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In this paper we study the superconducting-normal phase boundaries of a variety of wire net-

works and Josephson-junction arrays. We have obtained the mean-field phase diagrams for a num-

ber of geometries and compared them to the corresponding experimental data. We have introduced
an analytical approach to the analysis of the structures present in the phase diagrams. We have

shown in great detail how the gross structure is determined by the statistical distributions of the cell

areas, and how the fine structures are determined by correlations among neighboring cells in the lat-

tices. We have also studied the eff'ect of thermal fluctuations on the structure of the phase diagram

by a cluster mean-field calculation and a real-space renorrnalization-group (RG) theory. The RG
theory provides a natural link between the structures at fractional Auxes to those at integral ones,
predicting a pronounced hierarchical behavior of the phase diagram and an infinite slope for the

cusps.

I. INTRODUCTION

Superconducting networks' made of thin wires,
proximity-efFect junctions, and tunnel junctions exhibit
interesting forms of phase diagrams when they are im-
mersed in magnetic fields. Various kinds of geometries of
such superconducting networks have been studied, in-
cluding simple and complex periodic lattices, regular
fractals, bond-percolation networks, disordered arrays
and quasiperiodic lattices. ' The rich structure present
in the superconducting-normal phase diagram, namely
the resistive transition temperature as a function of the
magnetic field, has been the major concern of several ex-
perimental and theoretical' ' investigations. Other
works' have focused on the ground-state configurations
and critical currents in Josephson-junction arrays.

The theme of this article is twofold. In the first part,
we present an analytical approach to the determination of
phase diagrams for a variety of networks and give a rath-
er detailed analysis of the relationship between the phase
diagram structure and the corresponding network
geometries. In the second part, we study the effect of
thermal fluctuations on the structures of the phase dia-
grams through a cluster mean-field calculation and an ap-
proximate renormalization-group theory.

Generally speaking, the rich structure in the phase dia-
grams is a result of frustration or interference effect due
to the magnetic field and the built-in multiple connected-
ness of the networks. Physical intuition suggests that the
basic cell jluxes the magne-tic Aux—es through the cells of
various areas measured in units of the Aux quantum
No=bc/2e —are useful parameters to characterize the
frustration effect. At zero magnetic field, where the cell
Auxes are zero, one expects the frustration effect to be ab-
sent, and therefore the resistive transition temperature
should have a peak. Also, by a gauge invariance argu-

ment, physical quantities should depend only on the cell
cruxes modulo @o. These arguments qualitatively explain
the apparent periodic or quasiperiodic structures ob-
served in phase diagrams of networks of various
geometries. In fact, the cell Auxes have been used to in-
dex the primary peaks of phase diagrams located at par-
ticular field values where all the basic cell cruxes become
integers or nearly integers.

To have a quantitative description of the phase dia-
grams, one has to go beyond the mere concept of cell
cruxes. Mean-field theory seems to be very effective in
serving such a purpose. For wire networks, the mean-
field expression is given by the Landau-Ginsburg equa-
tion expressed in terms of the order parameters at the
nodes. ' For a junction array, one has a set of self-
consistent equations' for the thermally averaged pair
wave functions of the grains. Such equations are linear-
ized near the transition point, and the highest tempera-
ture at which a nontrivial solution first appears is
identified as the transition temperature. So one is left to
find the top spectral edges of eigenvalue problems. The
equations for a junction array can be mapped into a
tight-binding Schrodinger problem for an electron hop-
ping on a lattice immersed in a magnetic field. The equa-
tions for a wire network are in general more difficult to
solve, because the eigenvalue appears in a nonlinear way.
Numerical results have been obtained for phase diagrams
of networks of various geometries. All of them seem to
compare very well with the corresponding experimental
data; the locations of the peaks of various sizes are
correctly predicted and the relative heights of the peaks
are also reproduced with occasional small deviations.
The success of mean-field theory suggests that much of
the frustration effect in a statistical problem can be ac-
counted for in terms of interference effect of linear wave
mechanics.

It is, however, difficult to see through the numerical or
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experimental data, exactly how the geometry of a net-
work determines the structure of the phase diagram.
There have been attempts to analyze the results of large-
scale numerical solutions through those of step-by-step
small size calculations. ' ' In this way, one can get a
clue as to what extent the gross structure of the phase di-
agram is determined by the local geometry of a network;
but the effect of boundaries often renders one to draw a
more precise conclusion. We were thus motivated to pro-
pose an analytical approach' to the solution of the phase
diagrams, based on an explicit step-by-step implementa-
tion of the Lanczos method, ' a well known numerical
scheme. In this article, we elaborate on this method.
One particular advantageous aspect of this method,
which we want to exploit, is that it provides a systematic
approximation scheme (through finite truncations) for the
spectral edges of eigenvalue problems into which our
mean-field phase diagrams translate. The convergence of
*the approximations to the exact result is usually rapid,
and the first few orders work quite well. Furthermore,
the first three or four orders of truncations are simple
enough to be studied in closed-form analytically, thus
enabling us to do a more detailed analysis than before.
Furthermore, with the aid of a personal computer, higher
orders can be easily studied, and there is no di%culty in
seeing the general trend. As can be seen from the subse-
quent sections, our approach can provide considerable
theoretical insight into the physical origin of the struc-
ture in the phase diagrams. Geometric factors of a net-
work, such as the statistics of single-cell areas and the
correlation of two or more neighboring cell areas, enter
successively into the truncated Lanczos Hamiltonians or-
der by order. From this fact and the manner that
different truncations give different approximations of the
phase diagram, we can conclude that the gross structure
in the phase diagram is simply a result of single-cell
statistics, and secondary and higher order structures are
due to certain correlation of neighboring cells, and so on.

In Sec. II we give a brief description of the mean-field
theory and a general formulation of the Lanczos method
on which our approach is based. In Sec. III we study net-
works which are periodic in one direction. Several
periodic, quasiperiodic and random lattices in this
category are studied in detail, and the results are com-
pared with experimental data. In Sec. IV we formulate
our approach for general geometries, and give a detailed
study of a few special cases for demonstration.

