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We investigate superconductivity in a quasi-one-dimensional bipolaron system with random po-
tentials, treating the interchain Josephson couplings in the mean-field approximation. The model is
transformed into the S =

2
XXZ-spin chain with random fields along the z axis and the ordering

field along the x axis. Using the quantum transfer-matrix method by the Suzuki-Trotter formula,
we calculate the order parameter and the rigidity as functions of the temperature, the mean strength
of the random fields, and the ordering field. We obtain the two-parameter scaling laws for these
quantities. We also discuss these scaling relations by using the cumulant expansion in the phase
Hamiltonian. This analytical method is extended to the more general models of one-dimensional in-

teracting electrons, and the generalized susceptibilities for various long-range orderings are dis-

cussed in the light of the scaling laws.

I. INTRODUCTION

The interplay between randomness and superconduc-
tivity (SC) has recently gained renewed interest in the
light of interest in Anderson localization and metal-
insulator transition. It is recognized that Anderson*s
theorem' for nonmagnetic impurities is valid to zeroth
order in A/c~v. , where A, cF and ~ are the Planck's con-
stant, the Fermi energy, and the elastic mean free time,
respectively. Quantum effects, i.e., higher-order effects in
f?IEF7r, are roughly considered in two steps. One effect is
on the pairing of two electrons. The randomness
enhances the effective Coulomb repulsion and decreases
the transition temperature, as has been discussed for the
weakly localized regime using perturbation theory and
in the critical region near the metal-insulator transition.
The other effect is on the coherency. Even if all the elec-
trons form tightly bound pairs (we shall call this a bipola-
ron in this paper), superconductivity as the result of their
Bose condensation is disturbed by randomness. The most
fundamental quantity which characterizes the supercon-
ductivity and superfluidity is the rigidity of the macro-
scopic quantum phase, which is nothing but the
superAuidity density. Incorporating the scaling theory of
Anderson localization with BCS theory, Ma and Lee dis-
cussed the rigidity and the order parameter as functions
of the mean strength of the random potentials. They
claimed that the order parameter was homogeneous and
little affected by the random potentials even into the insu-
lating phase if the condition Noh(0)g ) 1 is satisfied,
where Xo, b (0) and g are the density of states at the Fer-
mi energy, half of the zero-temperature gap in the ab-
sence of the random potentials and the localization
length, respectively. The rigidity, on the other hand, is a
rapidly decreasing function of the randomness and is of
the order of [b,(0)/e~]'~ times its pure value near the
metal-insulator transition. This indicates that the rigidity
is more sensitive to the extent of the wave functions be-
cause the overlap between the wave functions transmits

the coherency and rigidity. Ma, Lee, and Halperin fur-
ther discussed the strongly localized regime where
Noh(0)g & 1 is not satisfied. The relevant model in this
case is the XY-spin model with the transverse random
fields along the z direction. They concluded that the de-
struction of SC is due to the interplay between the quan-
tum Auctuations and the randomness.

(Quasi)-one-dimensional (1D) systems have some par-
ticular features in this problem. Interactions between
electrons and the random potentials both have the essen-
tial influence on the electronic states in 1D because the
electron motion is strictly restricted and the effects of the
interactions are essential. Mathematically speaking,
there are many kinds of infrared-divergent diagrams,
which leads to the following conclusions: (1) In the ab-
sence of the electron-electron interactions, all the elec-
tronic states are localized exponentially, however weak
the random potentials are. (2) The asymptotic behavior
of the various correlation functions of the interacting
electron gas in 1D is governed by the fixed line (not a
point) with the continuously varying critical exponents.
(3) The disordered interacting electron system in 1D
shows a metal-insulator transition when the strength of
the interactions changes.

The correlations of the SC and the charge-density wave
(CDW) in the 1D disordered interacting electron system
has been investigated by the Monte Carlo simulation and
by the quantum transfer matrix method. ' The former
work stressed the conjugate nature of the SC and CDW
Auctuations. The latter work found the one-parameter
scaling law, and the correlation function of the SC is also
cutoff at the Fukuayama-Lee length, which characterizes
the size of the coherent domain of the CDW.

Taking the 3D interactions into account in the mean-
field approximation, we can discuss the long-range order-
ing of the SC in quasi-1D systems. Fukuyama et al. "
discussed the effect of a single impurity in the supercon-
ducting phase. They pointed out the possibility of the
soliton formation around the impurity. Suzumura' ex-

39 2188 1989 The American Physical Society



39 QUASI-ONE-DIMENSIONAL DISORDERED BIPOLARONIC. . . 2189

tended this work to the many-impurities case and dis-
cussed the locally pinned states in the superconductor.
By using the Monte Carlo method, Imada' investigated
the same problem. The information concerning the phase
of the order parameter could not be obtained because the
Metropolis method cannot be applied to the problem
which includes complex quantities.

