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For a quantum system of identical fermions a partition of the density-density correlation function
in its “self” and “distinct” part is presented. These quantities show different properties than their
classical counterparts, e.g., they violate the “detailed balance” and are not necessarily real. Never-
theless it can be expected that they will provide a good tool for a better description of the self-
motion in many-particle systems and are therefore investigated in second-order perturbation theory

of the interparticle potential.

I. INTRODUCTION

The main interest in the description of quantum
many-particle systems nowadays lies on their dynamic as-
pects. Probably the most important quantity, as directly
measurable through scattering experiments,”? is the dy-
namic structure factor S(q,w) originally introduced by
van Hove.! 1In classical statistics many successful
theories for S have been presented,?”* and the dynamics
of simple liquids is fairly well understood. The situation
for quantum liquids is much worse; for classical theories
based on the hierarchical equations of motion for reduced
densities, efforts have been made to generalize these ap-
proaches to their quantum analog>® (the Wigner func-
tions) and were in general quite satisfactory.” One impor-
tant concept of classical statistics, however, the so-called
self-motion of a particle,>”* has not yet been applied in
quantum mechanics. This is due to the fact that there a
clear definition of a self and distinct part of S(q,w) is a
nontrivial problem. This question is our main interest.

After a short description of the classical quantities in
Sec. I, we calculate in Sec. III the self and distinct parts
of the free-fermion structure factor. It turns out that the
fundamental properties known for correlation functions
are violated; this problem is examined in Sec. IV. In Sec.
V we redefine the van Hove functions in the formalism of
second quantization thus providing a physically meaning-
ful description of S* and S%. The corresponding suscepti-
bilities finally are discussed in Sec. VI. Throughout the
paper we restrict ourselves to the case of fermions (elec-
trons); the spin indices are omitted for brevity.

II. CLASSICAL VAN HOVE
CORRELATION FUNCTIONS

The coherent dynamic structure factor S is defined as
the density-density correlation function of the system,
namely :

S( >=ifdt Wl 8pa(1)8p _g) 2.1
7,0)=7 e pq(1)8p_g) .
where N >>1 is the number of particles in the system and

Op is the Fourier transform of the particle-density fluc-
tuation 8p(r)=p(r)—n (n =N per unit volume)

Spg()= [ d’re " "4T8p(r,1) . 2.2)
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Its time dependence is determined by the Liouville opera-
tor iL =[ , H ]pg (Poisson bracket)

plr,t)=e L' 8(r,—r)= 3 8(r;(t)~r) . 2.3)
i i

This leads immediately to the space-time Fourier trans-
form of S(q,w) [in the literature? * often denoted as
G(r,t)]

S(r,t)=%<z 6(r,-(l)—rj—r)>—n : 2.4)

ij

From this, the interpretation is quite clear; S denotes
essentially the probability of finding both a particle at
time ¢ =0 in r;, and one at time ¢ in r;+r. It is con-
venient to split this quantity in the two parts of finding

there the same and a different particle, S° and S¢ [again
equivalent to G*(r,t) and G%r,t) in the literature]

SS(r,t):%<28(r,-(t)—r,-—r)> , (2.5)

Sd(r,t)=1—1/;<2 8(r,—(t)—rj—r)>—n . (2.6)

]
They have the following initial values:
S*(r,t =0)=8(r)
and (2.7)
S4r,t=0)=n[g(r)—117,

where g is the pair distribution function of the system. In
the simple case of a perfect gas these quantities are easily
evaluated: The pair distribution g°r) is simply equal to
one and S%(r,r =0) vanishes. As there are no interac-
tions which could build up correlations, this has to be
valid for all ¢
S9r,t)=0=8r,1)=S%r,t) . (2.8)

The self part is thus equal to the full structure factor
(B=1/kgT) :

372
e ~r2mﬁ/2t2

mp

2.9
Py 2.9

SO%r,t)=
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For later comparison we also report the space Fourier
transform [in the literature often F*(q,t)]

s0, — 3 B
§%q1)= [d%k | =

12
B ] o —BK2/2m, —it(ka/m)

(2.10)

So far all the relations are valid for classical systems,
or—as pointed out by van Hove!—for distinguishable
quantum-mechanical particles. However, problems arise,
if one tries to describe identical particles; how can a self
part of S be meaningful, if exchange effects make it im-
possible to decide whether after time ¢ a particle is the
same, or not. (“You can’t paint a quantum particle
green.”) Certainly a different definition for S* has to be
found. On the other hand, at first sight there is no
reason? why it should be impossible—if the wave func-
tions are assumed to be known—to calculate S° and S¢
according to Egs. (2.5) and (2.6). (Of course with the
correct quantum-mechanical time dependence in the
Heisenberg picture, #=1). For identical fermions
without interactions this procedure and its consequences
are discussed in the following section.

