
values of x do not show well distinguished discontinuities
in the specific heat. We obtain for T5(x =0.033)=0.43
K, in agreement with a smooth extrapolation of the T5
line drawn in Fig. 5. In order to fit the transition temper-
ature for the second transition, it is necessary to assume a
strong concentration dependence of the Q parameter,
thus, at x =0.033, Q =7 X 10, but at x =0.022,
Q=2X10 . A linear extrapolation leads to a value at
x=xo Q(xo=0.018)=2.5X10 &2p, which still
satisfies the condition for the simple phase diagram in
Fig. 3(a) of Sec. VI.

In summary, a consistent parametrization of the
specific-heat data can be obtained within the framework
of the simple phase diagram in Fig. 3(a).

TABLE VII. Experimental data of the specific-heat measurements (Refs. 4 and 12). For three x values the onset of the supconduc-
tivity T, with the corresponding discontinuity in specific heat Aco, I /T (0 for region I, 1 for region II}and the additional transition
point T~o~ with +C2/T' ' for x =0.033 are measured. Simple algebraic calculation leads to the values T, (I q, x},&p, and 2('9&+'92}
the combination (I &, I,) (see also Fig. 5).

x (%)

0
1.7
3.3

T, (K)

0.9
0.5
0.62

T' ' (K)

0.4

J
mol K

1.56
1.56
1.9

bc2
T(0)

J
mol K T,(I 5,x) (K)

0.9
0.5
0.43

2(q', +q2)

5.1X 10-»
5.1X10 "

4 2X10-»
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VIII. ULTRASOUND A'I l'ENUATION

Ultrasound measurements on the U, „Th Be,3 com-
pound in region II show a sharp, rather large absorption
peak at the second transition. ' ' Joynt et al. tried to ex-
plain this fact by a dissipative domain-wall motion. ' Be-
cause they used only superconducting states belonging to
a single irreducible representation in the region II, their
superconducting state had quite high symmetry (tetrago-
nal or rhombohedral) so that no damping for a longitudi-
nal sound wave in [111]direction was predicted from this
mechanism. Such a damping, however, was observed in
later experiments by Bishop et al. '

Superconducting CR states have lower symmetry so
that damping is possible through this domain-wall mech-
anism. The sound wave couples to a domain wall if it in-
duces a finite difference in the free energy between two
domains (1 and 2) separated by the wall. In a simple
model (viscous damping), ' the sound attenuation is then
proportional to the square of the free energy difference
(F, —F2) . Assuming that the sound wavelength is much
larger than the average extension of the domains, we cal-
culate the change of the free energy via the coupling of a
homogeneous strain e to the order parameters

TABLE IX. Bilinear forms V;(y, k) . For V& the decompo-
sition of I &I, =I, is used, for V,I,I, =I,I, (I )@I"„
and for V»I &I 5=I &, where the components are excluded
which cannot couple invariantly with the strain parameters. It
has to be regarded that the V;(y, A, ) are real.

V;(y, A, )

V;(I q, A, )

/x, /'+ /A, , /'+ fx, f'

Xg A9+ ASA9

A9 A 7+ X9A 7

X7 Ar8 +X7A 8

V»(r„z),

V»(I ~, k)3

(~),~7, &„&,) =(I&, I, I&le', 0,0)

and (~ A. , (,0,0, ~X ~e'~), respectively, leading to a value

F, q= g C, (y) (ey, m)V, (A, , y)
y, m

F, F,= —6—C, (r, )e„IXI' . (28)

+ g C5(y')e(y', m')Vq(A, , y')
y', m'

+ g C,5(y")e(y", m")V, ~(k, ,y") „, (27)
, m

e(y, m ) are the strain parameters (Table VIII), V, (k, y)
are real bilinear forms of the order parameters (Table
IX). They are built by the decomposition of the
Kronecker products r&r„ I 5(3r5, and r&r~, where
y, y', and y" are its components (irreducible representa-
tions) and m, m', and m" denotes their basis. C;(y) are
real coefficients. F, z contains all allowed coupling terms
between the strain. e and the order parameters of I, and
r, .

A longitudinal sound wave in the [001] direction is
characterized by e„&0, e =e =e,"=0 (i&j), and in
the [111]direction by e =eye =e +0, 6 y

=e =ey &0
For the [001] sound wave we consider the two domains of
the CR phase corresonding to choices in 1 (2) of

There is a second type of domain wall in this CR phase
separating domains

(/x, /, +/x/e'~, 0,0) .