In this paper, we investigate the quasi-1D bipolaron
system with random potentials treating the interchain
Josephson couplings in the mean-field approximation.
The model is transformed into the S =

—,
' XXZ chain with

random fields along the z axis and the ordering field along
the x axis. This model itself is of interest from the
viewpoint of the statistical mechanics of the quantum
spin chains, and is closely related to the more general
models of 1D interacting electron systems as will be dis-
cussed in Sec. V. Using the quantum transfer matrix
method' ' using the Suzuki-Trotter formula, ' we cal-
culate the average of the order parameter ((S')) and the
rigidity R as functions of the inverse of the temperature
p, the mean strength of the random fields cr and the or-
dering fields H .

Our main conclusions are summarized as follows:
(1) Around the single impurity, the amplitude of the

order parameter (St') at the site I is little affected though
the charge density (St') changes drastically. The phase
soliton is not introduced.

(2) The average of the order parameter ((S )) and the
rigidity R are described by the following two-parameter
scaling laws:

((Sx )) (Hx)1/(4g —1)f((Hx)2p4 —1/g 2p3 —
g)

g ( (~x)2p4 —1/g 2p3 —g ) (lb)

where g is a measure of the quantum fluctuation and is
given in Eq. (16c). The scaling functions f (x,y) and
g (x,y) are obtained numerically (Figs. 9). It is found that
R decreases more rapidly than ((S")) as a function of o,
showing that R is more sensitive to the localization effect.

(3) Combining the self-consistent equation and Eq. (la),
we obtain the following scaling relations for the transi-
tion temperature T„the order parameter ((S')), and the
rigidity R as functions of o'

T, (o ) = T,oh
0

T(3—q) /2
cO

(2a)

At zero temperature,

((Sx )) ( ) T) /2g q
cO

(2b)

0R (o ) =(I(& (, )/2T Q

(2c)

where T,o is the transition temperature in the pure sys-
tem.

(4) The generalized susceptibilities y(p)' s for various
long-range orderings in the more general 1D disordered
interacting electron system are described by the following
one-parameter scaling law:

x(p) =xo(p)f (3)

where go(p) is the generalized susceptibility in the pure
system (o =0). The physical meaning of this scaling law
is to prevent the system to go to the "low temperature re-
gion" expressed as follows:

y(p)-go[min(p, g )] . (3')

In Sec. II, the model is introduced. The approach us-
ing the phase Hamiltonian, which is believed to describe
the low-energy properties of our lattice model, and the
cumulant expansion is discussed in Sec. III. The results
of the numerical simulation are given in Sec. IV. Discus-
sion and conclusions are given in Sec. V.

II. MODEL

We consider the following 1D Hamiltonian.

. eia&= —X t exp —i Cr~C(+, a
I, a cA

. esca+ t exp l Cl+ laClncA
(4)

. 2eA+ exp i Sl+)Sl +J SISI+)
cA

—g Ht'St',
I

where Ct (Ct ) is the annihilation (creation) operator of
the electron at site l with spin a. nl is CI Cl and
nt =g n& tis t.he hopping integral and the vector po-
tential A induces the phase change

(e/ch') I A ds=+(e/Ia/cubi),
C

where the line integral is performed along the electron
path C. (e is the minus of the electron charge, c is the ve-
locity of light, and a is the lattice constant. Below in this
paper, a is taken to be the unit of the length. ) It should
be noted that this vector potential does not represent the
physical magnetic field because the rotation of it van-
ishes. It is the test field to measure the rigidity as will be
discussed herein. c.I is the random potential at site I with
the average 0 because we deal with the half-filled case.—U and V are the on-site attraction and the nearest-
neighbor interaction, respectively. In the limit of large
U, all the electrons form singlet electron pairs (bipola-
rons) with the binding energy U. As a result, the spin de-
grees of freedom are quenched, but there remain large de-
generacies with respect to the distribution of the bipola-
rons. All the other interactions (t, st, V) are treated per-
turbatively and the effective Hamiltonian is derived for
the charge degrees of freedom. This has already been dis-
cussed by Emery' for the pure (s(=0) system, and in-
cluding cI is an easy task to reach the following effective
Hamiltonian:

Jx .2eA
exp —i SI SI+ &cA
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where

Sl+ =C( i Cl g,
S, =C„C„,
Sf =(Ci(Cit+CiiCii —1)/2 .