With regards to the validity of the mean-field theory,
there has been some confusion and controversy. Our
analytical approach, of course, does not resolve them, for
it is within the framework of mean-field theory. We de-
vote Sec. V to a discussion of this problem, and particu-
larly the effect of thermal Auctuations on the structure of
the phase diagrams. We will derive a cluster mean-field
theory and an approximate renormalization group theory
for the phase diagram of a square lattice of Josephson
junctions. The renormalization group approach is in-
teresting in its own right, for it relates the fractional
Auxes to the integral ones, giving account for the self-
similarity of the phase diagram. It also predicts an
infinite slope for the peaks in the phase diagram, which

might be checked in a very accurate experimental mea-
surement. The last section summarizes our results.

II. MEAN-FIELD THEORY
AND THE I.ANCZGS APPROACH

In this section we present a brief derivation of the
mean-field equations for superconducting networks and
give a general formulation of our analytical approach for
the solution of the phase diagrams. The main purpose of
doing so is to provide a general theoretical framework for
subsequent investigations. We will also reduce, following
Alexander, ' the nonlinear eigenvalue problem for wire
networks to a linear one. As shown below, such reduc-
tion can greatly simplify the numerical calculations for
wire networks and the application of the Lanczos method
on such systems.

Consider first a Josephson-junction array, i.e., an array
of superconducting grains coupled together through the
Josephson effect. Below the transition temperature T,o of
the superconducting material, the individual grains have
acquired a superconducting order parameter whose mag-
nitude is finite and relatively fixed, but whose phase may
fluctuate more or less independently from grain to grain,
such that the whole system may still be in a nonsupercon-
ducting state. Only at a sufFiciently lower temperature
T„phase coherence can be established throughout the
system. This is driven by the Josephson effect. In the
simplest form, the Josephson coupling energy between a
pair of neighboring grains is

—J,"cos(8, —8 ), (2.1)

J;Z=g exp g ' cos(8, —8j —A;, )

I oI

(2.3)

from which all thermodynamic properties can be derived
at least in principle. Shi and Stroud' derived a set of
mean-field equations for the thermally averaged local

iO.
phase factors (e ') =it, whose linearization near fj =0
has the following form:

2kTQ, =gJ, e (2.4)
j

where the summation is over the nearest neighbors only.
The superconducting transition temperature is identified
as the highest temperature at which a nontrivial solution
first appears.

Consider now a superconducting wire network. Fol-

where J; & 0 is a constant setting the energy scale and 0;
is the phase of the order parameter of the ith grain. In
the presence of a magnetic field, (2.1) is modified to the
following form:

—J,,cos(8, —8, —A,J ),
where 3; = A d1 is the line integral of the vector po-
tential from the center of grain i to j, if we ignore (we will
do so throughout the paper) a constant factor which is 2'
divided by the flux quantum hc/2e. The canonical parti-
tion function then is
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lowing the original ideas of De Gennes and Alexander, '

one takes the linearized Landau-Ginsburg equation as the
starting point, and expresses everything (by integrating
the equation along the wire segments) in terms of the or-
der parameters at the nodes. The current conservation
condition then relates the order parameter g, , at node i,
to those at its nearest-neighboring nodes j as

+ "'=0 (2.5)

(2.6)g(T)=go
0

with Tp as the transition temperature at zero field.
Again, the transition temperature at general field value is
given by the highest temperature at which a nontrivial
solution of (2.5) appears. In general, Eq. (2.5) is difficult
to solve, for the eigenvalue parameter g appears in a non-
linear way. However, if all the lengths are the same
( l,"= l ), the equation can be reduced to

where I, . is the distance between nodes i and j, and the
parameter g is the coherence length depending on tem-
perature in the following way

1/2

HPi=»Pi+6
Hil2 X2 Pl+l 2~2+~3

Hq, =~,A+P3A+6 ~

H p4= 1'4g3+P444+ 4s

(2.9)

as a basis.
Of course, the expansion is useful only if finite trunca-

tions give good approximation to the quantities we desire,
i.e., the top spectral edge (denoted as E, ). A theorem tells
us that if the initial g, has a finite overlap with the state

at c.„ then the top eigenvalue E„of the sub-
Hamiltonian H„, spanned by I g, , . . . , g„], converges to
E, monotonically. The convergence will be fast if P, is
reasonably close to g, .

where each new state is required to be orthogonal to the
previous ones. As one can verify, this requirement
uniquely defines all the parameters IP, , y; I in the expan-
sion. The H matrix in the basis I it(; I is obviously in a tri-
diagonal form, and moreover it can be put into a real
symmetric form if we use the normalized states

(2.10)

cos —P, =ge '(z;z )

J
(2.7)

which is a standard eigenvalue problem with an eigenval-
ue parameter cos(l/g), where P; =—(z, )'~ g;, and z; is the
coordination number of node i. In general cases where I;-
are not all the same, exact reduction cannot be found.
However, if the lengths are not very di6'erent, we expect
l;l/g(&1 for the critical coherence length. An approxi-
mation based on this estimate reduces (2.5) to the follow-
ing form:

I iA,(aa) ' e
j lJ

III. NETWORKS PERIODIC IN ONE DIRECTION

In this section we use the Lanczos method to study 2D
superconducting networks which are periodic in one
direction. More specifically, we assume the networks to
have a structure of a rectangular lattice with uniform lat-
tice spacings in the y direction and variable spacings in
the x direction (strip-type geometries). The mean-field
equations (2.8) for a wire network can be readily reduced
to a one-dimensional form

I2 I I
2/2

2 cos(Blx„+q) — 2+ —+ a„'P„
l„ l„+,

+
l

«.a.+i) W. +i
—1/2

n+1
a —

ly (2.8)
+

l
( .a. -i)

where a, —=g.l; /l, P,- =a,' f;, and l is a typical scale of
used simply to make the parameters dimensionless. A

detailed justification of the approximation is given in Ap-
pendix A, where one can see that it works well even for a
lattice of quite diferent lengths of wire segments. Again,
we have arrived at a standard eigenvalue equation with
an effective energy parameter —l /2g . Efficient algo-
rithms can be used for relatively large scale numerical
calculations.