IIL. S*° AND S“° FOR FERMION SYSTEMS

We start with the calculation of the self part of the
density autocorrelation function for identical fermions in
q-t space:

Sso(q,t)=% S (e_iq'r"”)eiq'r")o . (3.1

With use of the relation

A,B_ , A+B+([A,B]/2)

e‘e’=e if [ A,B] is a ¢ number ,

(3.2)

we get for the expectation value in thermal equilibrium
1 i
SSO( Jt)=—e it(q“/2m)
Y

—(tq/m)(3/9r;)
Xe '

i

_ 0
X%%e BE"<V v>0. (3.3)

The state |v)? in the ideal system is simply a Slater deter-

minant. Equation (3.3) can, therefore, easily be
transformed into a sum over wave vectors with the result
S%(q,1)= 1 > nke—it[(kq/m)+(q2/2m)] ’ (3.4)

k

N

the quantum analog to Eq. (2.10). The main difference is
that the Maxwell distribution is replaced by the Fermi

distribution function n,. Its Fourier transform
( Ex= k 2 /2m)
Sso(q,a))Z%-z;znkS(m‘(sk+q—ek)) (3.5)
k

can be integrated explicitly, the result for 7=0 is shown
in Fig. 1(b). The evaluation of the distinct part proceeds
exactly the same way, yielding [cf. Fig. 1(c)]
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FIG. 1. Van Hove correlation functions for the noninteract-
ing Fermi gas in units of mky/2n, for ¢ <2ky (Fermi momen-
tum) and ¢q > 2kg. (a) Full structure factor S, (b) self part S*°,
(c) negative distinct part S%°. For g > 2k, S vanishes.

S9(q,0)= 2T S nyny s Slo— (e o—e) . (3.6)
N - q q

The full coherent structure factor $°=S5°"+59° then has
the well-known behavior of Fig. 1(a).

It should be mentioned that Eq. (3.5) has been derived
previously,? and it has been argued that Eq. (2.9) should
also hold for quantum systems. Consequently, S q,®)
should vanish for all q and w. It can be seen clearly from
Fig. 1(c) that this is not the case. This is an immediate
consequence of the fact that for + =0 the probability of
finding two particles close together is drastically reduced
due to the Pauli exclusion principles as

1

n

2
¥ COSr —sinr

r3

S9r,1 =0)=[g%r)~1]=—>

(3.7

(r is measured in k). How these Pauli correlations are
reduced with increasing time is then described by
S9(r,1).

Another striking feature of Fig. 1 is that S9%(q, ) is an
even function of w and that S So(q,a)) is nonzero for nega-
tive w. These two properties are in contradiction with
the detailed balance, usually valid for correlation func-
tions. This problem is examined in the following section.

IV. DETAILED BALANCE

This well-known property of correlation functions in
thermal equilibrium is given through?3
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K p(t)=( A,B)=-LTre PHeiH 4o ~itHp @.1)
AB Z
= %Tre ~BHReitHy ~BH 4o —itHg BH
=Kp, (t +ifB), (4.2)
or, in Fourier space, through
K p(—w)=e P°K plw) . 4.3)

Both the classical and the quantum coherent structure
factors obey this relation regulating the ratio of energy
absorption and emission in equilibrium, and so do the
classical correlation functions S* and S% The reason for
its violation in the quantum case is closely related to the
symmetry properties of the system; in the subspace of
identical fermions, the eigenfunctions |v) of the Hamil-
tonian H have to be antisymmetric against interchange of
particles. The operator

1=— Elv)<v| (4.4)

then equals unity for any physically meaningful property
(i.e., which commutes with the permutation operator P).
Application of 1 to the individual components of S or
S however, mixes all the particles, as shown in detail in
Appendix A

S%(q,t)= <—1{7 >,:' e T, iq.ri)
_1_ —iqr () igr; :_l_
7&<N2e le > NS(q,t) .

i

(4.5)

Similarily insertion of 1 transforms S¢ into (N —1)S/N.
Any mathematical conversion involving the identity (4.4)
[and the equality of Egs. (4.1) and (4.2) needs exactly this
operation] will, therefore, be violated for the self and dis-
tinct parts.

