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This work deals with the description of the Josephson junction by means of quasispin operators.
Several approximations of previous such treatments known as the pseudo-angular-momentum
theory are dispensed with, and special care is taken to describe the charge imbalance across the
junction in a physically proper way. The ensuing microscopic theory can be evaluated rigorously up
to a very small error, yielding a closed system of dynamical equations for the macroscopic behavior
of the junction which exhibit additional terms as compared to the usual Josephson relations. These
terms leave the Josephson frequency practically unchanged, but are shown to yield a correction to
the frequency of the Josephson plasma mode on the order of 1%.

I. INTRODUCTION

Ever since Josephson published the main results of his
famous dissertation on two weakly coupled superconduc-
tors, ' there have been numerous investigations concerned
with the theoretical explanation of the various Josephson
effects. The scope of these works extends from essentially
phenomenological treatments such as Anderson's
number-phase theory or Feynman's two-level descrip-
tion to theories which offer a microscopic explanation,
deducing the junction dynamics from the microscopic in-
teractions within and between the two superconductors.

Within the latter approaches one can distinguish be-
tween those treatments which rely on perturbation theory
and Green's-function methods to evaluate the microscop-
ic model ' and the so-called pseudo-angular-momentum
approach (PAM), ' which uses an operator formalism
based on Anderson's quasispin description of supercon-
ductivity. " For single superconductors, this formalism
can be shown to be asymptotically exact in the low-
temperature limit. Relations between the two directions
have been discussed by Rogovin et al. PAM can only
deal with the pair processes, but it is appealing because of
its relative simplicity and the fact that it is not restricted
to the perturbation regime. ' In its usual formulation,
however, it faces various drawbacks. One problem is that
not all relevant commutators are treated rigorously (see
Ref. 9 for a discussion); furthermore, one of the funda-
mental operators of the theory S, has been incorrectly in-
terpreted as to measure the whole charge imbalance
across the junction (see Ref. 10 and Sec. III).

In the present work we develop a microscopic 'theory
of the Josephson junction which is similar to the PAM in
that it is formulated by means of the quasispin operators,
but which complies with the above criticisms: It
dispenses with approximations on the commutators and
gives a refined account of the charge imbalance. In addi-
tion, it does not use a further approximation made by
PAM which we feel has not been discussed thoroughly
enough in the literature. The BCS Hamiltonians of the

two superconductors are usually neglected, and at least in
nonequilibrium situations this does not seem to be
justified (see Sec. IV). Thus, working in the Heisenberg
picture and taking the BCS ground state at t =0, we
evaluate our microscopic model without any assumptions
over and above the model Hamiltonian.

In this way the dynamical equations we arrive at to de-
scribe the macroscopic behavior of the junction are a
direct and basically exact consequence of the microscopic
theory. ' Compared to the classical Josephson relations,
they exhibit several additional terms. These terms are
shown not to affect the Josephson frequency relation, but
to give a corrected formula for the frequency of the
Josephson plasma mode; a quantative estimate shows the
correction to be on the order of 1%. This frequency has
acquired renewed importance in the theory of macro-
scopic quantum phenomena. '

In short, the plan of the paper is as follows. In Sec. II
we establish our notation and develop the microscopic
model of the junction. Section III is devoted is to a rath-
er detailed discussion of the proper account of the charge
imbalance between the superconductors, thereby comp-
leting the model. In Sec. IV we derive the dynamical
equations describing the macroscopic behavior of the sys-
tem, commenting on several approximations made in pre-
vious treatments. Finally, Sec. V deals with the physical
content of these equations, and in particular discusses the
correction to the Josephson plasma frequency our theory
leads to.