Now we are ready to discuss the Lanczos method. '

Observe that all we need in solving Eqs. (2.4) or (2.8) is to
find the top spectral edge which is proportional to the
transition temperature. It is well known that the Lanczos
method is particularly good at locating spectral edges.
The following defines the basics of the method.

Let H be the Hamiltonian matrix in our eigenvalue
problem. Choose an initial state Pi, and do the following
expansion

(3.1)

+&.'+i4. +i+~.'4. —i (3.2)

where the J's are the coupling constants.
An important observation is that in (3.1) and (3.2) the

neighboring couplings are all positive. This implies that

where a„=2+(I„+l„+,)/l, l„=x„—x„„and x„ is the
x coordinate of the lattice point (n, m). In the derivation
of the above equations we have taken the gauge
3 =(O, Bx) and written P„as P„e™.At this stage, we
would like to remind the reader that we have taken
2&/C 0 as the unit of the magnetic field B, where %0 is the
Aux quantum. In a similar fashion, the mean-field Eq.
(2.4) for a Josephson-junction array can be reduced to a
one-dimensional form

2k TQ „=J„"2cos(Blx„+q )&P„
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the state at the top spectral edge can be taken as positive
everywhere. This fact immediately suggests that we can
take the uniform state (P„ independent of n) as a reason-
ably good starting state, gi, in the Lanczos method [see
the remarks below (2.9)]. From here on, we will concen-
trate our attention to Eq. (3.2) with all the coupling con-
stants the same (say, =1). This will simplify the notation
considerably while still keep the essential physics (frustra-
tion effect, for instance) in Eqs. (3.1) and (3.2). All the
geometrical information of the superconducting network
will then be contained in the sequence tx„I. For the
cases studied below, the top spectral edge is actually real-
ized at q =0, so we will set q =0.

With a uniform starting state (with amplitude = 1

everywhere), the Lanczos method generates the following
set of parameters [defined in Eq. (2.9)]

P2 =2 ( cos(BS„)), y 3
=3 —f32~+ 2 ( cosB (S„+S„+,) ),

(3.3)

Ã2 —
&2

—2Pz()'3 —3+82)
1

y3

+2(cos28(S„+S„+,) )

+2(cosB (S„+S„+,+S„+2)) ],

where ( ) denotes an average over n, and S„=ll„ is the
cell area. Given any sequence of cell areas, the averages
can be easily computed.

In the following, we present a detailed analysis of the
phase diagrams for five examples of the network
geometry. These examples are representative of periodic,
quasiperiodic and random lattices. The roles played by
different area ratios of the cells, the population ratios of
different cells and their geometrical arrangements are ex-
plored. For completeness, the results of large-size mean-
field calculations are also displayed, and they are com-
pared with the experimental phase diagrams obtained by
Behrooz et al. However, readers should be warned that
the experimental data were obtained for wire networks,
while our theoretical results for strip-type geometries are,
strictly speaking, for Josephson junction arrays. Never-
theless, since the two types of superconducting networks
are governed by similar physical laws, at least at the level
of mean-field theory as can be seen from Eqs. (3.1) and
(3.2), they should exhibit similar features in the phase di-
agrams. Indeed, as can be seen from below, the compar-
ison between theory and experiment is reasonably good in
general and very good with regards to the location of the
cusps. Some deviations between the two will be com-
mented upon at the very end of this section.

Example 1. Let us start with the easiest case: a
periodic square lattice, i.e., S„=a. We have analytic ex-
pressions for the Lanczos parameter of all orders,

I3„=2cos(n —1)Ba,

It already exhibits correctly the general trend as we11 as
the periodicity of the phase diagram. However, no fine
structure is present at this stage. The next lower curve
corresponds to the third-order expression

2 1

2 2 cos(Ba)
0 1

0
1

2 cos(28a)

It has a local minimum corresponding to a half-Aux
quantum per plaquette and no further fine structure. To
understand this, note that in this order of approximation,
the geometrical information about the individual cell area
as well as the correlation between nearest-neighboring
cells are included through the matrix elements cos(Ba)
and cos(28a). The next higher-order expression (fourth
order) also includes a cos(38a) matrix element which ac-
counts for the developing structure at &bo/3 and 2@0/3 in
the third curve from the top. Physically speaking, the
cos(38a) term manifests the correlation among three
neighboring cells. The lowest three curves correspond to
the 5th, 10th, and 50th order truncations respectively.
The 50th order truncation includes a weighted contribu-
tion from many harmonics, from cos(Ba ) to cos( 508a ),
and it gives an excellent approximation to the infinite or-
der case. The convergence is monotonic and fast. More
importantly, through the study of different approxima-
tions, we can easily identify the physical origin of the
structures of various sizes in the phase diagram; as we in-
crease the order of truncation, more and more geometri-
cal information of the lattice is included in the treatment,
and finer structures appear and develop [see Fig. 1(b) for
details]. [The curves in the inset of Fig. 1(a) will be dis-
cussed in the next section. They are plotted here for
easier comparison. ]

Examp/e 2. A periodic network with a unit cell of two
plaquettes with areas a and b, i.e., S2„=a,S2„+&

=b. We
have

F, (8 ) = ( cos(BS„)) =
—,
' [cos(Ba ) + cos(Bb)],

Fz(8)=(cos[8(S„+S„+,)])=cos[8(a+b)],
F3(B)—:(cos[8 (S„+S„+,+S„+2)])

(3.5)

states with this symmetry. The natural exploitation of
the symmetry of the system is another advantage of the
Lanczos method.