(6b)

(6c)

. I . 2ex
exp —i Si+Si+ i

l

. 2eA ++ exp i Sl+&Si +J,Sl'Sl'+& .
cR

The phase change doubles because a bipolaron (two elec-
trons) moves. The exchange integrals J and J„and the
random field Hl' are given by

—g Hi'Si' Q—Hi SP,
l l

where

(10)

J„=2t'/U,
J, = —2t'/U —V,
Hl'= 2c.l,

(7a)

(7b)

(7c)

Hi =2zJi —Qsi"„,1

n

and using the hypothesis of self-averaging in the thermo-
dynamic limit (N ~ ~ ), we can replace Eq. (11)by

respectively. The random field Hl' at each site is generat-
ed obeying the Gaussian distribution with the average 0
(half-filled) and the correlation given by

( HI Hl' ) o 't~l, l'

where 5& I is the Kronecker delta. In Eq. (5), we have
neglected the randomness in J and J, because they are
of higher order in 1/U. In addition to the Hamiltonian
for one chain Eq. (5), we introduce the Josephson cou-
plings between nearest-neighbor chains given by

Hi"=2zJ ((SP )), (12)

HI =H =2zJi((s")) (independent of 1) . (13)

Using the similar argument, ((S )) has another expres-
sion,

where the double bracket means that the ensemble aver-
age with respect to the configuration of random poten-
tials as well as the quantum statistical average is taken.
As a result, the right-hand side of Eq. (12) is independent
of the site index l and we denote it ((S )). Therefore,
Eq. (12) is rewritten as

~Jc JiX g (Si'„Si~ +S)„sl' ),
(n, m) «s ))= g(s;),

l

(14)

~MF
JC

zJi
S,"„S," +Si'„S)'

l n m

(9')

where n and m are the indices of chain and ( n, m ) indi-
cates nearest-neighbor pairs. The exchange J~ is 2ti/U
where t i is the hopping integral between nearest-
neighbor chains.

When the interchain coupling Ji is small compared
with J or J', it is only after the correlation of supercon-
ductivity develops enough along the chain that the inter-
chain coupling Ji plays roles. If the correlation length of
superconductivity along the chain is large enough, the
fluctuations perpendicular to the chain are suppressed.
Below in this paper, we treat the interchain coupling Ji
in the mean-field approximation assuming that Ji is small
enough compared with J" or J', and the random poten-
tia1 is weak enough to allow the correlation length to be
large at low temperatures. It should be noticed that
"mean Geld" in this paper refers to the configurational
averaging as well as the quantum mechanical and thermal
averagings. The mean-field approximation is equivalent
to replace &ic in Eq. (9) by the infinitely long-ranged in-
teraction &&z" given by

where L is the number of sites along the chain.
In summary, we calculate ((S )) through Eq. (14) in

the 1D Hamiltonian Eq. (10) as a function of the temper-
ature T( = I /Il), the mean strength of the random poten-
tials 0. and the ordering field H, and solve the self-
consistent equation (13) to determine H (and ((S'))) as
a function of P and o.

It should be noticed that there are some essential
difFerences between Eq. (9) and Eq. (9'). The domain ar-
gument is crucially dependent on the dimensionality of
the system, ' and the frustration, which exists in higher
dimensional systems, does not occur in our 1D Hamil-
tonian Eq. (10).

In the following part of this paper, J is taken to be the
unit of energy and 6 is J, /J„.

III. CUMULANT EXPANSION

It is well known that the ground state and the low-
energy excitations can be described in terms of the boson-
ized Hamiltonians or the phase Hamiltonian derived
from it. ' ' We skip the derivation, and only write down
the phase Hamiltonian,

where z is the number of the nearest-neighbor chains, X
is the total number of chains, and the summations, with
respect to n and m, run over all the chains. The Hamil-
tonian Eq. (4) together with the interchain Hamiltonian
Eq. (9') gives the following Hamiltonian for one chain:

JV0+&
2 2«+(x) e~ (x)&0=f dx A +C p+(x)—

dx 2~Ac
I

(15a)

(15b)
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H&'= —f dx cos8 (x)
8 (x), on the other hand, is related to the x and y com-
ponents of the spin.

+ cos[8+(x)+2k+x]
H'(x)

mo,
(15c)

SP- [cos8 (x)]„
SP-[sin8 (x)].

(21a)

(21b)

(1—b, )' (1——arcsinb. )
7TA=

16arccosh
2( 1 g2)1/2

2
1 ——arccosA

(16a)

(16b)

&cga =1

2& 2
1 ——arcsinA

7T

(16c)

H'(x) is the continuum version of the random field Hl',
and its average and correlation are given by

where a and k~ are the momentum cutoff and the Fermi
momentum, respectively. The coef5cients A, C and the
measure of the quantum fluctuation g are given by

From the preceding equation, it is clear that 0 is the an-
gle within the xy plane, and is nothing but the Josephson
phase. Superconductivity is the breaking of the rotation-
al symmetry in this xy plane, and the ordering field H
prefers the phase to be the multiple of 2m.. The effect of
the vector potential A (x) is to replace 8 (x) [p+(x)] by

8 (x)+ f A (x')dx'[p+(x) —(e/2vrhc)A (x)]
Ac

as is evident from Eqs. (10) and (21).
We discuss in this paper the two physical quantities,

i.e., the order parameter ((S"))and the rigidity R. From
Eq. (21a), ((S )) is roughly given by ((cos8 (x) )) where
the double bracket has the same meaning as in Eq. (12).
The rigidity R is related to the increase in the free energy
I' due to the small vector potential A.