At the end of this section we want to stress that S¥, or
generally any property of the type 4 =3, @;, commutes
with P and is therefore an absolutely meaningful quanti-
ty. The individual contributions @;, of course, are not
meaningful quantities and are consequently not con-
sidered to be a good description for the quantity of in-
terest, A. How they can be avoided, is demonstrated
next.

V. S AND S?IN FIELD QUANTIZATION

An approved description of systems with 1dentlca1 fer-
mions is that of second quantization. Let 10, and ¢, be
the field operators which create and destroy, respectively,
a particle at point r (with spin s) and 1//”, Y., their
Heisenberg representation. The particle-density operator
can then be expressed as

=90 e, s (5.1)

plr,t)

K,<113(l‘12)=2<a b g

ij

i, Ot
)ai’

For the distinct part we find again

%5 ‘>= Jarav [d2d2 a) by (9], bu Y5 000, -

2119

and the coherent structure factor for homogeneous sys-
tems in thermal equilibrium is

<¢r1 11/}’1* ¢r2, '/’rz,tz)_nz

=nS(—rp, —1)*

nS(ry,,tq,)

(5.2)

At t,=t, use of the anticommutation relations of t//Jr
and v leads to
1
S(r1p,00=8(rip)+n | — (Y[ YLt ¥, ) — 1 (5.3)
n 1 2772 1
In the first term of (5.3) we recognize S*(r;,,0) and in the
second one the static pair correlations [g(r;;,)—1]. The
generalization of this distinct part to arbitrary ¢ is obvi-
ous

)= ( l/’I,,t]!bIZ,tzll’rz,zzl/frl,tl ) -

=nS%r 5 t1)*

nSd(rlz,tlz
(5.4)

If we denote for short the state z/J,llv) as IV{.l), nS? is
equal to

Ve ()WL g Vi (1)

This quantity has the desired meaning, namely the proba-
bility of finding a (necessarily different) particle after a
time £, —t, at point r,, if one has been destroyed at ¢, in
r;. (“Don’t paint your particle green—pick it out.”) For
S’ we were not able to find a closed expression; it is, how-
ever, sufficiently defined as the difference of S and S¢,
that is

nSXry,t1)= (‘/’rl 0 ¥re ‘/’rZ, Ve,
_<¢r1, ¢r2, ¢r2,t2'¢'rl,tl) .

(5.5)

(5.6)

Expressions (5.4) and (5.6) now provide us with an ade-
quate description of Fermi—van Hove correlation func-
tions. Their equivalent formulation in Fourier space and
the case of free fermions are listed in Appendix B.

The procedure can easily be extended for arbitrary
correlation functions; for single-particle properties 4 and
B (we use for short 1=r,, etc.)

A=3a

.0 |. ,
i ‘=fd1d1 an iy

with (5.7)

8(1—1")

3
a”,=a LnéT

(and analogously for B) the correlation function is given
by
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~ s a ~. a A ’ '
K9y(t,)= E<a i, 550t |b %5 ]>:fd1dl Jd2d2 ay by e, 95, vy 1) (5.9)
ij

As above, the self part K% 5(t,,) is determined by the difference of Egs. (5.8) and (5.9). Finally we want to apply this to
the velocity autocorrelation function, which has proved very successful in the description of diffusion processes in
molecular liquids. With use of, in this case, more appropriate creation and annihilation operators in momentum space,

we have

W
2
w
>4
3

Further investigations of this function, for instance its
long time behavior, would be of interest.

VI. DENSITY RESPONSE FUNCTION

A basic quantity in the description of dynamics in
many-body systems is the linear response function for the
density in an external potential, connected to the struc-
ture factor via

%X(q,t)f—@(t)[S(q,t)—S(~q, 1. ©.1)

In formal analogy we define its self and distinct part as

v:;)(“'d(q,t)=9(t)[SS’d(q,t)*—SS’d(—q,—t)], (6.2)
which reads in Fourier space
1 . , 1 S(s,d)(q’wr)__s(s,d)(_q’___a):)
nX(q’w) fda) 2 w—o' tia )
(6.3)

For the structure factor according to Eq. (5.2) holds
S(r,t)=S(—r,—1t)*, consequently (6.3) can be rewritten
as

2 _ —Bw
—;Im)((q,w)—(l—e )S(q,0) . (6.4)
S9 however, is real in (r,r) space [cf. Eq. (5.4)] and
therefore real in (q,) space only if it is additionally an

even function in w, immediately leading to a vanishing Y,
[which is, e.g., the case for S90; therefore,

X(q,0)=x"%q,0) (6.5)

holds, in quantum as in classical systems]. This cannot
be expected a priori, however, so that definition (6.2)
remains meaningful [not, however, (6.4) for the self- and
distinct-parts alone].