In this case a [111]sound wave leads to a value

F$ F2 =4C]5(—r$) ~A / ~~A, ~cos(/+5)e (29)

Since both Eqs. (28) and (29) are diff'erent from zero in
the CR phase, ultrasound is absorbed in both [001] and
[111]direction in the low-temperature phase of the re-
gion II. A further result of this type of analysis is that
the decomposition of I I ' has to contain the r5 com-
ponent in order to induce domain-wall motion by a longi-
tudinal sound wave in the [111]direction. It turns out
that the combinations (I &, I 3) and (I &, I 4) are not favor-
able from this point of view. On the other hand, either
(I 3 I 4) or (I 3, I"5) are good combinations, and the same
holds for (I ~, I 5).

e(l „1)
e( I 3, 2)

26'zz E'xx 6yy

&3(e, —e y)

TABLE VIII. Lattice strain parameters a{y,m) in a cubic
system. The represenation of the strain parameters e(y, m) by
the strain tensor e;, (i,j =x,y, z) is obtained from the Kronecker
product I 4(3 I 4 using the symmetry of e;;.

e(y, m)

~xx + ~yy +~zz

IX. THE LOWER CRITICAL MAGNETIC FIELD

An interesting series of measurements on H, &, the
lower critical field, have been made by Rauchschwalbe
et aI. ' We extend the GL expansion of the free energy
by the addition of the magnetic field energy to consider
this problem and also add gradient terms. A general ex-
pression for the gradient terms is given in Table X for the
example (I „I~), but to simplify the treatment we assume
that the coefficients K, =E2 =%3 =%&0 and
K4 =K5 =E6=0. The free energy F per unit volume in a
magnetic field then has the form

~(r„1)
e( l"5,2)
e(I q, 3)

&yz

&xz

&xy

F'=F+ 'H'+&+ lD~;l' ~=1,7, 8,9,
I

(30)
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TABLE X. General expression for gradient terms of (I „I,).
Gradient terms

I&.~ I'+ ID, ~ I'+ ID, & I'

ID.~71'+ ID, ~gl'+ D, ~91'

ID, ~ I'+ ID, ~ I'+ ID.~ I'+ID, &,l'+ ID.&,l'+ ID, ~, I'
( Dx kj ) ( D& X8 ) + ( Dz k9 )

*
( Dz kj ) + ( Dp X8 )

*
(Dz A 9 ) +c ' c'

( Dz ~8 )
*

( Dy k9 ) + ( Dz k j )
*

( D& X9 ) + ( Dy kj )
*

( Dx k8 ) +c.c
(D& k[)*(D9A9+DE k8) + (D~ k) ) (DXX9+Dz A'j) + (Dzk) )*(D&A'8+Dy Aj) +c' c

Coe%cients

K[
K2
K3
K4
K5
K6

J= —4e'p~Ay lz;I'=— 1

5
A, (31)

and 5 is the London penetration depth. The thermo-
dynamic critical field H, (T) is derived from the equilibri-
um condition

where po denotes the magnetic permeability and
D=fi/iV —2e A (A: vector potential, e: elementrary
charge). The variation of Eq. (30) with respect to A
leads to the following expression for the supercurrent,
neglecting spatial inhomogeneities of the order parame-
ter, i.e., we are neither near the material surface nor a
domain wall,

and K is defined by

K=2V2 H, (T)5 (T) . (34)

In contrast to the effective quadratic temperature depen-
dence of H, (T)(=H, (0)[1—(T/T, ) ], in GL theory Eqs.
(32) and (34) lead to linear behavior, which is only a good
approximation for T near T, . Nevertheless, we may con-
sider the qualitative properties of the lower critical field
in the region II, especially near the second transition.

We consider now the simplest case corresponding to
Fig. 3(a). In the SR phase with I i, the thermodynamical
field and the GL parameter are given by

F(T)= — H, (T) . (32)

In a type II superconductor, the lower and upper critical
fields are related to H, by the Abrikosov or GL parame-
ter x in the limit v)) 1,

'(T) = A, (T)+a/3@OP,

Ksa( T)= +2aP/3po,1

KA'e

(35)

H„=H, ( T)
K 2

H, ~=H, ( T)K&2,
(33) and in the lower-temperature CR phase the correspond-

ing formulas are

H~ '(T)=(4a[(g', +g~)A, +PA, —QA, As]/[3iuo[4P(g', +il~) —
Q ][)'~

(36)

V 2a/3iMo[[4P(r)i+r)z) Q'l[(r)i+go) ~ i +P~ s Q~ i ~s]] ' '/[Q( ~ i+ ~s) 2(i)i+q2) i
—2P~ s]Khe

derived using the Eqs. (12), (14), (15), (32), and (34).