(H (x)) =0,
(H'(x)H'(x')) =o 5(x —x') .

(17a)

(17b)

F(A) —F(0) ~RA (22)

and this leads to the London equation for the super-
current J:

The phases 8+(x) and 8 (x) are conjugate to each other
quantum mechanically. p+(x) is the momentum opera-
tor conjugate to 8+(x).

aI:
o —RA .

aA
(23)

[8+(x),p+ (x')]=i5(x —x'),
and 8 (x) is related to p+ (x) by the following relation:

d8 (x)
p+(x)=—

In the original spin language, 8+(x) is related to the z
component of the spin:

The above discussion clarifies that the rigidity R is essen-
tially the density of superconducting electrons. In the
spin language, the rigidity is the stiffness constant against
the distortion of the phase in the xy plane.

Now we derive the explicit expression of the rigidity R.
We rewrite Eqs. (15) as follows:

Ce
~w =~a =o f dx A (x)p+(x)

mAc

d 8+(x) +—cos[8+ (x ) + 2k~x ]
2K dx cx x =la

(20)

Ce+ dxAx
(2~A'c)

The free energy up to the second order in A (x) is

(24)

2

F(A) —F(0)= f dx A (x)
(2~fic)

C2e2 p pf dr, f dr2f dx, fdx22 (x, )A(x2)((Tp+(x„r, )p+(x„r,)) ),
2(Mc )'P

(25)

where T, is the time ordering operator. In the absence of the H term in Eqs. (15), it can be shown that the first term
cancels the second term in the right-hand side of Eq. (25) because A (x) does not represent the physical magnetic field
(see Appendix).

At finite temperatures, there are no phase transitions or sharp change in 10. All the physical quantities are continu-
ous as functions of temperature T( =1 /f3) and the parameters in the Hamiltonian. Considering this fact, we expand the
physical quantities in terms of the perturbative Hamiltonian & in Eqs. (15). This expansion has already been discussed
in the case where H'(x) exists. ' ' ' Our discussion below is its extension to the case of two kinds of fields H" and H'(x).

The explicit forms are as follows:
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«cos0 (x)»= y y ', ', f dr, . . . f dr„ f dr', f dr' fax, fdx„ fdx', fdx'
on! m! o

'
o

"
o

'
o

n
~X

X (H'(x', )
. H'(x' )),„,ma (rra)

X(T,cos0 (x)cos0 (x„r,) . cos0 (x„,r„)
X cos[0+(x ', , r', )+2kFx, ] cos[0+(xm, rm )+2kFxm ] )oc,

00 00 '

(&p, (x,r)p, (0,0)))= y y
n=pm=o

X f dri f dr„f dr', . f dr' fdxi . fdx„fdxi fdx'
n

(26a)

x
~"

(H'(xi ) H'(x' )),„,
(rra )

X ( T,p+ (x, r)p+ (0,0)cos0 (x „r,) cos0 (x„,r„)
Xcos[0+(x'»r', )+2kFx 1 ] . cos[0+(xm, rm )+2k~xm ] )Oc,

(26b)

where ( )oc and ( ),„,means the cumulant averaged over &o and the ensemble average, respectively.
In Eqs. (26), not all the terms contribute. Only the even terms with respect to H'(x) survive the ensemble average.

And in Eq. (26a) only odd order terms with respect to H" contribute because all the cos0 should pair. In Eq. (26b),
only even terms with respect to H contribute due to the same reason, and the contribution from the terms with n =0
cancel the first term in Eq. (25). The resultant expressions are as follows:

00 oo
1 1

(& cos0 (x) )& = g g 2n+1! 2m!
P 0 P, PX f dr( . f dr2„+1f dri f dr2 f dxi . f dx2„+1f dx 1

. f dx2
2n+1

x ~
ma

(H'(x', ) . H'(x2 )),„,
(m.a)

X (T,cos0 (x)cos0 (x»r, ) . cos0 (x2„+i,r2„+, )

X cos[0+(x»r, )+2k~x, ] . cos[0+(x2, r2 )+2kFx2 ] )Oc,

((p (x, r)p (0,0) )) —((p (x, r)p (0,0) ))

(27a)

(H'(x', ) . H'(x2 ) ),„,(~a)

, f d, f d 2„+2f d ', f d,' fax, fdx, „„fdx', fax,'1 1 n P . , P

2n +2

x ~

X(T,p+(x, r)p+(0, 0)cos0 (xi, r, ) cos0 (x2„+2,r2„+2)

Xcos[0+(x', ,r, )+2kFx', ] . . cos[0+(x2, r2 )+2k„x2 ])oc . (27b)