Figure 1(a) shows the reduced resistive transition tem-
perature, b, T, (@)=T,(0)—T, (4&), as a function of the
magnetic Aux, 4, through a unit cell. Each curve has
been computed from Eq. (2.9) with the parameters given
by Eqs. (3.3) and (3.4). The highest curve corresponds to
the second order expression of the Lanczos Hamiltonian

2 1

2 2 cos(Ba)

2 if n=2,
1 if n)2.

(3.4) =
—,
'

I cos[8 (2a +b)+ cos[8 (2b + a) ] I .

Note that this system is symmetric about the origin. The
Lanczos Hamiltonian obtained this way acts only on the

Figure 2 shows the superconducting-normal phase
boundary for the case a/b = (r1+&5)/2. Figure 2(a)
compares experimental measurements with results com-
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FIG. 7. AT, vs magnetic Aux per small period for the lattice
of TIP with period ratio ~ (see the text for its description): (a)
second-, third-, and fourth-order approximations to AT, (4 ); (b)
experimental data for a wire network (Ref. 9) and the mean-field
result (solid line).

The general trend and the gross structure are rather well
predicted by the second approximant of the Lanczos
treatment, which only depends on the statistical distribu-
tions of single-cell areas, disregarding their geometrical
arrangement. Some fine structures appear in the third-
order approximation, which also depends on the distribu-
tions of two- and three-neighboring cells. Additional
finer structures emerge and develop in the fourth- and
higher-order approximations, which depend on the distri-
butions of even larger clusters of neighboring cells. It is
therefore clear that the structures of various sizes in the
phase diagram have their physical origins from the
geometrical properties of the networks. Such a
correspondence is made precise by our systematic
analysis using the Lanczos method.

Finally, we would like to comment on the discrepan-
cies between our results and the experiments of Behrooz
et a/. At first, the deviations might be attributed to the
fact that the experiments were done on wire networks
while our strip geometry results discussed in the previous
examples are, strictly speaking, for Josephson-junction
arrays. Our primary study shows that this is clearly not
the case. The phase diagrams computed from the wire
network Eqs. (2.5) or (3.1) give no better agreement with
the experiments. It has been pointed out by the authors
of Ref. 9 that the deviations are more likely due to the
imperfections in the experimental samples, especially for
the TIP network in example 5.

what kind of starting state should be chosen to generate
the Lanczos Hamiltonian such that the lower-order trun-
cations can produce reasonably good approximations to
the phase diagram. Besides, if we insist on using a uni-
form state as the starting state, hoping that there might
be a particular gauge of the vector potential in which we
can get a good approximation, then we will be facing the
new problem of finding that particular gauge. This is
even more difficult than solving the original mean field
equation.

Let us take a less ambitious stand point. Instead of
taking an extended starting state, we choose a strictly lo-
calized state to generate the Lanczos Hamiltonian, and
see what we can get this way. This is partly motivated by
our general understanding of the locality properties of
wave mechanics and partly inspired by the success of
finite-size numerical calculations for extended systems.
From the structure of (2.4) or (2.8), each new state in the
Lanczos method expands outward by one more step from
the site where the starting state is located. Thus an nth
order truncation can cover a region of radius n of the net-
work. This should be compared with finite size calcula-
tions for which one has to deal with a matrix of n th or-
der in order to cover the same region in two dimensions.
Furthermore, the parameters in the Lanczos Hamiltonian
are gauge invariant quantities, because our starting state
is gauge invariant except for a phase factor which never
enter the Lanczos Hamiltonian. Any choice of a fixed
starting state other than a one-site state will produce a
gauge dependent Hamiltonian. In general, a Lanczos
Hamiltonian is only covariant with the starting state ac-
cording to the rule of gauge transformation, but is not in-
variant.

Another advantage of using a one-site starting state is
that we can have a simple geometric representation of the
Lanczos parameters. It can be easily seen from Eq. (2.9)
that a knowledge of the first 2n —1 moments

(4. l)

will be sufficient to build up the nth order truncation of
the Lanczos Hamiltonian. For a Josephson-junction ar-
ray as described by Eq. (2.4), the geometric significance of
m„ is clear: it is the sum of contributions from all the
closed paths of n steps starting and ending at s (the loca-

ipption of the starting state), each with a phase factor of e
where P~ is the fiux enclosed by the path P. The phase
factors describe, in a gauge invariant way, the interfer-
ence e6'ect of the magnetic field on the transition temper-
ature and they are the source of the rich structures in.the
phase diagram.

Consider Eq. (3.2) with unity coupling constants. The
Lanczos parameters, as defined in Eq. (2.9), can be com-
puted from the moments of the Hamiltonian using the
following set of equations recursively

IV. NETWORKS OF GENERAL GEOMETRY

Without translational symmetry there is no simple way
to transform the mean-field equations to problems with
positive couplings everywhere. Therefore it is not clear

y„=U„ IU„(, P„=V„/U„, n ~2,

where

(4.2a)
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U1=1,
v2=m3,

U3 m4 A 31 m3 A 32m 2 V3 m5 A 31 m4 —A 32m3 A 31 U3 (4.2b)

U4 m6 A41m5 A42m4 A43 3 ~4 m7 A41m6 A42m5 A43m4 A41 U4

U5 ™8A 51m7 A 52m6 A 53m 5 A 54m4 V5 m9 A 51m 8 A 52m7 A 53m6 A 54m 5 A 51 U5

with the A's given by

~31 1 2& ~32 y2 &

A41 A31+P3 242 A32+y3 P3A31 2443 133332

A 5,
= A4, +134,

(4.2c)

~52 ~42+y4 ~4~41

~53 ~43 14~42 y4~31

~ 54 I 4~43 y4~32~

We have worked out a considerable number of mo-
ments for the square lattice and the triangular lattice.
The details of this work will be presented elsewhere, and
only the results will be displayed here. For a square lat-
tice, we have

e3=+z+y, ,

e4= j —,
' (z +y3+ y4)

+-,'[(z+y, +y„)2—4zy, ]'"I'",
where e„corresponds to the nth order.