Concerning the approximations for ), among others,
generalized mean-field approaches have proved very
powerful. The basic theory,”® the random-phase approx-
imation (RPA), is given by

x(q,w)
l—vq)(o(q,w)

O X*(q,0)

1—=v,x*(q,0)

x(q,0)= (6.6)

The effect, that a particle drags along an exchange and
correlation hole, can be accounted for by introduction of
the (exact) local-field correction G(q,w):"®

2 (<clt,tck,tclt'ck’>~<CI,tC£'Ck‘ck,t ).

(5.10)

xX’q,0)
1—v,[1-G(q,0)]x%q,0)

x(q,0)= (6.7)

The most successful theory for determining G (Singwi,
Tosi, Land, and Sj6lander and related work®~!?) is based
on the ansatz of local equilibrium for p®(r;,1,,p;,py 1)
in the first hierarchical equation for the reduced density
p'(ry,py,t), leading to a static G(q) as a functional of
the static S(q).° This forms together with (6.7) and (6.4)
a closed set of equations, which can be solved self-
consistently. The same ansatz for the Wigner function in
the quantum case'? leads to a much more complicated
dynamic G(q,w) as r and p are no longer decoupled
quantities. In the homogeneous-electron-gas numerical
evaluation, however, has shown that the results, though
slightly better, are only insignificantly different from
those obtained with the classical G and use of the quan-
tum x°in (6.7).1?

It should be noted that in classical statistics the con-
nection between the static structure factor and y is excep-
tionally simple, namely®

S(@)=[do3-S(q0)=——=X(q:=0).  (63)

np
For static local-field corrections this has the consequence
that Eq. (6.7) corresponds to replacing v, in (6.6) by

—c(q)/npB, where the direct correlation function c(q) is
defined as

N N S B _ ‘
ne(q)= S(@) 1 B [1—G(q)] . (6.9)

Based on the physical idea that having taken into ac-
count explicitly the collective aspects of the motion
through the RPA structure of y, one should also make
better allowance for the difference of the single-particle
motion and its free behavior. Singwi, Tosi, and Skold'?
suggested the ansatz

x'(q,®)
1—v,[1-G(q)x*(qw)

x(q,0)= (6.10)
and were able to obtain better agreement with experi-
ment. It was shown!'3 that for S(q,®), the Laplace trans-
form of S(q,?), this is equivalent to

S(q0)= 5(q)5 (g, ) ,
1—nc(qQ)iowS (q,w)+1]
14

(6.11)

a result derived earlier by Kerr.'* More refined theories



39 VAN HOVE CORRELATION FUNCTIONS FOR IDENTICAL FERMIONS 2121

taking into account both dynamic local-field corrections
and self-motion corrections through use of y°, have
proved extremly successful in the description of the clas-
sical dynamics in liquids.'>'® In fermion systems, for in-
stance the electron gas, while many good expressions for
static and dynamic local fields have been presented,7'8 a
good theory for the self-motion is missing. Usually it is
argued that Eq. (6.7) is exact, used as a definition for G.
It has been pointed out by Neilson,'”!® however, that cer-
tain physical effects, e.g., the back flow, should not by
force be pressed into the local field, in order to keep their
physical meaning as properties of single-particle motion
and the one of G as the surrounding correlation hole
clear.

From this we expect investigations of S* and/or x° to
lead to better descriptions of Y. As a first step we have
investigated y“ in perturbation theory (cf. Appendix C).
It turns out that in first order of the interparticle poten-
tial vy still y*=y holds, only second-order perturbation
theory yields a nonvanishing Y. This can be well ex-
plained with the help of Feynman diagrams (cf. Fig. 2).
First-order polarization diagrams describe intermediate
states with only one particle outside the Fermi sphere
(and one hole inside). As contributions to y? require at
least two distinct particles, these graphs are clearly part
of x°. The same holds for higher-order diagrams ob-
tained from x° but with use of the true single-particle
propagator in the place of the free one, as these graphs
contain only a better description of the one particle out-
side the Fermi sphere. From this we can also state that
x* will certainly contain all the terms of x° with the Fer-
mi function n,=ny replaced by the true value of the
momentum distribution. This form of y° was used previ-
ously by Niklasson'>?° and might be considered as a first
application of Eq. (6.10).