Now we carry out the power counting of the integrand
of each term. When x,x,.(1&i &2n+1 [Eq. (27a)] or
2n +2 [Eq. (27b)]},x'. (1 &j &2m) and r, r, (1&i &2n+1
[Eq. (27a)] or 2n +2 [Eq. (27b)]), rj(1 &j &2m) are of the
order g( ))a), the asymptotic form of the (n, m) term is

mg
—my(Hx)2n + lg —(n + 1)/q

in Eq. (27a) and

amp
—mg(Hx)2n +2g —(n +1)lqg —2

I

in Eq. (27b). The contribution to ((S")) contains
(4n +3m) integrations up to g-f3 while that to 'R con-
tains (4n +3m +2) integrations. Now we discuss the
asymptotic behavior in the limit of large P (low tempera-
ture). When —'&r) &3, both 4 —I/11 and 3 —

2) are posi-
tive, and each term is diverging as P~ oo. In this case,
both H and H'(x) are so-called relevant, and the follow-
ing scaling relations are obtained for large enough P and
small enough H and a with the products (H") P
and o /3 "being finite.
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((Sx» y y a (Hx)2n+1~2m
n =0m =0

Xp2 1/a)+ n (4 —(/a))+ m(3 —a))

—Hxp2 —1/alf ( (Hx)2p4 —1/a) 2p3 —a) )

—(Hx)1/(4a) —1)f((Hx)2p4 —(/a) 2p3 a))— (28a)

~ a

I
a a a a

I

(a)

(Hx)2n+2 2m/2(n+1)(4 —1/a))+m(3 —a))
n, m 0 pg

n =0m =0

( (H x
)2p4 —1 /a) 2p3 —

a) )

where a„and b„are the expansion coefficients.
When 3 —

21 is negative and H'(x) (or o ) is irrelevant, the
asymptotic form of the (n, m) term is not so simple as
cr p " In. this case, the system is metallic when o. is
smaller than some critical value o' with H =0. The
metal-insulator transition at o.* is beyond the scope of
this paper. We restrict our discussion to the case where
H'(x) is relevant, that is, the insulating phase in the ab-
sence of K .

Ap

0.2- = 0.0

"=O.1

= 0.05
= 0.025

IV. SIMULATION
A. Method

2.0 10.0 20.0

We used the quantum transfer matrix method proceed-
ing along the spatial direction' ' based on the Suzuki-
Trotter formula. ' The details of the method are found in
the literatures. ' ' ' We make some comments on it
here. We believe this method is advantageous in the fol-
lowing respects. (1) There are no statistical errors, which
enables the numerical differentiation. (2) The theoretical
basis of the extrapolation with respect to 1/NT (NT is the
number of the breakups along the Trotter axis) is estab-
lished. (3) The lattice size L can be easily extended with
the CPU time proportional to I.. This is advantageous
for the study of random systems where the average in
large system is necessary. (Self-averaging property is as-
sumed. ) (4) All the metastable configurations are taken
into account exactly.

The lattice size I. is 100 and the extrapolation has been
performed using the values with NT=5, 6, 7, and 8. We
checked that the extrapolation works even at the lowest
temperature (p=20. 0) by comparing with the result ob-
tained using the data with NT =4, 5, 6, and 7,

A11 the simulations in this paper concern the case of
XY model ( b, =0.0 and g =2.0).

The order parameter ((S"» and the rigidity R are cal-
culated by the numerical differentiations of the free ener-

gy F with respect to the ordering Geld along the x axis
and the phase angle y—=2eA /cA, respectively:

0.4-

0.3—

X

o 02-

V~

a a ~ ~ ~ ~ ~

b
0

0
D

a ~ a.a ~ a a a I

1.0

a a a a a a I a

~F000

h
0

0
a

(b)

6 =o.o

~ H" = 0.1
= 0.05
= 0.025

~ = . 1

~ ~ ~ a ~ I

10.0

((S"» = ——1 BI
gKx

(29a) p (Hx&4/7

BE

B. Pure system {o=0)

In the absence of the random fields, we expect the one-
parameter scaling laws from Eqs. (28). Figures 1 and 2

FIG. l. (a) The order parameter ((S")) as a function of the
inverse temperature P for several values of H' and o =0 in the
log-log plot. The solid curves are only the guide to the eyes. (b)
The scaling analysis of the above (a). ((S"))/( lOH")'/ is plot-
ted against P(H") / . We obtain a single smooth curve from the
data in (a). It should be noted that we take the unit of energy as
J =1.0.
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show the results of our simulations. Figures l(a) and 2(a)
show ((S )) and R, respectively, as functions of the in-
verse temperature P for several values of H in the log-
log plot. These several curves are again plotted with the
abscissa P(H") /, and ((S )) is divided by (10H )'/ .
The results are shown in Figs. 1(b) and 2(b), and all the
data points form a single smooth curve in each figure.
This means that the following scaling relations hold:

I I I
I

I I I I)

(( Sx )) (Hx)1/7f ((Hx)4/7p)

((Hx)4/7p)

(30a)