For a triangular lattice, we have

m2=6,

m 3
= 12 cos(P),

m4 =24 cos(2$)+ 66,
m 5

=60 cos(3$) +300 cos(P),

m 6
= 12 cos(6$ ) + 168 cos(4$ ) +840 cos(2$ ) + 1020,

m 7
=84 cos(7$ ) + 504 cos(5$)

(4.5)

(4.6)

m2=4,

m4=8 cos(P)+28,

m6=24cos(2$)+ 144cos(P)+232,

m s
= 16 cos(4$) +96 cos(3$ )

+616 cos(2$) +2016 cos( P ) +2156,

m, o
=40 cos( 6p ) + 160cos( 51)) ) +840 cos(4$ )

+3120cos(3$)+ 11 080 cos(2$)

+26 320cos(P)+21 944,

(4.3)

72 Z

1y3= —(m4 —z ) (4.4)

1
(zm6 m4) ' ' '

Z

where z =m2 is the coordination number of the starting
site. And the top eigenvalues of the first few approxi-
mants of the Lanczos Hamiltonian are explicitly given as

where P/2~40 is the (lux through a unit cell, and as is
true for any even lattice, which has loops of only even
number of sites, all the odd moments are zero. The Pen-
rose lattice studied below is another example of an even
lattice. It can also be shown that all the P parameters (di-
agonal elements) of the Lanczos matrix are zero in such a
case. The first few nonzero matrix elements can be ex-
plicitly written as

+2604 cos( 3P ) + 688 8 cos( P ),
ms =48 cos(10$)+432 cos(8$)+ 1968 cos(6$)

+ 8568 cos( 4P ) +23 904 cos( 2P ) + 19 890,

m9 =36 cos(13$)+432 cos(111I))+ 1980cos(9$)

+ 8496 cos( 7P ) + 29 628 cos( 5$ ) + 85 944 cos( 3P )

+ 164 124 cos(P),

where P/2vr@o is the Ilux through a triangular cell. Note.
that the even (odd) moments depend only on the even
(odd) harmonics of the Aux.

For the Penrose lattice with the starting site at the
center of rotational symmetry, we have

m2 =5

m4 = 10 cos(P)+ 45,

m6 = 10cos(2$)+ 10cos(P+2//r) +20 cos(P+ P/r)

+ 190cos(P)+20 cos(P/r)+435,
where P/2vr4&o is the Ilux through a fat cell. In this case,
it is very dificult to carry out the moments to higher or-
ders, but the first few moments will serve the purpose of
demonstration below.

Using the moments given in Eqs. (4.3), (4.6), or (4.7),
the Lanczos matrix elements ()33 and y parameters) can be
computed from Eqs. (4.2). In the following, we analyze
how the first few approximations work for the phase dia-
grams and how the local geometries of the lattices aAect
the structures in them. The accurate computation of the
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phase boundaries is not our major concern here.
First, consider the square lattice. In the inset of Fig.

1(a), the third through sixth orders of approximants of
the phase diagram are shown. In general, this set of
curves converge slower (although still monotonic) than
those shown in the main part of this figure, the latter of
which were computed using a uniform starting state. In
the third order, the highest moment involved is m4,
which has field dependence contributions from paths cir-
cling a single cell. This gives rise to the dips at integral
flux quanta but nowhere else. In the fourth order, the
moment m6 comes into play, which also has contribu-
tions from paths circling two-neighboring cells. This is
responsible for the dip at half-flux quantum. In the fifth
order, the curve tries to lower down near third and two-
thirds flux quanta, as is expected from the field depen-
dence of the moment m8, but is not quite accomplished
until the next order. Somehow the higher-order struc-
tures get depressed by the lower-order ones.

Second, consider the triangular lattice. Figure 8 shows
the second through fifth-order approximants of the phase
diagram. Unlike the square 1attice case, the fine struc-
tures that appeared in lower-order approximants get
shifted outwardly in the higher-order ones. Only the dips
at —,', —,', and —,

' cell fluxes seem to get established in the
highest-order shown. There seems to be a competition
between the occurrence of phase coherence at different
length scales. There are also some developing structures
converging towards

3
and 8.

Finally, consider the Penrose lattice. In this case, the
lack of translational symmetry prohibits the reduction to
a one-dimensional problem and therefore the application

l I I
)

I I 1

of the approach described in the last section. In Fig. 9(a),
the experimental phase diagram is compared with our
mean field result of a large size calculation. The
correspondence is quite close. In Fig. 9(b), the third and
fourth approximations of the phase diagram are shown.
The third-order curve is a periodic function of the flux,
which approximately locates the primary valleys and
peaks. The periodicity is due to the fact that the only
field dependence comes from the paths circling the fat
tiles around the starting site in this order. The gross
structure of the phase diagram is dominated by this
periodic variation, because there are more fat tiles than
the thin ones in the lattice. The approximation is im-
proved in the fourth order by slightly shifting the loca-
tions and modulating the heights of the valleys and
peaks. The result is a quasiperiodic function of the flux.
Also note some fine structures that appear in this order.
The roundings at the valleys are due to finite size effect.

For a nonregular lattice such as the Penrose lattice,
different choice of the location of the starting state will
produce different Lanczos Hamiltonians whose finite
truncations will give inequivalent results, although they
all approach the same limit as we increase the order of
truncation. It is not clear which choice will give the most
rapidly convergent series. For a macroscopically homo-
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FICx. 8. hT, (N) vs magnetic Aux per cell for a triangular lat-
tice, computed from second- (top curve) through fourth-order
truncations of the Lanczos Hamiltonian.