~ —$0 Z y~ y7z

X. MAGNETIC PROPERTIES AND @SREXPERIMENTS

if we take F as the free energy per unit volume. With the
values for the parameters p, (g', +gz) and Q obtained
from the specific heat data for x =0.033, we plot K and
the lower critical field B,i =poH, i in Fig. 6. The qualita-
tive behavior of the critical field is well described. B„(T)
has a sharp kink at the second transition temperature at
which the slope increases strongly, caused by the increase
of the condensation energy of the superconducting state
at this transition. This property agrees with the measure-
ments of B„by Rauchschwalbe et al. From their data
we estimate that the coefficient K ' has a value of about
17 m, m3 (m, : electron mass).

Volovik and Gor'kov pointed out that the violation of
time reversal by nonunitary states (i.e., states with d '&d
or g*&itt) implies a certain magnetic property of the cor-
responding superconducting phase. Since superconduc-
tivity and a bulk magnetic moment are incompatible (i.e.,
B=O), screening supercurrents will occur in a small
range (-5) near the domain walls and surfaces, even if no
external magnetic field is present.

However, we are interested, in this section, in the
response to muons and therefore in the local magnetic
moment at the muon position. The spin operator at a po-
sition r is
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50— I@) ff g (ui &p+ vi, ~pet, ~c i p ) ~0)
kia P

(39)

40

where we restrict the product over k to a half space. For
uk & and Uk & we use the convenient form which is a
reasonable approximation near the second transition:

(Ei, +e~)5 p

[—,'tr(h 6)+(Ei,+e ) ]'
b,~p(k)

[—,'tr(b, b, )+(Ei,+ok) ]'

(40)

"C3

0)

C$

0 ]

0 O. l 0.2 0.5 0.4 0.5 0.6
temperature T (K)

b. p(k) is the matrix defined in Eq. (l) and

E„=[e„+—,
' tr( b,"5)] '

Cooper pairing is only possible between Bloch states
which are degenerate by parity, time reversal or their
product as mentioned in Ref. 7.

It is a long, but straightforward calculation to show
that for a spin triplet pairing state the expectation value
of the spin operator has the form

FIG. 6. GL parameter and the lower critical magnetic field.
The data derived in Sec. VII are used to plot this function of
temperature at the Th concentration x =0.033, where we set
the parameter @=17m, m'. {a) The GL parameter changes
continuously from a.=50 to =35 below the transition tempera-
ture T=0.4 K. The discontinuity in the first derivative is also
found in the lower critical magnetic field (b) B,i=poH, . The
enhancement of the B, points to an increase of the condensa-

1

tion energy below 0.4 K.

S„(r)=(N~S„(r)~@)=gg„,(k, r)S (k), (4l)

(43)

4tri d'(k) Xd(k)
N(k)

where X(k)= —,'tr(h 5)+(E„+et,)'. gi, (k, r) is the g
tensor which takes the efFect of the spin-orbit coupling
into account and is formed from the Bloch functions

ykr, (r) in Eq. (38):

g..(k') = —,X ~"., ~;~.*,„(r)X.,..(r),
$, $

S(r)= g err(r)S~li&(r)
y, 5

' k' —k) ~g ~i„„(r)~„Xk,,s'(r)e' "-""c'„,c„,
k, k'

$,$', y, 5

(37)

where o"„.denotes the pth Pauli spin matrix. This en-
sures that g& (k, r) is periodic in space with the lattice
constant and has the whole symmetry of the little group
of k of the crystal lattice in r space and vice versa.
Therefore, S(r) describes a spin-density wave with the
period of the lattice. Certain information about the r
dependence of S can be obtained by symmetry arguments,
if we note that for each point group element R,

where the field operator ~p (r) is expanded in Bloch states
which are not eigenstates of spin because of spin orbit
coupling:

S„(«)= g g,.(k, r)S.(Z k),
k, v

where we use the property that

+r(r) = g [yi, rt(r)~ l')+pi, t(r) ~
L ) ]e ckr

k
(38) g„(k,Rr)=g„(R 'k, r)

obtained from

yk rt(r) denotes the spin-up component of the Bloch
function with wave vector k and pseudospin index y.
The indices y and 5 label the spinor states which are ob-
tained from the spin eigenstates by an adiabatic turn on
of the spin orbit interaction. The operator ci, (ci,r ) is
the annihilation (creation) operator of the Bloch spinor
state ~k, y) and cr =(o, tr~, cr') are the Pauli spin ma-
trices. The superconducting ground state can be written
in a BCS form

xk(+ r) x
A nonunitary state d(k) generates a finite local spin po-
larization in each unit cell of the lattice. Note that such a
loca1 polarization is fully compatible with the condition
8=0 in the bulk superconductor, since the spatial aver-
age of S(r) in each unit cell vanishes leading to no total
magnetic moment. This is easy to derive from Eq. (44).
For spin singlet states, however, similar calculations lead
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to a vanishing local spin density everywhere in the unit
cell.