In second-order perturbation theory the main contri-
butions to y? are of the exchange type of Fig. 2(c). Their
detailed derivation and the comparison with the vfi con-
tributions?! to y is given in Appendix C.

In summary, we have given a precise description of self
and distinct van Hove correlation functions for identical
fermions in the formalism of second quantization and dis-
cussed their main properties. A promising application is
their use in generalized mean-field theories to account for
a better description of the single-particle motion. First
investigations from a perturbation viewpoint have been
presented.

—iq-r.(1)
(e 'qr’tle'qr'>:‘é‘26

V'

—BE,, < v’le ~iq~ri(t)]le iq-r; |V' ) )

S ¢

25y

el

s%s%
s@ T

(g)

FIG. 2. Proper polarization Feynman diagrams contained in
X. The arrow denotes the free single-particle propagator and
the wavy line the bare Coulomb potential. First five graphs:
second-order diagrams obtained from x° by use of the true
single-particle propagator in place of the free one. (a)—(g)
Second-order diagrams which cannot be obtained from y°. Dia-
grams (a)—(g) do not describe real two-particle—two-hole pro-
cesses and therefore they do not contribute to y?. Also the dia-
grams (d) and (e) give no contributions to x?. The main contri-
butions to x? come from diagrams (f) and (g) (exchange dia-
grams).
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APPENDIX A

Our aim is to calculate the expectation value

(A1)

In the subspace of identical fermions it can be shown for the operator 1 to have the correct antisymmetry against parti-

cle interchange

A -1 * ,
l__ﬁ%'V)(VI_N! §V‘,fv(1,...,N)fv(1,_,,

Therefore we get for the matrix element

81 " daw

=— : : . (A2)

vt B
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1 ,
i 2 (Ve

—iq-ri(t)h,) < ’Vleiq.rilvl > _

1
—N—!fdl"

——1) fdl

_ L<V' e —iqr;(1)
N J

“dNdl -

zeiqu
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AN f5(1 . Ne s e T v, L N

(A3)

AN di' f3(1, . N S 8 (0, N (A
J

v’> . (A5)

The sum includes all terms, i =j and i=%j. The insertion of 1 has thus caused a “mixing” of the particles in accordance

with their indistinguishability.

APPENDIX B

We transform the field operators ¢I, Y, to cl,ck, the
creation and annihilation operators of a particle with
momentum k

¢,=‘/L? k e, (B1)
immediately leading to
S(q,w)‘—'?% z(ck (Ctq, LChep q) — N3, (B2)
Sd(q,w)I% kzk’(ci,,cilck,_qckﬂ,t) . (B3)

It will often be convenient to use these expressions in-
stead of (5.2) and (5.3). In the case of free fermions the
time dependence of ¢ is simply

e(t)=e ¥e¢, , (B4)
which together with the noninteracting expectation
values
(clete,

to _
(CkCriqCiCi—q) = aCk+q? T8 kignk » (BS)

(clc‘l'cl(,_,lclﬁLq 0=(840= 8y k+q) Mk Mk (B6)
yields straightforwardly Egs. (3.5) and (3.6). For the per-
fect Fermi gas we have, therefore, proved rigorously that
the description of S* and S¢ in Fock space are correct.
Finally we want to show an interesting feature of the

true S% Its t,, =¢ =0 time derivative is given by

2
ot

d(2 —
Xin(lx)(q>t)_ 2 Up
k,k',p

—1
.0
AEk+p/2,q/2 } [lgz__AEk'—p'/Z,qO ‘

_l nsd(rlz,tlz

)=yl Lpe, HIY,, ) - (B7)

I

The density commutes with the interaction potential, so
we can replace H by H® and get (using the continuity
equation for p)

Gdiy =y ] T T k
iS “q,t= W > (Ck~q/2ck'+q/2ck'~q/2ck+q/2>
Pt m

(B8)
In the homogeneous system S is a function of the magni-
tude of q only and therefore obeys

Cdig f =) == 1 ca
S 4q,t =0)=0 fda)Z#S(q,w). (B9)