FIG. 9. Resistive transition temperature, ET„vs magnetic
Aux per large cell, for the Penrose lattice. (a) Mean-field phase
diagram (dotted line) and the experimental data for the voltage
(at a bias current of 8 pA) measured from a proximity-coupled
array (Ref. 10). (b) Third- and fourth-order approximations to
hT,.
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geneous system it might be more desirable to have an ap-
proximation scheme, with each stage exploring, on aver-
age, a different microscopic length scale.

V. CLUSTER MEAN-FIELD
AND RENORMALIZATION-GROUP THEORY

Mean-field theory has been one of the major theoretical
tools in the study of phase transitions and critical phe-
nomena. Because of its simplicity, the mean-field theory
has been extensively used to study complex systems for
which other approaches, such as the renormalization-
group and Monte Carlo method, are often found formid-
ably diScult. For superconducting networks in magnetic
fields, where both inhomogeneity and frustration effects
are present, it is only possible to study in great detail a
few cases with simple geometries and at special field
values. While the mean-field theory cannot predict pre-
cisely the type of phase transition and the critical ex-
ponents, it seems to be the only feasible approach to map
out the phase diagram for a continuous range of the field
and for a variety of network geometries.

An interesting question is why the mean-field phase di-
agrams reproduce so closely the experimental ones.
There is some confusion on this issue, because one would
expect that thermal fluctuations might invalidate the ap-
plication of the mean field theory on a low-dimensional
system (here 2D) near the critical region. To resolve this
apparent paradox we suggest the following explanation.
(1) The experimental data were not obtained in the very
critical region. For instance, in the experiment of
Behrooz et al. the "critical temperature" data were tak-
en with the condition that the network resistance drops
to a fraction of its normal value immediately above the
transition (about 2 mK above the real critical tempera-
ture). (2) Finite amount of current can destroy the criti-
cality (e.g., see Springer and Van Harlingen' ). (3) Al-
though the mean-field transition temperature is generally
higher than the true value, it still gives an approximately
correct description of the cusplike and hierarchical struc-
tures that occur at commensurate cell fluxes of the phase
diagram.

In order to get a concrete feeling about the effect of
thermal fluctuations on the behavior of the phase dia-
gram, we now present the result of a cluster mean-field
(CMF) calculation for a square lattice of Josephson junc-
tions. See Appendix 8 for details. We first mention how
the standard mean-field (SMF) Eqs. (2.4) were derived. In

ie,.
the expression for (e '), the thermal average of the
phase factor for the ith grain, one replaces, in the ther-

iO.
modynamic probability density, the variables e ' for all
the other grains by their averages. The so obtained self-
consistent equations are then linearized to yield (2.4).

i 9,.Now, in the CMF approach, ( e ' ) is obtained by in-
tegrating out exactly the fluctuations of the ith grain and
its nearest neighbors while replacing the other phase vari-

i0~
ables e ' by their averages. The linearized CMF equa-
tions are then solved for the transition temperature. In
Figs. 10(a) and 10(b) the CMF phase diagram is com-
pared with the SMF result. Because the local thermal
fluctuations are taken into account in the CMF treat-

I I I I I I I I l » I I

(eo)

I I I
)

I I I
I

I I I
I

I I I
l

I I I

(b)

0 I I I I I I I I I I I I I I I l I I I

0 1

FICx. 10. (a) shows the predictions of the standard mean-field
theory, top curve, and the cluster mean-field theory for the
phase boundary of a Josephson-junction square array. Thermal
fluctuations lower the transition temperature and make the
peaks sharper. In (b), two curves shown in (a) are compared.
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J,cos( 8; —0~
—3;J ), Jicos( 0; —Ok

—3;& ), (5.1)

where (i,j ) are nearest neighbors and (i, k) are next-
nearest neighbors. The renormalized lattice is obtained
by decimating every other site of the original lattice, so
the unit cell doubles its area. The recursion relation be-
tween the coupling constants, (J, ,Jz ) for the original and
(J', ,J2) for the new, is obtained by requiring that the
linearized CMF equations for the original and the linear-
ized SMF equations for the new be the same. The result
is (see Appendix B)

JI =2J,f (J& }cos(P/2)+2J2,

J'i =J,f (J, ), (5.2)

ment, the transition temperature gets lowered at every
field value. Also note that the dips become sharper in the
CMF phase diagram, but otherwise the two curves are
strikingly similar in every detail. Our result is thus sug-
gestive that thermal fluctuations merely make the
hierarchical structures at commensurate Auxes more pro-
nounced. To draw a firm conclusion on this, it would be
very helpful to expand the cluster size beyond the nearest
neighbors, but unfortunately this would require much
more effort.

It is however relatively easier to devise an approximate
renormali. zation-group theory by utilizing the informa-
tion gained from our CMF approach. The basic idea is
the following. We assumed that, under renormalization,
only the couplings between nearest neighbors and next-
nearest neighbors are present, and that they always have
the same functional form

0.8
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FIG. 11. Renormalization-group prediction for the phase
boundary of a Josephson-junction square array. Note the pro-
nounced hierarchical structure. The slopes at the dips are no
longer finite (see the next figure). The suppression of peaks at
fractional cruxes other than those with denominators of powers
of 2 is an artifact of the approximation.

the general trend is the same as the mean-field result.
Second, all the dips at II) =m/2" (where m and n are in-
tegers) are enhanced, but those at other fractional Auxes
are suppressed. We believe that this suppression is an ar-
tifact of the approximation made in our RG. The param-
eter space in our RG is too restrictive to take into con-
sideration the fractional Auxes other than those P= m /2"
for which the renormalization can bring to integers.
Third, the transition temperature is nonzero everywhere,
in contrast to the prediction of Teitel and Jayaprakash. '

Finally, the dips are not only sharp, but also have infinite
slopes. For -example, the transition temperature near
P =0 behaves like

where II) and p' are the Auxes through the unit cells, and

f (x)=I, (x)/Io(x) the ratio of two modified Bessel func-
tions. If we use z =

—,'[1—cos(P/2)] in place of P, the
above recursive relations become

T, (0)—T, (0)=P
where a=0.6605. See Fig. 12.