To conclude this introduction, we remark that we have
not included the coupling of the Josephson junction to
electromagnetic modes in the junction cavity, which has
led PAM to predict a slight pulling of the Josephson fre-
quency itself. This point will be considered in a future
publication. '

II. MICROSCOPIC MODEL

We shall only describe the most important features of
the model; background information can be found in Ref.
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10. As mentioned above, we use Anderson's quasispin
operators to describe the superconducting properties of
each of the two junction constituents (which we assume
to be identical), i.e.,

within the strong-coupling model

V(k) = U(k) =—'

for all k, ' the density of pairs in the BCS ground state is
found to be

,=
—,'(Ck t Ckt +C+ki C:ki —1), (

1

IAIX~k~k 0 —
—, (9a)

where Cz, are the usual creation and annihilation opera-
tors for an electron with momentum k and spin s. The o.

operators obey spin-commutation rules and are defined
for all k whose associated energies e(k) lie within a cer-
tain region around the Fermi energy p:

k E ( k:e( k ) H A = [p fico~, p—+ficoD ]J; (2)

we denote the number of these momenta —which is finite
for a finite-volume superconductor —with

I
A I.

In this notation, the BCS Hamiltonian of a supercon-
ductor in the strong-coupling model' can be written as

their total number —,'IAI, the density of bound pairs
(Cooper pairs)

(9b)

their total number —,'IAI.
The operator rz, is a measure of the total number of

electrons in the region A; it is related to the number
operator Xz as

X, =2IAlr„+ IAI1

and is defined such that

HBcs =X«2~k. + lk) — 2~k ~k+
k k, k'

(3)

lg& =s„[U(k)+V(k)e'~cr„]lo&„.

Introducing as usual the operators

(4)

where e is the average of the kinetic energies e(k) in A;
the BCS ground state is

In order to illustrate the physical meaning of these opera-
tors further, we consider the state l+(+)& =2r~—'IP&, in
which one Cooper pair is added to (removed from) the re-
gion A (the numerical factor 2 serves to normalize the
state). Using (4) and (5) we get

1

IAI
X k (5a)

1
& p(+)lr,.l+(+) & =(+)

A
&+(+)lx, le(+) &

1
rWz

IAI
X ~kz

=(+)2+ IAI

(5b) as expected. Consequently, then, the operator

(12)

for the right superconductor R, and a similar set sz, s~,
(defined by means of spin operators o —,o, ) for the left
superconductor S, we have

HBcs =
I AI [eg (2r~, + 1) gr~ r~ ], —

HBcs I AI[es(2s~, +1) —gs„+s„] . —
(6a)

(6b)

Ir+ly &= yU(k)V(k) e (7a)

R (7b)

where b is the modulus of the order parameter. ' Ac-
cordingly, we interpret cz =r ~ rz as the observable for
the density of condensed pairs.

Remark It is often not. noted that in the present for-
malism one needs to distinguish between electrons, only
formally described as pairs by the operators o.i*, , and con-
densed pairs, described by r~. Only the latter contribute
to the condensation energy ( = binding energy), as is ex-
hibited by the BCS Hamiltonians (6). Remembering that

The operators (5) can be interpreted as follows. r„+
creates condensed (i.e., ground) pairs; it is the microscop-
ic analog of the macroscopic wave function" of the phe-
nomenological theories, as can be seen from the relation

ZA = i(rA SA ) (13)

H~ =HT+H~ . (14)

As regards HT, we follow PAM in taking the Wallace-
Stavn Hamiltonian'

T
I

X k q q k
+- +-

& ~,q

=IAIDO(r~s~ +s~r„)
=IAlw~

which describes the tunneling of condensed pairs.
In this context, we introduce the operator

( —i)k(rwsi —s~ rw ),e . + +

(15a)

(15b)

(15c)

(16)

whose well-known interpretation as the Josephson tunnel
current can be seen directly from the definition, or equal-

measures the difference of the particle densities within A
between R and S.