(30b)

and the scaling functions f, (x) and gt(x) are given nu-
merically in Figs. 1(b) and 2(b), respectively. Equations
(30) are equivalent to Eqs. (28) with o. =O and 7)=2. The
Hamiltonian Eqs. (15) is reduced to the quantum sine-
Gordon model in the absence of o.. The H term is
relevant of g) —,', and it leads to the gap in the energy
spectrum which is proportional to (H )

"/' " ". Equa-
tion (30b) means that the rigidity is determined by the di-
mensionless ratio of the gap to the temperature with g
being 2. It should be noted that if H =0, i.e.,
(H") P=O, the rigidity is zero, because of the gauge in-
variance of the system (Sec. III and Appendix ). And the
rigidity reaches the value g, (ac ) independent of H' at
zero temperature (P~ ac ), i.e., R has a step from zero to
gi( ac ) at H"=0. This is the case also in the BCS theory.

C. Configurations in the presence of the random potentials

2.0

~ ~ ~ I I I I

~Ad

0

0

I i I I I I III
10.0 20.0

Now we study the e6'ects of the random potentials. As
the first step, we show the expectation values (Si ) and
(SI') around a single impurity. Figure 3 shows the re-
sults. HI at the impurity site is 240 times larger than the
uniform field H along the x axis. The expectation value
of the bipolaron occupation number (Sf )+—,

' is almost
saturated ( -0.9) at the impurity site. (Sf )'s show oscil-
latory behavior around the impurity site. This is due to
the tendency toward the CDW ordering. Compared to
the drastic change of (SI'), (Si") is little atfected by the
potential.

The formation of the soliton, if it occurs, should be
detected by the negative value of ( SP ) at the impurity
site. Because the 2~ rotation of the phase 0 should re-
sult in the change in the sign of (Si"). (S)') is always
zero because of the symmetry. We investigate the case of
extremely large H&' and extremely small H", but we could
not observe the negative value of (Si ). This means that

0
0 6 =o.o

~ H" = 0.1
a =QQ5

= 0.025
~ = .Q1

03-

0.2-

ss ~ I I III
10.0

s, i i~Ial I

1.0
/3 (Hx)4/7 impurity

SITE l

FICx. 2. (a) The rigidity R as a function of the inverse temper-
ature P for several values of H" and cr =0 in the log-log plot.
The solid curves are only the guide to the eyes. (b) The scaling
analysis of the above (a). R is plotted against P(H") / . A single
smooth curve is obtained from the data in (a).

FICz. 3. Configurations around the single impurity. The
charge density (Sl') and the amplitude of the order parameter
(SP) at each site are shown. (Sf) changes drastically com-
pared to (Sl"). (S() is zero due to the symmetry.
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the expectation value of the phase (8 (x) ) is zero (or the
integral multiple of 2m.).

Figure 4 shows the expectation values of (St ) and
(Sf ) with the random potential Hf at every site. Com-
paring with the single impurity case Fig. 3, the collabora-
tion of the impurity potentials enhances the inhomo-
geneity of the order parameter.

tions of (10H ) and o with the inverse temperature P
being fixed at 10.0. From the preceding discussion, the
function in Fig. 9(a) can be regarded as the scaling func-
tion f in Eq. (28a). Strictly speaking, the function in Fig.
9(b) does not represent the scaling function g in Eq. (28b)
in the region o. )0.2, but the global feature of g is the

0.5—
~ 10"& S"& H

-10

D. ((S")) and R in the presence of the random potentials

In the presence of the random potentials, we expect the
two-parameter scaling laws. Then, we fix one of the scal-
ing arguments in Eqs. (28), and examine the scaling rela-
tion with respect to the other argument. In Fig. 5(a), we
plot ((S )) as a function of P for several values of o with
(H") p being fixed. In Fig. 5(b), these several curves
are again plotted with the ordinate ((S"))/(10H")'
and the abscissa o p. We perform the similar scaling
analysis for ((S )) with o p being fixed. A single univer-
sal curve is again obtained in Fig. 6(b). These results
confirm the two-parameter scaling law Eq. (28a) with
71 =2.

We have carried out the same procedure also for the ri-
gidity R. Figure 7 shows one of the results. But we
could not obtain a single smooth curve with the abscissa
cr P from the data in Fig. 7. To investigate further the
origin of this deviation from the scaling law, we studied
the case of smaller o. Figure 8(a) shows the rigidity R
measured from its pure value, because R (p, H, tT=O)
with (H ) P ~ being fixed has small P dependence which
mask the even smaller contribution from the random
fields. With the abscissa o P, we obtain a single straight
line up to o p-0. 2 whose slope is 1 in the log-log plot in
Fig. 8(b). This means that the terms with m =1 in Eq.
(28b) dominate for this smaller values of the scaling vari-
able cr /3. From these results, it is concluded that for the
rigidity, the values of a greater than 0.2 with the inverse
temperature p less than 20.0 do not reach the asymptotic
region where our discussion in Sec. III is valid.