(5.4)

J', =2J,f (J, )(1—2z)+2J2,
J2=J,f (J, ),
z'=4z(1 —z) .

(5.3)

I I I I
I

I I I I

18—

10—
The mapping on z is independent of the other two vari-
ables and has the same form as the well studied. logistic
map 'xA, (1x—x), with A, =4. The Aow of z is very
chaotic in the sense that it has fixed cycles of all order
corresponding to initial fractional Auxes, but that all
these cycles are unstable. The Aow of z disturbs the map-
ping on (J„J2), causing a very exotic hierarchical behav-
ior of the transition temperature as a function of the
magnetic field (see below}.

To obtain the critical temperature for a given initial
Aux, we run the mapping starting with J, =JjkT and

J2 =0. In general, J, and Jz will either Aow to infinity or
zero together. With a critical initial value, they will Aow
to a fixed point, cycle for a fractional initial Aux, or go
into a seemingly chaotic path (confined in a finite region
of the parameter space) for an irrational initial Aux. The
critical value of J/kT defines the transition temperature.
The resulting phase diagram is plotted in Fig. 11. First,

I I I I I I I I I I I I I I I

10 15

log. 0

(

20

FIG. 12. A log-log plot of ET, =T,(0)—T, (N) near 4=0.
An exponent of 0.6605 is obtained from its slope, indicating an
infinite slope in the linear plot.
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VI. CONCLUSIONS

In this paper, we have studied the superconducting-
normal phase boundaries of a variety of wire networks
and Josephson-junction arrays in magnetic fields. We
have computed mean-field phase diagrams for a number
of geometries of the superconducting networks, and com-
pared them with the corresponding experimental data.
We have given a rather detailed analysis of the structures
in the phase diagrams, and associated them with the
geometrical properties of the networks. We have also
studied the efFect of thermal fluctuations by a cluster
mean-field calculation and a real space renormalization-
group theory.

Our introduction of the Lanczos method for the deter-
mination and analysis of the phase diagrams occupies a
central position in this work. This method not only pro-
vides us a systematic approximation scheme for the phase
diagrams, but also a rather powerful tool for a qualitative
and quantitative analysis of the structures in them. As
the order of approximation is increased, more and more
geometrical information of the lattice is included in the
treatment, and more and more fine structures are
resolved. The correspondence is such that we can draw a
number of specific conclusions regarding how the struc-
tures of various sizes are related to the geometries of the
underlying lattices. The gross structure is determined by
the statistical distribution of single-cell areas, disregard-
ing their geometrical arrangement in the lattice. This ex-
plains why the Penrose, Fibonacci, and random Fibonac-
ci lattices have phase diagrams of the same overall struc-
ture. The secondary dips or peaks are determined by the
additional information about how the two- or three-
neighboring cells are statistically correlated, but nothing
more. In general, higher-order fine structures are due to
correlations among the cells of larger clusters. The in-
dexing of the dips in the phase diagrams can be easily
read oft from the periods of the Lanczos matrix elements.
The sharpness of the dips is due to long-range correla-
tions, and cannot be accounted for by local geometries.
(The cusps present in small size systems are a different
story, and they come from level crossings instead. ) We
are thus motivated to suggest an experiment on a set of
lattices with a controlled degree of disorder in the geome-
trical arrangement of the cells, but without disorder in
the cell areas. For instance, for the case of the Fibonacci
lattice, the two extremes of the totally ordered and totally
disordered have already been studied by Behrooz et al.
and in Sec. III of this paper. It would be interesting to
examine the intermediate situations where the correla-
tions among two or more neighboring cells of the ordered
Fibonacci lattice are kept.

The efFect of thermal Auctuations, which has not been
taken into account by the standard mean-field theory, is
also studied in this work. We have carried out a cluster
mean-field calculation for a square array of Josephson
junctions. In this treatment, the local Auctuations are in-
cluded, and thereby should improve the result. It is
found that the transition temperature is lowered and the
dips become sharper. We have also devised a real space
renormalization-group theory, which links the structures
at fractional cruxes to those at integral ones, predicting a

pronounced hierarchical behavior of the phase diagram.
Furthermore, the dips not only get sharper but have
infinite slopes, in contrast to the mean field prediction.
We urge the experimentalists to check upon this issue by
making measurements closer to criticality.
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APPENDIX A

Here we consider how the nonlinear eigenvalue prob-
lem (2.5) can be reduced to a linear one. As we men-
tioned in the text, if l; /g «1 at the critical temperature,
then we can use Eq. (2.8) as an approximation. This is
achieved by expanding the trigonometric functions in Eq.
(2.5) to second order in I;J/g followed by a change of
variables for the wave functions. Now we examine
through two examples to what extent the assumption
l,~/g &&1 is valid.

Consider first a square lattice with lattice constant l.
Equation (2.5) now has the simple form

cos —P;= —,
' g e (Al)

j
whose spectral edge, corresponding to the transition tem-
perature, is bounded by the inequality 0 & cos(l/g) & 0.65,
or equivalently 0 & I/g &0.55m/2, for the whole range of
the flux. The approximation made in (2.8) is to replace
cos(l/g) by 1 —1 /2g . Numerical evaluation of these
two functions within the above bounds reveals a very
small relative error ( & 0.03), and therefore shows that the
approximation is excellent for the purpose of determining
the transition temperature.