Thus having described the individual superconductors,
we now turn to the interaction Hz between them. As is
well known, it consists of a tunneling part HT and an
electrostatic interaction part Hz,
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ly well from the relation

d ljA=2«A, =2e—[HT, rA, ] .
dt ' fi

The electrostatic interaction H& between the supercon-
ductors clearly depends on the charge imbalance; since
the treatment of this concept gave rise to a severe criti-
cism of PAM, we need to be particularly, careful on this
point and devote a separate section to its discussion.

f,(E)

III. THK CHARGE IMBALANCE

A. Theoretical descriptions and their physical meaning

eV=p~ —p~ . (17a)

Equivalently, one can use different kinetic energies e&, e&
in the BCS Hamiltonians (6) (Ref. 19) and set

It is obvious that the voltage is a key concept for the
understanding and explanation of the Josephson efFects.
Many authors have included the voltage into their theory
by simply subtracting a term pe%~ +p&X& from whatev-
er Hamiltonian they work with (i.e., using a "reduced dy-
namics"), interpreting

FIG. 1. Electron distribution in a single superconductor (R).
(Energy E in arbitrary units. )

i.e., in the BCS ground state IBCS)= 1/ii ) lfs), one
has r, =s, =0 [see (11)], so that z = V=O, even when

pz &ps. This fact has been pointed out by DiRienzo and
Young in Ref. 10. The PAM definition (20) does, howev-
er, see differences in particle number (therefore in charge)
stemming from nonequilibrium distributions in A&, A&.
To illustrate this, we consider the state

eV=Eg (17b)

PAM, on the other hand, proposed to make the physical
origin of the voltage (charge imbalance on the junction
capacity) more apparent by using

in which, compared to equilibrium, one Cooper pair has
been transferred from the left to the right superconduc-
tor. Using (12), one shows that

with
which, from Eq. (20), implies V =(2e/C)&0.

(2) The definition

(22)

and setting (we denote expectation values by dropping
the A index; e.g. , z denotes the expectation value of z~)

V= —= /A/z=
C C

z (20)

N„,= f f~ (E)dE
pg +AcoD

=N(p~)+ I f~(E)dE
PR

—A~D

=N(p„)+N (A),

(21a)

(21b)

(21c)

i.e., it depends on the value of pz as well as on the dis-
tribution within A (which is centered around pi, ). Since
V- 4X„„wenow see the following.

(1) PAM only takes into account the part N(A), since
all operators are defined in restriction to A; the definition
(20) does not see a difFerence pz&ps. In equilibrium,

One might think now that these are just two different
ways of describing the same physical quantity; this is,
however, not the case. The two treatments are, in fact,
both incomplete, in a complementary way. To see this,
let us look at the electron distribution in a single super-
conductor, say 8, (see Fig. 1). The total number of elec-
trons is thus

on the contrary, only takes into account the part N(p).
This is sufficient for the equilibrium situation [where

(A)=N (A), since r, =s, =0], but does not cover
difFerences in the distributions within A between R and S.

B. Evaluating discussion of the two approaches

In the following discussion, we shall concentrate on the
ac Josephson eftect; a consistent account of the dc effect
introduces different problems (necessity of a current-
source reservoir ' ') which are of no relevance to our
present purposes.

In Ref. 10 the fact that for equilibrium distributions
z =0 is said to be a fundamental inconsistency of PAM.
The argument presented there is, however, not fully con-
clusive. The reason is that the dynamics of states and
operators is not treated correctly. Taking as the junction
Hamiltonian H =HT+Hc with

V= z+0
e

(23)

and ~BCS) as the initial state, one obtains in an interac-
tion picture
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IBCS&,=e IBCS&

(24}

while the operators evolve according to
(i /A)Hct —(i /fi)Hct

In Ref. 10 it is now stated that

z (t)=, (BCSIz IBCS &,
—=0, (25)

which would indeed be inconsistent with (23). But (25) is
incorrect, since the time dependence of zz is not taken
into account.