APPENDIX C

The distinct part of the linear response function y¢ is
defined as [see Eq. (6.2)]

ix'=n6(1)[SUq,t)—S% —q,—1)]
=0(1) 3, {<Ck~q/2,xCI’+§/2Ck'—q/2ck+q/2,z)
KK

(AT T
<Ck'+q/2ck—q/2,tck+q/2,tck’—q/2 ).
(C1)

To get x? exact up to the second order of the interparticle
potential v, we use the equation-of-motion method. The
second time derivative of Eq. (C1) yields

12(q, )=y (q, )+ xiiiq,t) , (C2)

X = Xinh

where

—1 o

—1 -1
9 ) .
| ot —AEy_p ), q/2] ‘IE—AEkW-p’/Z,q/Z] ][_le(f)]

¥ i m
X Ch—(q—p)/2€ k' +(q—p)/2€K — (g —p)/2Ck +(q—p)/2 )

d(2)

(C3)

d(2)

As th « v, the expectation value (c'cfec ) has to be evaluated in first order of v, whereas x{{2) is already proportional
to v, so that there the expectation values and the time dependence of c, respectively, ¢', can be evaluated for free parti-

cles:
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Xhom(@rt)=

k,X',p,p’

X

2123

. -1 -1
.9 . 9
S Uplpy 1 ["&‘AEk'—p'/z,q/zl - [IE_AEk’+p’/2,q/2‘ ]
9

-1
. Jd t + 0
lat AEk+p/2,q/2 ‘ [<Ck—(q~p)/2,tck'+(q—p')/2P—p’ck'—(q—p')/2Pp,tck+<qu)/2,t)

(AT T 0y( —;
(Ck'+(q~p')/2¢‘kA<q~p)/2,sz,zck+<q~p)/z,rP—p'ck'—(q—p')/z) J(—=i6,)

-1
.0 t t ) 0
+ [’5{ “AEk—p/z,q/z {< Ck—(q—p)/2,tPp,tCk'+(q—p') /2P —pCk'—(q—p') /2Ck+(q—p) /2, )

(T t
<Ck’+(q—p')/2p—p’ck—(q—p)/2,tpp,t

X Cutiq-pi2iCi—q—p1/2 )} (—i6,) | . (C4)

After use of Eq. (B4) and rearranging the factors of the expectation values in such a way that we get terms of the form
(c chpcc ), which cancel, we transform from time dependence to frequency dependence and have to calculate terms of

the form

<cTc'TQc’c )0
wo—AE —AE'’
and

(clete"Terere )0

wo—AE —AE"
The noninteracting expectation values are given by
0—
(el ememe e 0= Byl -y

(C6)

Some of the § functions cause a reduction of the long energy denominator, e.g., terms with

(0—AE

p—q "AES, ;=(0—AE")S,,

(cn

do not describe real two-pair excitations. But an exact evaluation shows that all these contributions cancel. In addi-
tion, processes without exchange of the two particles or the two holes involved do not contribute to y¢‘?.

There occur only terms which are part of the exchange contributions evaluated by Gasser,

d(2) — 1
Xhom(q’w)_ 2 So,a’vp
p.k k' “"’AEk,(q~p)/2—AEk',p/z

2! hamely

_ nk—(q—p)/lnk’—p/Z(nk+(q—p)/2 —nk'+p/2)

(@—AEy /592N N0—AEy_(q—p)/2,q/2)

. Nyt (q—p) 2Nk +p/2(Mk—(q—p)2 " Hi—ps2)

< |v Rg—(q—p)/2Mk+(q—p) 22BN p 2
k—k'+q/2 — —
(0—AEy /542 N0—AEy (/2 q/2)
Ry —(q—p)2Mk+p/2(Akt(q—pr/2 TR —p,2)
(0—AEy p/3,q2 0= AE_(q—p)/2,q/2)
o _ NMk—(g—p)2"k+q—p)2ANKp 2
ka2 (w—AEk—p/Z,q/2 )(w'AEk+p/2,q/z)

nk+(q*p)/2nk.4p/2(nk—(q-‘p)/Z R ipsn)

(@—AEy 14292 @—AEy 1 (q—p)/2,q/2)

(0—AEy /59,20 0= AEy1(q—p)/2,q/2)

l . ‘ (C8)

Equations (C3) and (C8) are our final result for the distinct part of the susceptibility. Its self part is obtained by taking
the difference with the full y in second-order perturbation theory as given in Ref. 21.
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