In Figs. 9, ((S )) /(10H )'~ and R are shown as func-
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FIG. 4. The charge density (S&') and the amplitude of the or-
der parameter (SP ) when the random potential HI' (represented
by the arrow) is applied at every site. (Sj') is zero due to the
symmetry.

Fl+. 5. (a) The order parameter ((S")) as a function of the
inverse temperature p for several values of o. with (H")'p' ' be-
ing fixed. The solid curves are only the guide to the eyes. (b)
The scaling analysis of the above (a). ((S"))/(10H")'~' is plot-
ted against po . We obtain a single smooth curve from the data
in (a).
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same as it. Comparing Figs. 9(a) and 9(b), we conclude
that the rigidity R decreases more rapidly than the order
parameter {{S)) as a function of a. . This is because the
rigidity is more sensitive to the extent of the wave func-
tion than the order parameter, though the scaling vari-
ables are the same.

10.0-

~
1

~ \ I 0

(H") P =11.31

I I I
1

I I I I

x
'vw'

=8.
2.0

~ ~ I ~ ~ a s l

10.0 20.0

FIG. 7. The rigidity R as a function of the inverse tempera-
ture P for several values of o with (H")'/3 / being fixed. The
solid curves are only the guide to the eyes. We can not obtain a
scaling relation from these data. See the text.

2.0 10.0 20.0

V. DISCUSSION AND CONCLUSIONS

A. Physical meaning of the scaling laws
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ksR=g
kp

'
kp

(31b)

The radius of the Cooper pair is zero and disappears from
the problem. In the limit of zero temperature (P~ oo ),
gp should cancel in Eqs. (31), and we have the following
relations:

The scaling laws discussed thus far have simple physi-
cal meaning as follows. We have three characteristic
lengths in the present problem. The first is the thermal
cutoff length gp-P. The second is the Fukuyama-Lee
length g including the quantum fluctuations. ' This is
the length over which the correlation of the charge densi-
ty phase 6+ and, hence, the SI' decays exponentially, and
is proportional to o. '~ '. The last one is the width of
the Josephson soliton gs which is proportional to
(H )2"/" ""'. The physics is determined by the dimen-
sionless ratios of these three length scales, and the scaling
relations Eqs. (28) are rewritten as follows:

{{Sx )) —(Hx)1/(4g —1)f (31a)
kp

'
kp

FIG. 6. (a) The order parameter ((S")) as a function of the
inverse temperature p for several values of H" with o' p beIng
fixed. The solid curves are only the guide to the eyes. (b) The
scaling analysis of the above (a). ((S"))/(10H")'/ is plotted
against f3(H") /'. We obtain a single smooth curve from the
data in (a).

{{Sx )) (IIx)1/(4p —1)J'

R=R=g

(32a)

(32b)
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B. Self-consistent equation

H"=2zJ (H")'/' " "f((H") 13
'/" rr

We discuss here the following two cases.

I. Determination of T,

.(13')

We have established the scaling relations Eqs. (28), and
the next step is to solve the self-consistent equation (13).

T, (o ) = T,ohco T(3 g }/2
cO

(33)

where T,o is the transition temperature in the pure sys-
tem. h is the scaling function which depends only on

quation (33) implies that the critical ran-
domness o =o ", at which T, (o)van. ishes and the ground

The transition temperature T, as a function of the ran-
domness o. is determined as a point where the nontrivial
solution (H"&0) of Eq. (13') disappears. The result is

((Sxpg (HX)1/7
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on y t e guide to the eyes. (b} The scaling analysis of the above

lo lot. W
a . The data are again plotted with the abs

'
e a scissa ger in the log-

Pa2 (0.2.
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FICx. 9. (a) ((5 )) /(10H")'~ as a function of (10H") and ir
with the invere inverse temperature P being fixed at 10.0. This can be
regarded as the scaling function f in Eq. (28a). (b) The rigidit
It as a function of (10H" an

c I lgldlty
) and o with the inverse temperature

being fixed at 10.0. This can be approximately regarded as the
scaling function g in Eq. (28b). See the text.
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state ceases to be superconducting, is proportional to
T(3—g)/2

co

2. Zero-temperature properties

At zero temperature, we use the one-parameter scaling
laws, Eqs. (32). For the pure system, the order parameter
at zero temperature is related to the transition tempera-
ture as follows:

«S »o=constT", ~~" . (34)

The order parameter « S » and the rigidity R as func-
tions of o. are given by

(35a)

0'

(3— )/2To " (35b)

%'e thus far discussed the limiting case where the elec-
trons form tightly bound singlet pairs. The effective
Hamiltonian in this case is that of S=