In fact, in the Heisenberg picture we have

2ez~(t) = [HT+H—c,z), ](t)=j~(t),l

dt
(26)

showing that in the ac effect, where j(t) oscillates, one
cannot possibly have z ( t ) =0 within PAM formalism.
Physically, it is clear that the ac current causes the
charge imbalance and hence the voltage to oscillate
around an average value, which is what one measures as
the dc voltage across the junction (( & T denotes average
over time):

V(t) = v"+ v"(t), ( v"(t) &,=0 . (27)

I@«)& =I@~ &.(() Its &-.(()
n (t) =no+ n, cos(cot ),

(28)

where IP &„ is the charge-imbalance state of Ref. 10. But
(28) would leave the density of condensed pairs ( —b. } in-
variant, which is not the case in the true dynamics [see
Eq. (2.20) and Sec. V of Ref. 22]. Thus, (28) cannot be
the state of the junction over time and hence (i} not the

This phenomenon has already been pointed out in Ref.
2, and we believe one should try to account for it in the
theoretical description; the assumption in Ref. 10 of an
ideal battery keeping the voltage constant seems artificial
to us (e.g. , in this case there could be no Shapiro steps).
The important question in our context is now whether
this ac voltage corresponds to (i) oscillating p-values (os-
cillating A-zones) in the two superconductors with fixed
equilibrium distributions within AR, As, or to (ii) oscillat-
ing distributions within fixed A-zones (fixed p-values).

The assumption (i) would mean that R and S are in
strict equilibrium (entailing r, =s, =z =OVt) during the
ac effect, relaxing to it at a rate faster than the Josephson
time period of A/2 eV= 10 " sec. While we believe this
picture to be quite implausible on physical grounds, it is
certainly inconsistent with the whole setup of Sec. II, in
particular with (26). z (t) oscillates and is not identically
zero. Thus, (26) corresponds to conception (ii).

An essentially equivalent but more general argument
can be formulated in the Schrodinger picture. If one
defined all operators over the whole range of momenta, as
done in Ref. 10, (i) would correspond to a state vector of
the junction

d —1 1
N(pii ) N(ps )~v '=——(ez es ) =—b,e, —

N'(A) N'(A)- V-= 2~. . —
e

Thus, (27} is written as

V = V '+ V"= ( t( e+2I(.z ) . —-=1
e

In this way, our final model Hamiltonian becomes

(30)

H~ =H~cs+H~cs+HT+Hc
= IAI[(&a+as }1+2(&R"w +esse )

g(PAPA +SASA )

+A, ( 1' p s p +s p 1' p ) +2EZ p ] (31)

%'e have chosen all constants in such a way that H~ is

correct physical picture.
We summarize what we have established so far. The

oscillating voltages in the ac effect are due to nonequili-
brium distributions within fixed A-zones in R and S.
Other than (22) and the theory developed in Refs. 10 and
22, PAM fully captures this feature with its operator zz,
since this observable measures just the deviation from the
equilibrium distributions in the superconductors. Never-
theless, we think that Ref. 10 points to a decisive problem
for PAM; this becomes apparent if we now turn to the
different question of how to account for the dc part in
(27).

If one follows PAM in setting

V(t) = z(t) V—"= (z(t) & T~O,
2K d, 2K
e e

one is obliged to claim that the two superconductors are
permanently (far) away from equilibrium. More precisely
the distributions oscillate around nonequilibrium distri-
butions.

This physical picture is incompatible with the familiar
relation (22), which implicitly assumes that the supercon-
ductors are (aside from the charge oscillations discussed
above, i.e., "in the mean") in equilibrium with different
equilibrium parameters p. In fact, the very use of pz, ps
(as well as a reduced dynamics) presupposes R and S to
be always at least close to equilibrium. This assumption
is indeed the basis of physical discussions of the Joseph-
son effects, which we believe to be valid.

Hence, while we cannot say that the PAM relation (29)
is inconsistent —a priori, nothing prevents us from con-
sidering (nonequilibrium) states in which (z(t) &T&0
holds —it is not correct. on physical grounds. In this
sense, we agree with Ref. 10 in stating that the operator
zz cannot describe the permanent charge imbalances con-
sidered there, i.e., dc voltages.

In conclusion of this discussion, we think it gives- a
correct account of the real physical situation and makes
use of the virtues of both approaches, (20) and (22), if we
cover both parts of the charge imbalance, describing dc
voltages with (22) and ac voltages with (20):
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strictly extensive [O(~A~)], as seems to be the most
reasonable behavior for large particle numbers.