Recently, HeiT'ner et al. have observed in their pSR ex-
periments a significant, rather abrupt increase of the
zero-field relaxation rate, A, of positive muons injected in
U ] Th Be

& 3 with x =0.033 at the second transition
temperature. ' A is a measure for a local static, random
magnetic field spread in the sample. If a simple
hyperfine contact interaction between the conduction
electron and the muon spin is assumed, the magnetic field
felt by the muon is directly proportional to the spin po-
larization at the muon site. Therefore we can approxi-
mately set the relaxation rate

1/2
A ~ Vhs'= g Id'r 5(r —r, )S'(r)

I

where the integral ranges over a unit cell and r,- are the
trapping points of a muon in the unit cell. In general,
they are at crystallographic equivalent points with a cer-
tain symmetry environment of neighboring atoms.
However, a zero-field relaxation rate can only be ob-
served if the magnitude and the direction of the spin po-
larization varies randomly among the trapping points
(i.e. , there are not only a few favored directions and mag-
nitudes of the magnetic field at the trapping points). For
a pure crystal of UBe&3, where these. trapping points
should lie regularly in the unit cell, this condition may
not be satisfied, since only different directions and not
magnitudes of the spin polarization may occur at these
points. This is easily seen from Eq. (44). However, in al-
loys with finite Th concentrations, the trapping points
have a more irregular distribution because of local viola-
tions of the lattice symmetry. We take this distribution
into account by replacing 5(r —r,. ) by a function d (r —r, )
which smears out the trapping points around r; as an
average over all unit cells. In this case the muons experi-
ence a real spread of the spin polarization.

In region II the superconducting state of the low-
temperature phase is indeed generally the CR phase and
therefore always nonunitary, whereas the high-
temperature phase may be a unitary state. In this case no
increase in the zero-field relaxation rate occurs at the on-
set of superconductivity, but it is expected at the second
transition. For our simplest example

d(k)= —(xk„+yk +zk, )+e ' —(yk, +zk ),

(see Table IV) the variance of the spin polarization
(hS )'~ has a steep increase at the second transition tem-
perature T,2. At still lower temperature (b.S )'~ be-
comes constant. Since

the qualitative behavior of A( T) can easily be calculated.
For ~A, &~ and ~A, 7~ we use the result (15) and the behavior
of A(T) is shown in Fig. 7. This temperature depen-
dence is in good qualitative agreement with with Heffner
et aE. measurements. ' On the other hand, no change of

C3

CA

~CI
t

0 O. I

I I

0.2 0.5
temperature T (K)

I

0.4
t

~c,

0.5

FIG. 7. The zero-field relaxation rate A. The temperature
dependence of A is proportional to AS (T). We picture Eq. (46)
with arbitrary units using the data of x =3.3% where T' '=0.4
K. The sharp increase of A is qualitatively in a good agreement
with HeA'ner's observation (Ref. 17).

A is observed in pure UBe&3 at the transition tempera-
ture. At present, we have no measurements for a finite
Th concentration in the region I in order to decide
whether the superconducting state is unitary or nonuni-
tary there.

XI. CONCLUSION

We have shown that the proposal of two different types
of superconductivity in the two regions yields good quali-
tative descriptions of many experimental factors. As
mentioned, we treated here only the simplest examples
among many other possible cases. Nevertheless, some
general results can be given. The most important point is
that generally the Iow-temperature phase of the region II
is nonunitary, i.e., it possesses magnetic properties as
pointed out by Volovik and Gor'kov. In the case of spin
triplet pairing this leads to a spin-density wave. In Sec. X
it was shown that this fact inAuences pSR zero-field re-
laxation rate data. Further measurements of this type in
region I could give information as to whether the super-
conducting phase has similar magnetic properties there
or not. Since this low-temperature phase in our model is
a CR superconducting state which belongs to a combina-
tion of two irreducible representations I e I ', the conden-
sation energy is enhanced at its onset compared wtih the
SR phase. This fact is confirmed by experimental data of
the critical magnetic field. The low symmetry of this CR
phase will cause additional ultrasonic attenuation in-
duced by domain-wall motion for all directions of the
sound wave. Thus, we believe we have achieved a com-
plete and consistent explanation of all the experimental
data to date on the phase diagram of Ui Th„Be&3 at
least on a phenomenological level.