—, XXZ-spin chain
and the quantum sine-Gordon model is equivalent to it in
the continuum limit. It is well known that the most gen-
eral models of interacting electron systems are described
by the two kinds of phases, 8 and P, which correspond to
the charge and spin degrees of freedom, respectively.
The Hamiltonian for each phase is that of the quantum
sine-Gordon model, and the random potentials couple
the charge and spin degrees of freedom. ' The cumu-
lant expansion method can be extended to this model,
and the one-parameter scaling laws are obtained for the
generalized susceptibilities (GS s) corresponding to vari-
ous long-range orderings. The details will be published
elsewhere„and we describe here only the physical picture.
In the absence of the random potentials, the GS yo(P) is
described by the product of the powers of the inverse
temperature P, g,h,„,and g, ;„,where g,„„,and g, ;„are
the characteristic lengths of the spatial variation of the
phases 8 and P, respectively. The effect of the random
potentials can be described by the following scaling law:

x(P) =xo(»f (36)

where P and y are the universal scaling functions which
depend only on g. $(0)= 1 and cp(0) =14.5 (for g =2).

C. More general 1D electron models

function f is the saturation of the correlation at the local-
ization length, i.e., to replace the inverse temperature P
in yo by min (P, g ). Then, the random potentials only
prevent the system from going to the "low-temperature
region, " and it would be difBcult to obtain another order-
ing suppressing the ordering in the pure system by intro-
ducing the randomness in quasi-1D systems.

In conclusion, we have studied the quasi-1D disordered
bipoloranic superconductor by the quantum transfer ma-
trix method. The order parameter and the rigidity are
discussed analytically and numerically as functions of the
temperature, the strength of the. random potentials and
the ordering field, and we obtain the two-parameter scal-
ing relations.

The following problems are left for future investiga-
tions:

(1) We have restricted ourselves to the insulating re-
gion when the superconductivity is absent. The effect of
the metal-insulator transition on the superconductivity in
this quasi-1D system is an open problem.

(2) What is the effect of the random potentials on the
competition among various long-range orderings, i.e.,
CDW, spin-density wave (SDW), and superconductivi-

(3) The extension to higher-dimensional system is
desirable. In particular, the effect of the transverse ran-
dom fields on the Kosterlitz-Thouless transition in 2D
system is unknown.
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APPENDIX

We show that when 0"=0, the first term cancels the
second term in the right-hand side of Eq. (25). It is rath-
er obvious from the viewpoint of the gauge invariance of
the Hamiltonian Eq. (4) or the rotational symmetry
within the xy plane in the spin Hamiltonian Eq. (10), but
we show it explicitly to see the details of the cancellation.

When the Hamiltonian & in Eq. (24) does not contain
the cos8 term, the imaginary-time derivative of 8+(x),
i.e., the commutator of & and 8+(x) is given by

where g is the localization length which is proportional
to some negative powers of o (the mean strength of the
random potentials). The physical meaning of the scaling

I

88+(x, r) =[&,8+(x)]= 2Cip+(x) . —

Then

(A I)

f p p, 88+(x~, r~)dr, «,&p+(x„r, )p+(x, , r, ) &
= f dr, f dr, p( +xr, )

0 0 2C o o

i
d1 ] &p+ (x],7, ) [8+(x~,r, ) —8+(x~ )] &

0

l p
13&p (, )8 (,)& —f d, &p ( „,)8 (, )&

0
(A2)
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We use again Eq. (Al) in the second term of the last part of Eq. (A2).

P p Be+(x, , r, )f d~;(p~(x„~, )e~(~, ))= f d,
~

8~( z)l0 2C 0 7

([8+(x,,p) —e+(x, )]e+(x, )&= ' ([8+(xz),e+(x, )]&=o.
2C

Then Eq. (A2) becomes

p l

0 0
dr, drz(p+(x], 1$)p+(xz, rz) &

— p(p+(x$ )8+(xz) & .
2C

We rewrite the left-hand side of Eq. (A2) as follows:

f p 7 ) P I3
drz~p+ (x1~rl)p+ ( xzt rz) & drz drl ~p+ (x1 irl )p+(xz~rz) &

0 0 0 ~2

Repeating the similar discussion from Eq. (A2) to Eq. (A4), we obtain another expression:

0 P Ef «) f (p+(x), r))p+(xz, rz)= — p(e+(x, )p+(xz)& .
0 2C

Therefore, our final result is

Ce f3f dr, f drzf dx, f d x(zTp +( x» r) p+( x,zr)z&A(x, )A(xz)
2(Mc)zP

(A3)

(A4)

(A5)

(A6)

C2e 2 pf dx& fdxz f dr& f drz(p+(x&, r&)p+(xz, rz) &A (x&)A (xz)
(vrh'c) )33 0 0

iCe fdx, f dxz —(p+ (x, )8+(xz ) —8+(x, )p+ (xz ) & 3 (x, ) A (xz )
2(m.kc) P 2

f dx, f dxz ( [p+ (x, ), 8+(xz )] & 3 (x, ) 2 (xz ) = f dx A (x) . (A7)
4(n.Ac) (2~6'c )

Equation (A7) is nothing but the first term in the right-hand side of Eq. (25).
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