IV. THE MACROSCOPIC DYNAMICAL EQUATIONS

To evaluate our model in terms of the macroscopic be-
havior of the junction means to determine the dynamics
of global observables (i.e., operators which are summed
over all k). Throughout this section for mathematical
convenience we choose density variables (with respect to
~A~ ) for our description of the system. The operators

(35a)

'&s(s+(t) =s(t)e (35b)

we then have as a complete set of physical variables

c(t)=c (t)=r (t)=c (t)=s (t) Cooper pair density,

z (t)=—,
' [r,(t) —s, (t) ]

difference between the Cooper pair densities of R and S is
zero for all times. Remembering from the definitions that

i/~ (f)r+(t)=r(t)e

+ +rk, rA„sk, s (32) difference of particle densities within A, (36)

form a closed set of such variables under commutation
with H&. This can be seen explicitly from the Heisenberg
equations of motion I A(d/dt)r~, =i [HA, rh, ], etc. ]

b P( t) =Pz ( t ) Ps ( t—) phase difference between R and S .
With these, Josephson current (density) and tunneling

energy (density) take their familiar form
d . + +"A =( ')~(rAsA sA "A )= jAdt 2e

~d fi
A 2 ~A

(33a)

(33b)

j(t)=( i) -[r+(t)s (t) —s+(t)r (t)]

4e
Ac

(t)sindhi(t),

(37a)

rA =2iezrz +2igrhrA, 2iks—zrz,dt

+iK(r~, —sA, )r~ (33c)

io (t)=A [r+(t)s (t)+s+(t)r (t)]
=2Ac (t) cosh, P(t) . (37b)

s j+, =2iezsz +2igszsA, —2i A.r~sA,dt

Rewriting the system (33) (without A indices) in terms of
the variables (36) leads to our final dynamical equations:

d
fi r~ =A rA, A' sA =A s~dt dt ' dt dt

(33d)

(33e)

fi c (t) = j(t)z (t—),—d 1.
dt ' e

z(t)= j (t)=2Ac(t)sindhi(t),
d
dt 2e

(38a)

(38b)

These equations are valid up to [O(1/~A~)], since all
commutators between the operators (32) are [O(1/~A~ )].
If we now take expectation values with the BCS ground
state ~BCS) at t =0, it is important to note two
mathematical facts.

(1) In permutation-invariant product states like ~BCS)
with (8) the expectation values of products of operators
(32) factorize up to [O(1/~A~)], as easy computation
shows.

(2) In the limit of large numbers ~A~, such states
remain product states under Schrodinger dynamics which
are generated by mean-field Hamiltonians like (31).

In light of this and the fact that ~A~ is typically on the
order of 10', the error due to the passage from (33) to
the corresponding equations for expectation values (form-
ing a classical, nonlinear set of difFerential equations) is
extremely small. In the thermodynamic limit, ~A~~ ~,
these arguments become entirely rigorous.

The resulting system of equations then is (33) without
A indices. In this system, r, +s, is a constant of the
motion, rejecting the conservation of particles. In addi-
tion, a little algebra shows that

ri [c'(t)—c'(t)]= J(t)(r, +s, )(—t)—.

For our initial-state
~
BCS ) it is (r, +s, )=0 and hence the

b, P(t) =25,e+4Kz (t)+4gz (t)
dt

—4A, cosh. P( t )z ( t ) . (38c)

Before we look at this description of the behavior of
the Josephson junction more closely, we would like to
add a few comments, comparing our treatment with
PAM.

(1) As mentioned in the Introduction, the authors using
PAM have usually neglected the BCS Hamiltonians of R
and S. This is justified in equilibrium, if one uses reduced
dynamics. Then, i.e., in the state ~BCS), the first two
terms in (33c) and (33d) coming from the BCS Hamiltoni-
ans give the same result (2i p~ r A ) as the reduced dynam-
ics (cf. Ref. 26). But since the junction generally does not
operate in equilibrium (see Sec. III), we do not see a
reason not to include the free Hamiltonians of R and S.
They lead to the terms 2b, e+4gj (t)z (t) in (38c), missing
in the usual PAM equations, the first one being of course
connected with the problems discussed in Sec. III.