Very recently, Kumar and WolAe investigated a similar
theory in an isotropic model based on a crossing of s- and
d-wave superconductivity at xo (in region I d wave and in
region II s wave superconductivity is relevant). ' With
this proposal they found a possibility of two consecutive
second-order transitions (n~s wave~s +d wave). In
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their calculations the lower critical field also increases as
an effect of the increase of superconducting condensation
energy at the second transition temperature. The ul-
trasonic attentuation peak is related to a collective mode
arising from the dynamics of the relative phase angle of
the combined phase. Their heuristic argument for the
suppression of the d-wave state and the preference for the
s-wave state with enhancement of the Th concentration
could also be applied to our simplest example (I „I~): the
anisotropic I ~ states are strongly affected by impurity
scattering (Th impurities), whereas the fully symmetric
I,-pairing state remain more or less unchanged.

Note Added in Proof Rec.ently, we investigated the
domain wall mechanism (Sec. VIII) in more detail. Un-
der the assumption that this mechanism is relevant for
the ultrasound absorption in region II we could further
restrict the number of possible combinations (I, I") out-
lined in Sec. VIII. In this analysis (I „I~), as discussed in

Sec. IV 8 with the phase diagram in Fig. 3, leads to the
most favorable model. Details of this investigation will

be published elsewhere.
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APPENDIX

We mentioned in Sec. IVA that under special condi-
tions the 03 term allows a continuous transition between
the SR phase of I, and the CR phase (T, ) T3). For this
to occur the coupling terms must have the effective form

or fA, f
. In Eq. (12) we have a CR state with

fixed angle P=ir/4 and /&+$3=ir, neglecting the O3 cou-
pling term. These values lead to Q3=0 [Eq. (10)]. For
fintie O3( (O2), however, the angle P is no longer a fixed
quantity, but deviates smoothly from vr/4 below T', '.

Therefore, near T', ' we set

lt = ir/4+ e, 0 & e «1(e, & 0);

'lj 2+ Q3 m. we keep fixed (Pz = ir, P3 =0):

Q3 =O3sin(2$)(cos1(t —sing)
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= —O3&2sine= —O3v'2 e .

To obtain e we minimize f of Eq. (10) with respect to g,

0= [2P2 f
A, sin(2') —

O2 A, , f f
k

f ]cos(2$)—O3 f
A, , f f

A
f [(cosg —sinitj)cos(2$)+ —,

' (cosg+ sing)sin(2$)] .

Since P is not determined for
f
A,

f
=0, we assume

near TI
' With . cos(2$) =e and

sin(2$) = 1, we obtain an equation in e:

~'2&»31~i ff~l+«4p~l~f' —2O2f~if')+
2

where

=4p, f~f'@+e,c, f~ 'fz, f'

+e,c, l&l'Ix, I+3e,c, fxl'Ix, Iq=o,

An expansion of e to lowest order in the small ratio
fA, f/fA, , f

leads to

C, =cos(2yi —
y2

—
y3

—y~),

Cz =cos(y, +y, —2y, —)', ),

2&2O, I&i I

Higher-order terms contains ratios -( A, f/fk, f)
"+' (n:

integer). The O3 term then has the effective form

C, =cos(y, +y, —2y, —y, ) .

We solve this equation for g using
f
A, i f

~0.
O3C2 f

A i f 3O3C2 O2C,

4p, ~l (4p, )' 4p,

g2

g3fk, ffk, f

—&2 — fA f for(T —TI ') —+0—,
2v'ze,

If we insert this solution in f with the same approxima-
tion, we obtain the following significant term:

and therefore it favors a continuous transition at T'i '. In
the case T3) T&, the SR phase immediately below T3
has, for example, the form Az&0, Ai =A3=0 [Eq. (11c)],
i.e, , /=0. We consider f for $~0 and fA, , f

~0 and min-
imize with respect to g.

(4p2)'

which is responsible to a first-order transition instability,
since it is a "quasi-third-order term" as seen in Sec. IV.
Therefore, this case can be neglected in point of view of
explaining the phase diagram under consideration.
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