Consider next a rectangular lattice with lattice con-
stants l„and l . Since the approximation is controlled by
l /g and I /g, a reliable estimate of the degree of approx-
imation can be achieved by considering the case of half-
Qux per cell, where the coherence length g is relatively
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short. From Eq. (2.5) we have for half flux

cot(x )cot(y) = 1,
where x =1„/g and y = l /g, while Eq. (2.8) gives

1 —-'x' 1 —-'y'
2 2 =1—

—,'(x —y)

(A2)

(A3)

I
I I I

I
I I I

I
I I I

I
I I I

I
I I I

exact
The solutions of (A2) and (A3) for x are given respective-
ly by

approximate
———— relative error

and by

1

1+r 2
(A4)

I I I I I I t I I I i I I I I I I I I I I

1

r=5„/Q
2I(1+r) l(1+r)—2r(1+r—)]'~2I

r(l+r )

(A5)

FIG. 13. Two solutions for T,(4= 2) obtained from Eqs.
(A2), exact, and I,'A3), approximate.

where r = I /l„, and they are plotted for 0 & r ~ 1 in Fig.
13 for comparison. It is seen that the two are very close
even for large aspect ratio r =0. For a systematic study
of the effect of anisotropy, see Hu and Chen. '

APPENDIX 8

In this Appendix we present a somewhat detailed
derivation of the SMF and CMF equations for a square
lattice of Josephson junctions. In order to help the
reader to follow the steps of our RG theory, we assume
the presence of a next-nearest-neighbor coupling as well
as a nearest-neighbor coupling of the form given in Eq.

(5.1). For easier reference to the site labelings used
below, we denote by i the site for which the phase vari-

i8,.
able, e ', is to be averaged, and denote by j, k, I, respec-
tively, the nearest-, next-nearest, and third-nearest neigh-
bors of site i We .will also denote by (j,k ) those pairs of
j and k sites who are nearest neighbors to each other, and
similarly for (j,I ). For illustration, see Fig. 14(a). Final-
ly, the temperature will be absorbed into the coupling
constants.

We first derive the SMF equation. For a fixed set of
phase variables on the j and k sites, the average

iO,.g=(e ') is given by

iO,.
e 'exp J, g cos(0; —

01 —
A;~ ) exp Jz g cos(0; —0k —A;k )

J

f exp J, g cos(0,. —0~. —A, . ) exp J2 g cos(0; —0k —A;k )

j
(Bl)

g, =J, g r f e 'cos(0, —
P)

—A,, )

J
i0,+J2 g r„e 'cos(0, P„—A,„), —

k

(B2)

or

where the integration is taken over the phase 0;. The
iO.

linearized SMF equations are obtained by replacing e
ip.

and e ' with their averages g~=r~e ' and gk=rke
and by expanding the right-hand side of the above equa-
tion to first order in r - and rk

when the next-nearest-neighbor coupling is present. We
first make use of a well known technique originally pro-
posed by Migdal and Kadanoff in real-space
renormalization-group theory. The basic idea is to
move a subset of bonds to some other places in the lattice
in order to make the calculation tractable. This opera-
tion will certainly introduce some errors, but it turns out
to be a quite good approximation for many statistical
problems. We now apply this idea to our case and rotate
a subset of next nearest bonds as shown in Fig. 14(b). We
are then ready to derive the CMF equations.

For a given set of phase variables on the k and I sites,
we have

J] iA, J2 iAkgq, e '+ ggje
J k

(B3)

which is the same as Eq. (2.4) with J2 =0.
The derivation of the CMF equation is more involved

e 'exp S
9l

exp S

where the integration is taken over 0; and I 0 I, and

(B4)
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The integration can then be carried out by a simple
change of variables 0 —+0 =0 —0;+ A;, yielding

J) r'(A, + A-k)f(Ji) X eke
&j, k&

i( A" + A.I )

&j, ~& k

(c) +2 where f (J, ) is the ratio of two modified Bessel functions

f(J))= J
&
cos((9)

d ~ e I

fd8e ' e ' I,(J, )

Io(J, )
(89)

FKJ. 14. Site labeling used in the cluster mean-field calcula-
tion and in the real-space decimation procedure for a
Josephson-junction square array: (a) the original lattice, with
the circles representing the superconducting grains; (b) a subset
of next-nearest neighbor bonds in the original lattice has been
rotated; (c) the renormalized lattice after decimating the j sites
and every other site in the original lattice.

i(A,"+A.j, ) iAsk
eke " '" =2cos g eke

&Jk&
'

k

(810)

assuming a cell fiux of P. In the second term on the
right-hand side of (88), there is only one j site for each l
site in the summation, and we have

Now, for each k site there are two j sites entering the
summation in the first term on the right-hand side of
(88), and the summation on j gives

S =J, g cos(8, —8 —3; )+J, g cos(8~ —8k —2~k )
'&,, k&

+J, g cos(8, —8, —A I)'
&J, /&

i(A, +A.I) i A,.ig ere " "=Kale
&J, l& I

Finally we have

J,f(J, )cos + +Jz ggke
k

(811)

+2Jz icos(8; —
8A.

—A;k) .
k

(85)

where

S,e 'exp JI . cos 6I; —0 —2;.

f exp J, g. cos(8, —
8~

—3, )

(86)

S, =J) g rkcos(8 Pq
—

Ap, .)—
&j,k}

+J, g r, cos(8 —
Pl

—
AJI)

&j,1&

+2J2 g r„cos(8;—Pp
—A;k ) . (87)

i 01, iOI
We then replace e and e ' with their averages,

i/Igk=rke and gI=rie ', and expand the right-hand
side of Eq. (84) to first order in rk and rr

J, i A'I+ f(J, )gg(e
I

(812)

which are our CMF equations. It should be noted that
for our original Josephson-junction array the next-
nearest-neighbor coupling is absent, therefore the bond
rotation operation has no real eA'ect as far as the CMF
equations are concerned.

Our renormalization-group idea comes from the obser-
vation that the CMF equations (812) have the same form
as the SMF equations for an enlarged lattice [shown in
Fig. 14(c) and obtained by decimating the j sites, and
every other site, in the original lattice] with a cell fiux
twice as large as before, except for a change of coupling
constants as given in Eq. (5.2). This set of equations pro-
vides the recursion relation needed to define a renormal-
ization group.
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