(2) Since we have neither approximated any of the
commutators nor set c(t)=0 as it is often done, Eqs. (38)
can be considered to be [up to the very small error dis-
cussed below Eq. (33)] an exact consequence of the model
Hamiltonian (31). This accounts also for further
differences between (38) and PAM treatments.
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Y. THE gOSKPHSON PLASMA FREQUENCY

(c (t)+z'(t) ) =0,
2ei(t) =j (t) = c (t)sink/(t),4eA,

(39a)

(39b)

Using (30), the dynamical equations describing the
junction behavior are

V"(t)=2—z (t)
e

stemming from the ac current j(t) itself. Nevertheless,
the Josephson frequency is unaltered, since the time aver-
age of V"(t) and hence z(t) is zero at a frequency on the
order of 10" Hz,' therefore, for the ac effect (39c)
eff'ectively reduces to (40c),

b,P(t) = [V"+ V"(t)]+ z(t) (&p(t) &,=T

4A. cosh/(t)z(t) . (39c)

In order to discuss the physical content of these equa-
tions, and in particular the corrections they predict as
compared to the usual Josephson relations

Thus leaving the Josephson frequency relation (almost)
unchanged, the additional terms in (39c) do have a con-
siderable effect on the Josephson plasma frequency. Here
V '=0, so that we have [with c ( t) =co and g ))A,]

hP(t) = —(K+g)z(t)
c(t)=0,
2ez(t) =j (t) =j o sindhi(t),

(40a)

(40b)
8A,

co(K +g)sinbtI)(t),f2 (43)

&(t (t) = (40c)

we have to take a look at typical magnitudes of the con-
stants occurring. Taking junction parameters from Ref.
28,

giving for the plasma frequency the corrected formula
1/2

2eIo g67J — 1+

The correction
lAl = 10' =number of states k,
C = 10 F=capacity,

Io = 5 X 10 A =critical current,

g =2k =2 X 10 eV, c(0)=—,',
we deduce

e
IAI =o. 1 eV

C

~c(0)IAI =X=0.»1O ' e&
4e

(4 lb)

-HT=10 eV .

g 6 C
' lAf

depends on the capacity and size of the junction. More
precisely, since C —3 and lA l

—Ax, where 3 is the area
and x the thickness of the superconducting films, one has
g/K —1/x, so the correction increases with decreasing
film thickness [which we have assumed to be x =1000 A
in (41a)]. ' The physical origin of this correction may be
that the attractive force prevents part of the charge from
oscillating across the junction, leading to a reduced
effective capacity.

For the parameters (41), we get
Turning now first to our constant of motion

c (t)+z'(t) (42)
a)J =6X 10' Hz —=10

EC

(reminiscent of, but slightly diff'erent from, the "coopera-
tion number" in Ref. 8), we see that c(t), measuring the
Cooper pair density and hence the modulus of the order
parameter, is not exactly constant over time. However,
at a dc voltage of 10 V one has lz(t)l ~10 during
the ac effect, so that the usual assumption c(t)=co is
very well justified indeed. Nevertheless, it is interesting
to note the physical meaning of (42): The farther one is
out of equilibrium, the smaller the Cooper pair density
becomes; the condensation is indeed an equilibrium
effect.

If we consider the other differences between (39) and
(40), it seems to be a satisfying feature of the new equa-
tions that they explicitly exhibit the fact that in the ac
effect, the dc voltage is superimposed by an ac voltage

The accuracy of the experimental measurements of coJ by
Dahm et al. does not exceed 10%. It would be in-
teresting to see whether they can be improved up to a
point where experiInental verification or falsification of
our theoretical prediction is possible or to measure the
plasma frequency in junctions with very thin films.
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